Supporting Information for

A Bicyclo[4.2.0]octene-Derived Monomer Provides Completely Linear Alternating Copolymers via Alternating Ring-Opening Metathesis Polymerization (AROMP)

Li Tan, Kathlyn A. Parker,* and Nicole S. Sampson*

Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400,

United States

Table of Contents

Table S1. Molecular weight and \mathcal{P}_{M} determined by GPC using polystyrene standards	4
Scheme S1. $t_{1/2}$ for each AROM-2 reaction step.	5
Figure S1. GPC traces of alternating copolymer poly(4-alt-6) ₅₀ and the corresponding traces of poly	(1 -alt-
6) _{50.}	6
Figure S2. ¹ H NMR spectrum of 2 in CD ₂ Cl ₂	7
Figure S3. ¹³ C NMR spectrum of 2 in CDCl ₃ .	8
Figure S4. ¹ H NMR spectrum of 3 in acetone-d ₆	9
Figure S5. ¹³ C NMR spectrum of 3 in CDCl ₃ .	10
Figure S6. ¹ H NMR spectrum of 4 in acetone-d ₆	11
Figure S7. ¹³ C NMR spectrum of 4 in CDCl ₃ .	12
Figure S8. ¹ H NMR spectrum of 5 in CDCl ₃ .	13
Figure S9. ¹³ C NMR spectrum of 5 in CDCl ₃ .	14
Figure S10. ¹ H NMR spectrum of poly(3 - <i>alt</i> - 6) ₁₃ in CD ₂ Cl ₂	15
Figure S11. ¹ H NMR spectrum of poly(3 - <i>alt</i> - 6 - d ₁₀) ₆ in CD ₂ Cl ₂	16
Figure S12. ¹ H NMR spectrum of poly(4 - <i>alt</i> - 6) ₁₆ obtained at 25 °C in CD ₂ Cl ₂	17
Figure S13. ¹³ C NMR spectrum of poly(4 - <i>alt</i> - 6) ₁₆ obtained at 25 °C in CD ₂ Cl ₂	18
Figure S14. HSQC spectrum of poly(4-alt-6) ₁₆ obtained at 25 °C in CD ₂ Cl ₂ .	19
Figure S15. Alkene region of HSQC spectrum of $poly(4-alt-6)_{16}$ obtained at 25 °C in CD_2Cl_2	20
Figure S16. ¹ H NMR spectrum of poly(4 - <i>alt</i> - 6) ₁₆ obtained at 35 °C in CDCl ₃	21
Figure S17. ¹ H NMR spectrum of poly($4-alt-6-d_{10}$) ₁₅ in CD ₂ Cl ₂	22
Figure S18. ¹ H NMR spectrum of crude poly(4 - <i>alt</i> - 6) ₃₄ obtained at 35 °C in CD ₂ Cl ₂	23
Figure S19. ¹ H NMR spectrum of poly(4 - <i>alt</i> - 6) ₃₆ obtained at 60 °C in CD ₂ Cl ₂	24
Figure S20. ¹ H NMR spectrum of poly(5 - <i>alt</i> - 6) ₁₀ in CD ₂ Cl ₂ .	25
Figure S21. ¹ H NMR spectrum of <i>E</i> -stilbene in CD ₂ Cl ₂	26
Figure S22. ¹³ C NMR spectrum of <i>E</i> -stilbene in CD ₂ Cl ₂ (fraction I)	27
Figure S23. HSQC spectrum of <i>E</i> -stilbene in CD ₂ Cl ₂ (fraction I)	28
Figure S24. ¹ H NMR spectrum of partially purified Ph-(3 - <i>alt</i> - 6)-Ph in CD ₂ Cl ₂ (fraction II)	29
Figure S25. ¹³ C NMR spectrum of partially purified Ph-(3 - <i>alt</i> - 6)-Ph in CD ₂ Cl ₂ (fraction II)	30
Figure S26. ¹ H NMR spectrum of partially purified Ph-(3 - <i>alt</i> - 6)-Ph in CD ₂ Cl ₂ (fraction II)	31
Figure S27. ¹ H NMR spectrum of partially purified <i>cyc</i> -(3 - <i>alt</i> - 6) ₁ in CD ₂ Cl ₂ (fraction III).	32
Figure S28. ROM of monomer 1 in CD_2Cl_2 monitored by ¹ H NMR spectroscopy as a function of time	33
Figure S29. ROM of monomer 3 in CD_2Cl_2 monitored by ¹ H NMR spectroscopy as a function of time	34
Figure S30. ROM of monomer 4 in CD_2Cl_2 monitored by ¹ H NMR spectroscopy as a function of time	35
Figure S31. ROM of monomer 5 in CD_2Cl_2 monitored by ¹ H NMR spectroscopy as a function of time	36

Figure S32. AROMP of monomer 3 and cyclohexene 6 ([Ru]: 3 : 6 =1:25:50) in CD ₂ Cl ₂ monitored by ¹ H NMR spectroscopy as a function of time
Figure S33. AROMP of monomer 4 and cyclohexene 6 ([Ru]: 4 : 6 =1:20:40) in CD ₂ Cl ₂ monitored by ¹ H NMR spectroscopy as a function of time
Figure S34. AROMP of monomer 5 and cyclohexene 6 ([Ru]: 5 : 6 =1:50:100) in CD ₂ Cl ₂ monitored by ¹ H NMR spectroscopy as a function of time39
Figure S35. The AROM conversion of [Ru]- 4 enoic carbene to [Ru]- 6 - 4 alkylidene with excess cyclohexene 6 in CD ₂ Cl ₂ 40
Figure S36. The AROM conversion of [Ru]- 3 enoic carbene to [Ru]- 6-3 alkylidene with excess cyclohexene 6 in CD ₂ Cl ₂ 41
Figure S37. Conversion of [Ru]- 6-4 alkylidene (1 eq) to [Ru]- 6-4-6-4 alkylidene in double AROM (AROM-2) with monomer 4 (1 eq) in the presence of excess cyclohexene 6 in CD_2Cl_2 42
Figure S38. Conversion of monomer 4 (1 eq) in double AROM (AROM-2) with [Ru]- 6-4 (1 eq) and excess cyclohexene 6 in CD ₂ Cl ₂ 43
Figure S39. Conversion of [Ru]- 6-3 alkylidene (1 eq) to [Ru]- 6-3-6-3 alkylidene in double AROM (AROM-2) with monomer 3 (1eq) in the presence of excess cyclohexene 6 in CD_2Cl_2 44
Figure S40. Conversion of monomer 3 (1 eq) in double AROM (AROM-2) with [Ru]- 6-3 (1 eq) and excess cyclohexene 6 in CD ₂ Cl ₂ 45
Figure S41. Conversion of [Ru]- 6-4 alkylidene (1 eq) to [Ru]- 6-3-6-4 alkylidene in double AROM (AROM-2) with monomer 3 (1 eq) in the presence of excess cyclohexene 6 in CD_2Cl_2 46
Figure S42. Conversion of monomer 3 (1 eq) in double AROM (AROM-2) with [Ru]- 6-4 (1 eq) and excess cyclohexene 6 in CD ₂ Cl ₂ 47
Figure S43. Conversion of [Ru]- 6-3 alkylidene (1 eq) to [Ru]- 6-4-6-3 alkylidene in double AROM (AROM-2) with monomer 4 (1 eq) in the presence of excess cyclohexene 6 in CD_2Cl_2 48
Figure S44. Conversion of monomer 4 (1 eq) in double AROM (AROM-2) with [Ru]- 6-3 (1 eq) and excess cyclohexene 6 in CD ₂ Cl ₂ 49
References

Polymer	Temp	Cald. M _n	M _n	M _w	Ð _M	
poly(4- <i>alt</i> -6) ₁₆	25 °C	5064	10005	22682	2.0	
poly(4- <i>alt</i> -6) ₁₆	35 °C	5064	10005	18855	1.8	
poly(4- <i>alt</i> -6-d ₁₀) ₁₅	35 °C	5064	12716	21298	1.7	
poly(4- <i>alt</i> -6) ₃₄	35 °C	12504	14552	26512	1.8	
poly(4- <i>alt</i> -6) ₃₆	60 °C	12504	11420	24936	2.1	
poly(3- <i>alt</i> -6-d ₁₀) ₆	25 °C	1556	2046	7677	3.75	

Table S1. Molecular weight and \mathcal{P}_{M} determined by GPC using polystyrene standards.

GPC determined M_n is larger than calculated M_n due to the Benoit effect.¹

Scheme S1. $t_{1/2}$ for each AROM-2 reaction step.

Figure S1. GPC traces of alternating copolymer poly(**4**-*alt*-**6**)₅₀ and the corresponding traces of poly(**1**-*alt*-**6**)₅₀.

Compound 2

σ	ഗഗ		
4	o o	ÖÖ 4 00	10 4
ů.	4 4	-00 m-	44
<u></u>	<u> </u>	0444	0 0
1			\sim

Figure S4. ¹H NMR spectrum of $\mathbf{3}$ in acetone-d₆.

Compound 3

LQ.	LQ.	N.	(2.12)	10 - - -
2	~	00	C 0.0	10 4 0
9	4	0	<u> </u>	10 10 10
<u> </u>	<u> </u>	-	rò 4 á	0 0 0
		ł		\sim

Figure S6. ¹H NMR spectrum of **4** in acetone-d₆.

Figure S7. ¹³C NMR spectrum of **4** in CDCl₃.

Figure S8. ¹H NMR spectrum of **5** in CDCl₃.

Compound 5

<u>o</u>	0	<u>ю</u>		
N	00	0	(c) Q 4	0, ⊂ 0, 0, 1~
Q	4	4	မှ မ	- 0 0 h- h-
<u> </u>	<u> </u>	-	ró 4 4	000000
1				

Figure S9. 13 C NMR spectrum of **5** in CDCl₃.

Figure S10. ¹H NMR spectrum of poly(**3**-*alt*-**6**)₁₃ in CD₂Cl₂.

Figure S12. ¹H NMR spectrum of poly(**4**-*alt*-**6**)₁₆ obtained at 25 °C in CD₂Cl₂.

Figure S15. Alkene region of HSQC spectrum of poly(**4**-*alt*-**6**)₁₆ obtained at 25 °C in CD₂Cl₂.

Figure S17. ¹H NMR spectrum of poly(**4**-*alt*-**6**-**d**₁₀)₁₅ in CD₂Cl₂.

Figure S18. ¹H NMR spectrum of crude poly(**4**-*alt*-**6**)₃₄ obtained at 35 °C in CD₂Cl₂.

Figure S20. ¹H NMR spectrum of poly(**5**-*alt*-**6**)₁₀ in CD₂Cl₂.

Figure S28. ROM of monomer **1** in CD₂Cl₂ monitored by ¹H NMR spectroscopy as a function of time.

Figure S32. AROMP of monomer **3** and cyclohexene **6** ([**Ru**]:**3**:**6**=1:25:50) in CD₂Cl₂ monitored by ¹H NMR spectroscopy as a function of time.

Figure S33. AROMP of monomer **4** and cyclohexene **6** ([**Ru**]:**4**:**6**=1:20:40) in CD₂Cl₂ monitored by ¹H NMR spectroscopy as a function of time.

Figure S34. AROMP of monomer **5** and cyclohexene **6** ([**Ru**]:**5**:**6**=1:50:100) in CD₂Cl₂ monitored by ¹H NMR spectroscopy as a function of time.

Figure S35. The AROM conversion of [Ru]-**4** enoic carbene to [Ru]-**6**-**4** alkylidene with excess cyclohexene **6** in CD₂Cl₂.

Figure S36. The AROM conversion of [Ru]-**3** enoic carbene to [Ru]-**6**-**3** alkylidene with excess cyclohexene **6** in CD_2Cl_2 .

Figure S37. Conversion of [Ru]-**6**-**4** alkylidene (1 eq) to [Ru]-**6**-**4**-**6**-**4** alkylidene in double AROM (AROM-2) with monomer **4** (1 eq) in the presence of excess cyclohexene **6** in CD₂Cl₂.

Figure S38. Conversion of monomer **4** (1 eq) in double AROM (AROM-2) with [Ru]-**6**-**4** (1 eq) and excess cyclohexene **6** in CD₂Cl₂.

Figure S39. Conversion of [Ru]-**6**-**3** alkylidene (1 eq) to [Ru]-**6**-**3**-**6**-**3** alkylidene in double AROM (AROM-2) with monomer **3** (1eq) in the presence of excess cyclohexene **6** in CD₂Cl₂.

Figure S40. Conversion of monomer **3** (1 eq) in double AROM (AROM-2) with [Ru]-**6**-**3** (1 eq) and excess cyclohexene **6** in CD₂Cl₂.

Figure S41. Conversion of [Ru]-**6**-**4** alkylidene (1 eq) to [Ru]-**6**-**3**-**6**-**4** alkylidene in double AROM (AROM-2) with monomer **3** (1 eq) in the presence of excess cyclohexene **6** in CD₂Cl₂.

Figure S42. Conversion of monomer **3** (1 eq) in double AROM (AROM-2) with [Ru]-**6**-**4** (1 eq) and excess cyclohexene **6** in CD₂Cl₂.

Figure S43. Conversion of [Ru]-**6**-**3** alkylidene (1 eq) to [Ru]-**6**-**4**-**6**-**3** alkylidene in double AROM (AROM-2) with monomer **4** (1 eq) in the presence of excess cyclohexene **6** in CD₂Cl₂.

Figure S44. Conversion of monomer **4** (1 eq) in double AROM (AROM-2) with [Ru]-**6**-**3** (1 eq) and excess cyclohexene **6** in CD₂Cl₂.

References

(1) Lapinte, V.; de Frémont, P.; Montembault, V.; Fontaine, L. *Macromol. Chem. Phys.* **2004**, "Ring opening metathesis polymerization (ROMP) of cis- and trans-3,4-bis(acetyloxymethyl)cyclobut-1-enes and synthesis of block copolymers," *205*, 1238-1245. 10.1002/macp.200300224: 10.1002/macp.200300224.