Supplementary Figure Legends

Fig. S1. PQBP1 and WBP11 sequence comparisons. **A.** Alignment of PQBP1 protein sequences of human (*Homo sapiens*, *Hs*), mouse (*Mus musculus*, Mm), *Xenopus laevis* (*Xl*) homeologs a and b, zebrafish (*Danio rerio*, *Dr*) and Starlet sea anemone (*Nematostella vectensis*, *Nv*). Shading indicates homology (black 80–100%, grey 60–80%). WW: WW domain, PRD: polar amino acid rich domain, NLS: nuclear localization signal, CTD: C-terminal conserved domain. The additional polar amino acid-rich tail highly conserved among species is marked by wavy line. **B.** Alignment of WBP11 protein sequences of human (*Hs*), mouse (*Mm*), *Xenopus laevis* (*Xl*) homeologs a and b, and *zebrafish* (*Dr*). Shading indicates homology (black 80–100%, grey 60–80%).

Fig. S2. **Expression profile of** *pqbp1* **and** *wbp11* **mRNA during embryogenesis**. Total RNA extracted from indicated developmental stages of *X*. *laevis* was used for qPCR analysis. The results were normalized to *ornithine decarboxylase* (ODC) levels and plotted relative to the level measured in the stage 35 embryos (set as 1.0).

Fig. S3. Expression of *pqbp1* **and** *wbp11* **in neurula stage embryos**. Whole mount *in situ* hybridization with indicated probes on embryos that were longitudinally sectioned (A) or cross-sectioned (B) stage 18 embryos. S: sense probe of *pqbp1*. Both *pqbp1* and *wbp11* transcripts are localized to ventro-lateral neural tube cells (B).

Fig. S4. **Over-expression of PQBP1 inhibits normal specification and movement of dorsal mesoderm**. Embryos at the end of gastrulation, stage 13, that had been dorsally injected at the 2-cell stage with 1 ng *pqbp1* mRNA, were analyzed by *in situ* hybridization with *brachyury (bra)* and *chordin (chd)* probes.

Fig. S5. Partial rescue of neural folding defects in PQBP1 morphants by *pqbp1* mRNA. A. PQ MO1 (40 ng) was dorsally injected with either 2 ng *b-galactosidase (b-gal)* or *pqbp1* (PQ) mRNA. B. Fraction of embryos displaying specific phenotypes: closed, partially closed or open neural folds (NF).

Fig. S6. *Xenopus* **WBP11 interacts with PQBP1**. **A.** Co-immunoprecipitation (co-IP) of PQBP1 and WBP11 from COS1 cells transfected with HA-tagged PQBP1 (HA-PQ) and myc-tagged WBP11 (myc-WB). Cell lysates were immunoprecipitated (IP) with an anti-myc antibody, followed by immunoblotting with an anti-HA antibody to detect PQBP1 bound to WBP11, or vice versa. TCL: total

cell lysate. **B**. Co-immunostaining of myc-tagged WBP11 (myc-WB) and HA-tagged PQBP1 (HA-PQ) expressed in COS1 cells. Nuclei were stained with DAPI.

Fig. S7. Validation of *pqbp1* knockdown effects on *fgf4* and *cdx4* expression in *X. laevis* and *X. tropicalis* embryos. Results were analyzed and plotted as described in Fig. 5. A-C. Expression of *fgf4* and *cdx4* was analyzed by qPCR. A. Either of the PQBP1 MOs (at 50 ng) reduced the expression of *fgf4* and *cdx4* in *X. laevis* morphant embryos, *P < 0.05 or **P < 0.01, with comparisons to control embryos (CT). B. Reduced *fgf4* and *cdx4* expression in embryos injected with 30 ng *pqbp1* MOb at the 4-cell stage into the VMZ was rescued by co-injection of MOb-resistant PQBP1 mRNA (0.4 ng or 2 ng) but not control *b-gal* mRNA (-); *P < 0.05 or **P < 0.01, with comparisons to MO-only injected embryos (-). C. Analysis of PQBP1 knockdown in *X. tropicalis* embryos. *X. tropicalis* PQBP1 MO (20 ng) was bilaterally injected into embryos at the 2-cell stage, and phenotypes of stage-matched wild type (WT) embryo (left panel) and MO-injected embryos (middle panel) are shown. Expression of *fgf4* and *cdx4* were evaluated in WT and *pqbp1* morphant *X. tropicalis* at the gastrula stage (right panel), as described in Fig. 5; *P < 0.05 or **P<0.01, with comparisons to control embryos (CT).

Fig. S8. Expression profile of different FGF receptors in Xenopus embryos. A. Total RNA was extracted from early neurula stage embryos, followed by Lightcycler qPCR (27 cycles) with each receptor-specific primer set, and amplification products were visualized by gel electrophoresis. **B.** Expression profile of FGF receptors in morphant gastrula stage embryos by qPCR. Samples were prepared and analyzed as per Fig. 5. Relative *fgfr* expression levels were calculated from the "crossing point" (CP) of qPCR cycle numbers for each primer set, using a common standard curve generated from *fgfr1IIIb* control embryo cDNA dilution series, and normalized to levels of *odc* transcripts. Bar graphs indicate the relative expression level of receptor transcripts in embryos injected with 150 ng control (CT), 100 ng *pqbp1* (PQ), 50 ng *wbp11* (BP), and combined *pqbp1* and *wbp11* (PQ+BP) MOs. Mean values for triplicate biological experiments are plotted; bars indicate standard error. Note, although expression levels of *fgfr1IIIc* and *fgfr3IIIb* transcripts appear nearly zero, they were detected in gelbased and qPCR.

Table S1. PCR Primers

Gene target		Primer sequence
odc	U	GCCATTGTGAAGACTCTCTCC
	D	TTCGGGTGATTCCTTGCCAC
wnt8	U	AGATGACGGCATTCCAGA
	D	TCTCCCGATATCTCAGGA
fgf4	U	CTTTCTTTCCAGAGAAACGACACCG
	D	AACTCACGACTCCAACTTCCACTG
fgf4 5'UTR	U	ACCTCCTCTGGGAGCTAAGCAGT
	D	TGGAAAGAAAGCGGCAGGCACT
cdx4	U	TCTCCTCATCCATCTGGGACTG
	D	AGTTCTGTCTTCCGCCTGATAGTG
fgf8	U	ATCACCTCCATCCTGGGCTATC
	D	TGCGAACTCTGCTTCCAAACG
brachyury	U	TTCTGAAGGTGAGCATGTCG
	D	GTTTGACTTTGCTAAAAGAGACAGG
siamois	U	CTGTCCTACAAGAGACTCTG
	D	TGTTGACTGCAGACTGTTGA
sizzled	U	CACACAAGACAGTCTTGGAAGCTTTC
	D	CACCAGCAATAACATACACTGTGGG
mix.2	U	TGCAAGCCATCATTATTCTAGC
	D	AGGAACCTCTGCCTCGAGACAT
apod (veg T)	U	TGGATTAGTTTAGGAACA
	D	CGGATCTTACACTGAGGA
sox2	U	GATCAGTATGTACCTACCTGG
	D	AGTGGAGAGCCACAGTTTGTC
chordin	U	AACTGCCAGGACTGGATGGT
	D	GGCAGGATTTAGAGTTGCTTC
noggin	U	AGTTGCAGATGTGGCTCT
	D	AGTCCAAGAGTCTGAGCA
goosecoid	U	TTCACCGATGAACAACTGGA

	D	TTCCACTTTTGGGCATTTTC
trop odc	U	ACAAGCTGTCTCAGATGCAC
	D	GCTCAGCAATGATGGTCACT
trop fgf4	U	GCAACGTGGGCATCGGGTTTCA
	D	TCCATACAGCTTCCCCTTTGCATTC
trop cdx4	U	AGCTGCCAACTCACCCAGCGAT
	D	TCCAGCTCCAGCCTCTGATGGT

Table S2. PCR Primers for FGFR

Gene target		Primer sequence
fgfr1 ex7	U	TGGCCTCGGATGGCTTCCCGTAT
fgfr1 ex8a	D	CGCAGACTGATTGGCCTCACCA
fgfr1 ex8b	U	TGGAGTTAGCGGCCAAGCAGGT
fgfr2 ex7	U	CCACATCCGCTGGGTGCGTTA
fgfr2 ex8a	D	TGCGTCCGCTTCGGTCACATT
fgfr2 ex8b	D	CCAGCATCCTCAAAAGAAACATTCCTG
fgfr2 ex8a	U	TCCAGTGCTGAAGTGCTGAAACTG
fgfr2 ex8b	U	ACATTCTGCCTGGTTGACGGT
fgfr2 ex9	D	TCTTCTTGGCTCCTTGCCGC
fgfr3 ex7	U	TGGCAGCAAGTACGGCCCAGA
fgfr3 ex8a	D	TGTCCTTCATGGGTCTCGGTCACA
fgfr3 ex8b	D	ACCGTCAGCCAAGCAGTGTGA
fgfr4 ex7	U	TGGAAGCCATTTTGGCCCTGATGA
fgfr4 ex9	D	TCTTGACTCTGCTGGCTCGGCT

В

Fig. S3

Α В WT n=25 n=25 n=30 100% 80% closed NF 60% partial PQ MO1 + ß-gal 40% open 20% 0% WT PQ RNA -PQ MO1 + PQ + PQ MO

С

XtPQBP1 MO

Fig. S8

