
 
Mathematical Appendix 

Derivation of VOR responses. 
 
The solution to Eq. 1 in the main text, as well as having a sinusoidal component, also has 
a postsaccadic exponential component, which can also advance or delay the peaks and 
troughs of eye position. For most of the data shown, this component is smallest, and Eq. 2 
in the main text is most accurate when the turning points of eye position are in the 
opposite half of the oculomotor range to the head. 
  
Let the angular head position H and angular head velocity be given by H
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where ω = 2πf is the angular frequency of the head rotations and B is their peak angular 
velocity. A simple integrator with output E (eye position) governed by 
 
  [4] =  - = + cos ωE kE H kE B t 

D

can be shown by differentiation and substitution to have the solution 

  [5]  = sin (ω  + ) + e  =  cos sinω  + sin cosω ekt ktE C t D C t C tφ φ φ +

where C and D are constants. The solution has sinusoidal and exponential components. 
Upon differentiation we obtain 
    [6]    ω cos (ω   )   e   ω cos cosω  -  ω sin sinω e .kt ktE C t kD C t C t kDφ φ φ= + + = +

Substituting Eqs. 5 and 6 in Eq. 4 gives 

ω cos cosω  - ω sin sinω  + e = e  + cos sinω  + sin cosω  + cosωkt ktC t C t kD kD kC t kC t B tφ φ φ φ [7] 

and comparing coefficients of sin ωt gives 

 -ω sin  = cosC kCφ φ  [8] 

which yields tan  = - /ωkφ  [9] 

which can be inverted and rescaled from radians to degrees to give Eq. 2 of the main 
paper, where φ  is the phase shift of the sinusoidal component of the solution, and not that 
of the entire solution including the exponential component. 
 
Comparing coefficients of cos ωt in Eq. 7 gives 
 
 ω cos  =  sin  + .C kC Bφ φ  [10] 

Eq. 9 also gives sin and cos , which can be used to 
rearrange Eq. 10 to give 

2 2 1/= - (ω + )k kφ − 2 2
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2 2 1/= ω(ω + )kφ −

  [11] 2 2 1/= (ω + ) .C B k −
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The starting amplitude D of the exponential part of the solution is set by the initial 
conditions (t = 0 in Eq. 5),  
  [12] 2 2(0) =  sin  = - /(ω + ) + E C D Bk kφ + D

giving             [13] 2 2 = /(ω + )  + (0).D Bk k E

In a leaky integrator, without saccades the exponential component would decay and 
become negligible, but saccades boost it back up. On the other hand, in an unstable 
integrator, without saccades the exponential component would rapidly grow out of 
control and swamp the sinusoidal component; saccades reset the exponential component 
back towards zero. Naïvely, one might expect the exponential component to shift 
response peaks and troughs further in the direction of the sinusoidal component’s phase 
shift. However, in most cases studied here, the head movement range was larger than the 
oculomotor range, so saccades often gave the exponential component an amplitude of 
opposite sign to the sinusoidal component at that time, perhaps in order to allow the VOR 
to operate better over the full range of head movement. This effect was most pronounced 
when a saccade placed the eyes into the same half of the oculomotor range as the head 
(Fig. 5: first, middle and last peaks marked by green dashed lines). An opposite-signed 
exponential component reduces or even reverses the phase shift generated by the 
sinusoidal component. 
 

In more detail: every time there is a saccade, D is reset to a new value, depending on 
where the saccade places the eyes relative to the sinusoidal component of the response. 
When the head movement is greater than the oculomotor range, fast resets allow the 
response to be compressed into the available range. D can be calculated from Eq. 5 as 
 
  [14] -= e ,kTD E∆

where   = ( ) - sin (ω  + )E E T C T φ∆ is the difference between where the eye lands after a 
saccade at time T, and the sinusoidal component of the response. In a perfectly tuned 
integrator, with k = 0, D is just a steady-state offset term, helping to keep the eye position 
within the oculomotor range for larger ranges of head position. In an imperfect integrator 
with k ≠ 0, when D has the same sign as the direction of travel ( post-sacS ) of the sinusoidal 
component S just after the saccade, the exponential component will enhance the apparent 
phase shift relative to that predicted from the sinusoidal component alone, but when D 
has the opposite sign, it will reduce and may even reverse the apparent phase shift (as 
judged from times of eye position slow phase peaks and troughs, or turning points). If k 
and hence φ  are unknown, or if no assumptions are to made about them, then a rough 
guide to the likely effect of D is given by the position in the oculomotor range of the eye 
position peak or trough relative to head position. Eye peaks or troughs on the same side 
as the corresponding head trough or peak must have D with the opposite sign to post-sacS , 
and are likely therefore to generate misleading apparent phase shifts. Eye peaks or 
troughs opposite the head trough or peak will have smaller opposite-signed D (in cases 
where the amplitude of the head movement is greater than the oculomotor range, as in 
most of the experiments presented above) or even D with the same sign as post-S sac  (in 
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cases where the amplitude of the head movement is small), as they are closer to the 
turning points of the sinusoidal component of the response. Therefore, the apparent phase 
shifts of eye turning points “furthest opposite” the corresponding head extrema would be 
expected to be closest to those predicted of the pure sinusoidal component. These effects, 
coupled with null point shifts and velocity storage, may go part of the way toward 
explaining why the data in Fig. 5d only approximately match the theoretical lines.  We 
discovered after extensive analysis that null point shifts make a more rigorous 
quantitative analysis along the lines of that of Goldman et al. (2) very difficult.  
 
 




