Additional file 1 Additional information of sampling distributions of RD, Cohen's h and OR.

The asymptotic distribution for each of RD, Cohen's h and $log(OR)$ can be derived by using the multivariate delta method. Suppose a random vector $X = (X_1, \ldots, X_n)$ has a mean vector $\mu = (\mu_1, ..., \mu_p)$ and a variance-covariance matrix Σ . Then, for a transformation of X is $g(X)$, the asymptotic distribution will be asymptotic normal $N(\mu_{g}, \sigma_{g}^{2})$ where $\mu_{g} = g(\mu)$ and $\sigma_{g}^{2} = D\Sigma D^{t}$, where *D* is the matrix of partial derivatives of $g(X)$ with respect to X and D^t denotes the transpose matrix of D. These three ES measures can be considered as a function of MAFs from case and control group. The joint distribution of estimates of MAFs at case and control group is

$$
\begin{pmatrix} \hat{p}_1 \\ \hat{p}_2 \end{pmatrix} \sim N \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \begin{bmatrix} \frac{p_1(1-p_1)}{n_1} & 0 \\ 0 & \frac{p_2(1-p_2)}{n_2} \end{bmatrix}.
$$
 Firstly, we derive the asymptotic

distribution of the estimate for RD, denoted as $\hat{d} = \hat{p}_1 - \hat{p}_2$. Let $g(\hat{p}_1, \hat{p}_2) = \hat{p}_1 - \hat{p}_2$, the expectation value of $\hat{p}_1 - \hat{p}_2$ is $E(g(p_1, p_2)) = p_1 - p_2$ and variance is

$$
Var(\hat{p}_1 - \hat{p}_2) = (1, -1) \times \begin{bmatrix} \frac{p_1(1-p_1)}{n_1} & 0 \\ 0 & \frac{p_2(1-p_2)}{n_2} \end{bmatrix} \times \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}.
$$

Hence \hat{d} is asymptotically distributed as a normal distribution $\frac{(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}$. $\left(d, \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}\right).$ $\left(d, \frac{p_1(1-p_1)}{p_2(1-p_1)}\right)$ 2 $2(1 - p_2)$ 1 $\frac{p_1(1-p_1)}{p_2(1-p_1)} + \frac{p_2(1-p_1)}{p_2(1-p_1)}$ *n* $p_2(1-p)$ *n* $p \left(d \frac{p_1(1-p_1)}{p_1(1-p_2)} \right)$. The genetic association test based on RD can be defined as $H_0: d = 0$ vs. $H_1: d \neq 0$, and the corresponding test statistic is

$$
\frac{\hat{d}}{\sqrt{\hat{p}(1-\hat{p}) \times (\frac{1}{n_1} + \frac{1}{n_2})}}
$$
 where $\hat{p} = \frac{(n_1\hat{p}_1 + n_2\hat{p}_2)}{n_1 + n_2}$ is the MAF among whole ample.

Next, for Cohen's h, the estimator is $\hat{h} = g(\hat{p}_1, \hat{p}_2) = 2 \arcsin(\sqrt{\hat{p}_1}) - 2 \arcsin(\sqrt{\hat{p}_2})$. According to the delta method, the expectation of Cohen's h is $E(g(p_1, p_2)) = 2 \arcsin(\sqrt{p_1}) - 2 \arcsin(\sqrt{p_2})$ and the variance is

$$
Var(g(\hat{p}_1, \hat{p}_2)) = \left(\frac{1}{\sqrt{p_1(1-p_1)}}, -\frac{1}{\sqrt{p_1(1-p_1)}}\right) \times \begin{bmatrix} \frac{p_1(1-p_1)}{n_1} & 0 \\ 0 & \frac{p_2(1-p_2)}{n_2} \end{bmatrix} \times \begin{bmatrix} \frac{1}{\sqrt{p_1(1-p_1)}} \\ -\frac{1}{\sqrt{p_1(1-p_1)}} \end{bmatrix}
$$

 $\frac{1}{-} + \frac{1}{-}$. $=\frac{1}{n_1} + \frac{1}{n_2}$. The asymptotic distribution for \hat{h} is $N\left(h, \frac{1}{n_1} + \frac{1}{n_2}\right)$. $\left(h, \frac{1}{n_1} + \frac{1}{n_2}\right).$ \int , $+$ n_1 n_2 $\frac{1}{2} + \frac{1}{2}$ n_1 *n* $N|h, \frac{1}{h}$ + $\frac{1}{h}$. The test statistic

based on the Cohen's h for H_0 :*h* =0 vs. H_1 :*h* \neq 0 is $\frac{1}{1}$ $\frac{1}{2}$ 1 1 \hat{h} n_{1} *n h* $+$ -. Finally, we derive the

asymptotic distribution for log(OR) as below. The estimator for log(OR) is $\frac{p_1/(1-p_1)}{\hat{p}_2/(1-\hat{p}_2)}$ $\ln(O\hat{R}) = g(\hat{p}_1, \hat{p}_2) = \ln(\frac{\hat{p}_1/(1-\hat{p}_1)}{2\pi\hat{R}^2})$ 2/ $(1 - \mu_2)$ p_1, \hat{p}_2) = $\ln(\frac{p_1/(1-p_1)}{\hat{p}_2/(1-\hat{p}_2)})$ $Q(\hat{R}) = g(\hat{p}_1, \hat{p}_2) = \ln(\frac{\hat{p}_1/(1-\hat{p}_2)}{2})$ $-i$ $= g(\hat{p}_1, \hat{p}_2) = \ln(\frac{\hat{p}_1/(1-\hat{p}_1)}{2})$ and the expectation is $(g(p_1, p_2)) = \ln(\frac{P_1/(1 - P_1)}{(1 - P_2)}) = \ln(QR)$ $(1-p_2)$ (p_1, p_2) = $ln(\frac{p_1/(1-p_1)}{(1-p_2)})$ 2/ $(1 - P_2)$ p_1, p_2) $=$ $\ln(\frac{p_1/(1-p_1)}{p_2/(1-p_2)}) = \ln(OR)$ $E(g(p_1, p_2)) = \ln(\frac{p_1/(1-p_1)}{(1-p_2)}) = 1$ -1 . The variance is $(g(\hat{p}_1, \hat{p}_2)) =$ \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \setminus $\overline{}$ \vert $|l$ $\vert \sqrt{2}$ -1 \mathbb{R} $\left| P_1(1 - \mu) \right|$ \mathbf{L} \mathbf{L} $\vert x \vert$ \mathbf{L} \vert \mathbf{L} \mathbb{R}^n \mathbb{R}^n Ē $\mid p$ -1 -1 \times $-p_1$)² $p_2(1-p)$ $=$ $($ 1 $(1-p_1)$ 1 0 $\frac{p_2(1-p_2)}{p_2}$ $\frac{(1-p_1)}{p_2}$ 0) $(1 - p_2)$ $\frac{1}{\sqrt{1-\frac{1}{2}}}$ $(1 - p_1)$ (\hat{p}_1, \hat{p}_2) = $\left(-\frac{1}{a}\right)$ 1^{1} P_1 2 $(1 - p_2)$ 1 $1^{11} - P_1$ $q_1(1 - p_1)$ $p_2(1 - p_2)$ $_1$, P_2 $p_1(1-p)$ $p_2(1-p)$ *n* $p_1(1-p)$ $p_1(1-p_1)^p p_2(1-p_2)$ $Var(g(\hat{p}_1, \hat{p}_2))$

 $n_1 p_1 (1-p_1)$ $n_2 p_2 (1-p_2)$ 1 1 1 $n_1 p_1 (1-p_1)$ $n_2 p_2 (1-p_2)$ $+ -1$ $=$ $\frac{1}{\sqrt{2\pi}}$ + $\frac{1}{\sqrt{2\pi}}$. Therefore, the asymptotic distribution of $\ln(Q\hat{R})$ is $\Bigg) \cdot$ $\left(\ln(OR), \frac{1}{n_1p_1(1-p_1)} + \frac{1}{n_2p_2(1-p_2)}\right).$ $\int_{\mathbf{a}}$ $- i$ $+$ - $(-p_1)$ $n_2 p_2 (1-p_2)$ 1 $(1 - p_1)$ $ln(OR)$, $\frac{1}{1}$ $n_1 p_1 (1-p_1)$ $n_2 p_2 (1-p_2)$ $N \left(\ln(OR) \right)$ + $\frac{1}{\sqrt{2}}$ The test statistic for genetic association

L

 \int

 $(1-p_2)$

2⁽¹ P_2

 $p_2(1-p)$

 $\binom{r}{k}$

 $\begin{array}{c} \end{array}$

2

n

based on log(OR) is
$$
\frac{\ln(O\hat{R})}{\sqrt{\frac{1}{n_1 \hat{p}_1 (1 - \hat{p}_1)} + \frac{1}{n_2 \hat{p}_2 (1 - \hat{p}_2)}}}
$$
.