Supporting Information for Langmuir

Biocompatible Nanoparticles of Coordination Polymer KGd(H₂O)₂[Fe(CN)₆]·H₂O with Extremely High *T*₁-Weighted Relaxivity: Towards Stable Cellular MR Probes Containing Two Coordinated Water Molecules on the Gd(III) Center

Vindya S. Perera,^a Liu D. Yang,^a Jihua Hao,^{b,c} Guojun Chen,^{a,†} Bernadette O. Erokwu^b, Chris A. Flask,^{*b,e,f} Peter Y. Zavalij,^{*d} James P. Basilion,^{*b,c,e} Songping D. Huang^{*a} ^aDepartment of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA. To whom correspondence should be addressed Fax: +1-330-672-3816; E-mail: shuang1@kent.edu

^bCase Center for Imaging Research, Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA

^cNFCR for Molecular Imaging, Case Western Reserve University, Cleveland, OH 44106, USA

^dDepartment of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742

^eDepartment of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA

Summary of structure determination for KGd(H₂O)₂[Fe(CN)₆]·H₂O

R-Values

Rexp :	1.26	Rwp :	1.87	Rp	:	1.41	GOF	:	1.48
Rexp`:	8.39	Rwp`:	12.40	Rp`	:	19.27	DW	:	0.96

Background

Chebyschev polynomial, No. Coefficients 12

Instrument

Powder Diffractometer	Bruker D8 Advance
Detector	PSD: LynxEye
Exposition	lsec
Radiation	CuKα, λ=1.54178 Å

Goniometer radius (mm)	217.5
Linear PSD 2Th angular range (°)	3
FDS angle (°)	0.5
Beam spill, sample length (mm)	15
Intensity corrected	
Simple axial model (mm)	5.1(2)
Corrections	
Zero error	0.024
Specimen displacement	-0.055(2)
LP Factor	90
Absorption (1/cm)	26.9(7)
Sample Thickness (mm)	0.2
Intensity correction applied	

Structure 1

Phase name	K[GdFe(CN)6].3H2O		
R-Bragg	1.27%		
Spacegroup	Pnma		
Scale	0.0002102(6)		
Cell Mass	1825.21		
Cell Volume (Å^3)	1244.63(7)		
Wt% - Rietveld	100.000		
Crystallite Size Lorentzian (nm)	465(19)		
Strain Lorentzian	0.125		
Crystal Linear Absorption Coeff. (1/cm)	465.19(3)		
Crystal Density (g/cm^3)	2.43513(13)		
Preferred Orientation (Dir 1 : 0 1 0)	1.23(3)		
(Dir 2 : 1 0 0)	0.843(14)		
Fraction of Dir 1	0.45(7)		
Lattice parameters			

а	(Å)	12.6098(4)
b	(Å)	13.6161(4)
С	(Å)	7.2490(3)

Site	Np	Х	7	У		Z	Atom	0cc	Beq
Gd	4	0.16014	0.2	250	00	-0.00846	Gd	1	1.121
Fe	4	0.50000	0.5	500	00	0.00000	Fe	1	1.287
C1	8	0.38070	0.4	412	30	-0.01010	С	1	1.816
Nl	8	0.30880	0.3	360	20	-0.00970	N	1	2.763
C2	8	0.41770	0.58710		10	0.14510	С	1	1.816
N2	8	0.36540	0.0	640	70	0.23130	N	1	2.606
С3	8	0.54850	0.4	432	80	0.21400	С	1	1.737
N3	8	0.57820	0.3	388	40	0.34270	N	1	2.763
01	4	0.22440	0.2	250	00	0.32570	0	1	2.763
02	4	-0.04090	0.2	250	00	-0.09200	0	1	3
03	8	0.16650	0.5	590	00	0.01080	0	0.5	4.422
K	8	0.16770	0.5	579	10	-0.04510	K	0.5	4.185
Gd:0		N1:1	0 -	-1	0	2.40112			
		N1:0	0	0	0	2.40112			
		N2:7	-1 -	-1	0	2.42436			
		N2:6	-1	0	0	2.42436			
		N3:3	0 -	-1	-1	2.46226			
		N3:2	0	0	-1	2.46226			
		01:0	0	0	0	2.55421			
		02:0	0	0	0	2.60647			
Fe:0		C2:5	-1 -	-1	0	1.89469			
		C2:0	0	0	0	1.89469			

	C3:0	0	0	0	1.90203
	C3:5	-1	-1	0	1.90203
	C1:5	-1	-1	0	1.92208
	C1:0	0	0	0	1.92208
C1:0	N1:0	0	0	0	1.15120
	Fe:0	0	0	0	1.92208
N1:0	C1:0	0	0	0	1.15120
	Gd:0	0	0	0	2.40112
C2:0	N2:0	0	0	0	1.16534
	Fe:0	0	0	0	1.89469
N2:0	C2:0	0	0	0	1.16534
	Gd:3	-1	-1	-1	2.42436
C3:0	N3:0	0	0	0	1.17309
	Fe:0	0	0	0	1.90203
N3:0	C3:0	0	0	0	1.17309
	Gd:1	-1	0	-1	2.46226
01:0	Gd:0	0	0	0	2.55421
	K:6	-1	0	-1	2.85365
	K:7	-1	-1	-1	2.85365
02:0	Gd:0	0	0	0	2.60647
	K:4	0	0	0	2.99319

	K : 5	0	-1	0	2.99319
03:0	K:0	0	0	0	0.43181
K:0	03:0	0	0	0	0.43181
	01:3	-1	-1	0	2.85365
	02:2	0	-1	0	2.99319
	N3:2	0	0	-1	3.18883

Firgure S1. Rietveld refinement plot of KGd(H₂O)₂[Fe(CN)₆]·H₂O with the difference between observed and calculated patterns shown at the bottom and the reflection positions shown as the vertical lines

Figure S2. The TGA curve of bulk KGd(H₂O)₂[Fe(CN)₆]·H₂O sample

Figure S3. FT-IR spectra of sodium citrate, PVP and PVP-C-KGdFeCN NPs.

Firgure S4. XRD Patterns of PVP-C-KGd(H₂O)₂[Fe(CN)₆]·H₂O

Figure S5. EDX spectrum on a typical PVP-coated nanoparticle

Figure S6. Plots of $1/T_i$ (*i*=1,2) versus Gd³⁺-concentration at the magnetic field strength of 1.4 T for PVP-coated NPs.

Figure S7. Fluorescence spectra of carboxyfluorescein dye and dye labeled nanoparticles.