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Kinetic model of promoter activation 
To investigate, theoretically, how promoter state switching affects protein abundance 

noise, we assume the following common kinetic model of gene expression(Raser and 

O’Shea 2004): 

 

 

 

 

 

 

Where 𝑘!"  and 𝑘!""  are the promoter on- and off-switching rates respectively, 𝑟 the 

transcription rate (of the ON state), 𝛾! the mRNA degradation rate, and kp and 𝛾!the 

protein production and degradation rate respectively. 

 

This model assumes that the promoter switches between a transcriptionally active (ON) 

and inactive (OFF) state, and that this switching is correlated with TF binding and 

unbinding such that the promoter that has an activator bound to it is transcriptionally 

active and the promoter that is unbound is inactive. 

 

Following the derivation presented by Sanchez et al. 2011(Sanchez et al. 2011) we 

assume that the number of proteins produced per mRNA (denoted b) follows a 

geometric distribution, thereby leaving out a specific translation and protein degradation 

rate. Using the master equation we solve this kinetic model to achieve the steady state 

mean protein abundance and the noise. 

The mean protein abundance can be written as: 
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2     𝜂!! =
𝑏 + 1
𝑝 +

𝑘!""𝛾!
𝑘!"(𝛾! + 𝑘!"" + 𝑘!")

 

and the noise strength (Fano factor) as: 

3     𝐹! = 𝑏 + 1+
𝑘!""

(𝛾! + 𝑘!"" + 𝑘!")
∙

𝑏 ∙ 𝑟
(𝑘!" + 𝑘!"")

   

 

The first component of equation (2) scales inversely with the mean protein level and is a 

result of Poissonian transcription and bursty translation. The second component, 

however, is affected by mRNA degradation rate and promoter activation switching rates. 

Therefore, an increase in both 𝑘!"  and 𝑘!"" by the same factor (faster switching) does 

not change mean protein abundance, but decreases the noise. Similarly, a decrease in 

promoter switching rates (slower switching), does not change mean protein abundance 

but increases the noise. Finally, both an increase in r or 𝑘!"will increase expression and 

decrease noise. However, only when increasing r will the Fano factor go up; increasing 

𝑘!" decreases the Fano factor. 

 
A kinetic model of gene expression that takes into account 
transcription factor non-specific DNA binding and 1-dimensional 
sliding along the DNA 
In the above model we investigated promoter state switching as a function of TF binding, 

however we did not explicitly model binding reactions, nor did we fit the model to 

measured data. In order to capture the differences between our designed promoters 

that contain all combinations of 7 possible Gcn4 binding sites, we extend the above 

model by incorporating specific binding and unbinding reactions for each binding site. 

To investigate the mechanisms of how binding site configuration can affect noise, we fit 

our model to the data using two different assumptions on how TFs find their target sites. 

 

In short, we fitted the model parameters using MATLAB using the following procedure: 
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1) Each of 256 promoters (27 combinations of 7 possible binding sites in two DNA 

sequence background) is mapped to a unique kinetic scheme. Free parameters of 

transcription rates, translation rate, mRNA and protein degradation rates as and specific 

binding to each site were shared across the different promoter configurations  

2) Each model’s free parameters (in a cross-validation) was fitted to the measured mean 

expression and noise, such that in each iteration: 

a. We generate all 256 kinetic models (one per promoter) and plug in the free 

parameters or compute rate parameters using a set of equations depending on 

the specific model assumptions on TF target search 

b. We analytically solve each model to get the predicted mean and noise 

c. We compute the RMSE of both mean and noise across all promoters 

 

Next we will describe our modeling approach in detail. 

 

Mapping a promoter transcription factor binding configuration to a kinetic 
scheme 
The set of designed promoters that we modeled contained 256 promoters– all 

combinations of 7 predefined Gcn4 binding sites, each in one of two sequence contexts, 

namely a high (GAL1-10) and a low (HIS3) GC content context. Table S1 contains a 

description of these promoters. Each promoter is represented by a binary string of 

length 7 which is 1 at position q if the promoter has a binding site at position q and zero 

otherwise, and by an indicator of the context sequence. 
In our model a promoter that has N sites has 2N possible states in which a site is either 

free or bound by a TF (Gcn4). A transition matrix K of size 2Nx2N is used to represent 

the promoter state space, where Mij is the rate of transitioning from state i to state j. 

Each transition involves either one binding or one unbinding reaction to a single binding 

site. Therefore, Mij = 0 when either i=j or the difference between promoter state i and 

promoter state j is more than one binding/unbinding reaction. The rate transitions that 

involve binding or unbinding of a single TF are computed according to either the 3D or 
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3D+1D model as described below. See Fig. 4A for two examples of a mapping between 

a promoter and a kinetic scheme. 

 

Transcription factor binding and unbinding rates 
In order to compute the transitions of the above kinetic scheme, that are a function of 

the binding and unbinding reactions of the TFs, we assume either only 3D diffusion, in 

which binding and un-binding is independent of any neighboring binding sites, or 3D 

diffusion followed by 1D diffusion along the DNA (1D-sliding), in which binding and un-

binding is influenced by neighboring sites. In both cases we assume the below scheme 

with a free, non-specific (NS) bound and specific (S) bound state in which specific 

binding occurs only after non-specific binding, and non-specific un-binding after specific 

un-binding. This model, and the below equations, are an adaptation of the model 

presented by Hammar et al.(Hammar et al. 2012).	
  

	
  
We compute the effective non-specific binding and unbinding as follows:	
  

	
  

4   ka! = ka!" 1+ s tanh
L!
s + tanh
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5   kd! = kd!" 1+ s tanh
L!
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Where ka!" and kd!" are the non-specific binding and unbinding rates respectively, s is 

the sliding distance, L1 and L2 are the distances from the center of the current site to 

the center of the left and right site respectively, ka!  and kd!  are the effective non-
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specific binding and un-binding rates to the specific site that take into account 1D-sliding 

along the DNA. When the left or right site does not exist, the values for L1 and L2, 

respectively, are infinite. When a neighboring site is unbound we take half of the 

distance to the neighboring site (L/2), and when it is bound we take the whole distance. 

 

We then compute the total effective rates as follows: 

6   ka!"" = ka!
ka!

ka! + kd!
 

7   kd!"" = kd!
kd!

ka! + kd!
 

 

Where ka!"" and kd!"" are the effective binding and un-binding rates respectively to and 

from the specific site taking into account non-specific binding and 1D-sliding, ka! and 

kd! are the specific binding and un-binding rates respectively.	
  

 

The 3D-diffusion only model is a special case of the 3D-diffusion and 1D-sliding model 

in which the sliding distance (s) is 0. In this case, neighboring sites do not affect binding 

or unbinding of each other. 

	
  

As we describe above, for each promoter configuration we construct a kinetic scheme 

(transition matrix K) using the equations for effective binding and unbinding. Here are 

the free parameters that are shared between configurations and that are estimated by 

the fitting procedure: 

kans  - non-specific binding  (min-1):  
A single parameter for each of two sequence contexts: GAL1 10 or HIS3 (see 

Sharon et. al(Sharon et al. 2012) for details). The main difference between these 

contexts is their GC content, which relates to lower (low GC) or higher (high GC) 

nucleosome affinity. We therefore assume that the contexts will have different 

accessibility and  therefore different non-specific binding rates. 

kdns  -  non-specific unbinding (affinity, min-1): 
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We assume a similar non-specific unbinding rate (i.e. binding affinity) for all 

promoters since this rate is associated with the affinity of a TF to a non-specific 

DNA. 

kas  - site specific binding  (min-1): 
We assume single value for each of the 7 sites, which can be interpreted as each 

binding site having a specific accessibility/binding affinity. 

kds  - site specific unbinding (affinity, min-1):  
We assume a single value for each of the 7 sites, which can be interpreted as 

each binding site having a specific binding affinity. 

s  -  sliding distance (bp): 
This parameter is the average sliding distance of a TF along the DNA before it 

dissociates and is therefore shared between all promoters. This parameter is 

only free when 1D sliding is assumed, in the only 3D model it is fixed to zero. 

 

Thus, our set of 256 unique promoters has a combined 18 free parameters in 3D+1D 

model and 17 in 3D model (since s is fixed to zero) that are used for modeling the 

promoter state transition matrices of all 256 promoters. The attached MATLAB script 

‘generate_Ks_mat.m’ implements the computation of the transition matrices. 

 

Modeling transcription and translation 
In addition to promoter state switching, as a result of TF binding and unbinding, we 

model transcription, translation and mRNA and protein degradation. The transcription 

rate of a promoter with no bound TF is Roff (in min-1) and the rate of transcription of any 

bound state (in min-1) is Ron times the number of sites. Roff and Ron are free 

parameters that are shared between all configurations in our model. mRNA degradation 

and translation are captured by the free parameter b (in protein/mRNA), which is the 

average number of proteins produced per mRNA when we assume that this quantity 

follows the geometric distribution, which enables us to solve the model 

analytically(Sanchez et al. 2011; Carey et al. 2013). Finally we have the protein 

degradation rate delta (in min-1) as a free parameter. 
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Analytical solution 
The resulting kinetic scheme (matrix K) and above rate parameters for transcription, 

translation and degradation (using in total 21 or 22 parameters) form a system of 

equations that can be solved analytically to obtain the mean and the noise of the steady 

state protein abundance distribution. (Implemented in MATLAB script: 

solveMasterEquation.m) 

 

Converting predicted protein abundance to measured arbitrary fluorescence units 
Our experimental system measures the gene expression distribution indirectly by using 

sequencing reads counts to identify the single-cell distribution across bins of increasing 

promoter driven fluorescence (see below section “Extracting expression mean and 

variance from pooled promoter expression distribution measurements”). In addition, the 

expression is a normalized one, namely it is the ratio between variable promoter driven 

YFP and constant TEF2 promoter driven mCherry. Therefore, the expression value that 

our computational pipeline produces is in arbitrary units and only has meaning when 

comparing between promoters. However, this is only the case for the mean expression - 

noise (defined as the coefficient of variation squared) is unit less and therefore can be 

interpreted in absolute terms. Our model predicts gene expression levels in terms of 

protein abundance. So, when comparing the predicted protein abundance mean to the 

measured mean expression (but not noise), we convert it to arbitrary units. Therefore, 

we introduce an additional free parameter to our modeling procedure, namely a scaling 

parameter S (in units of proteins per fluorescence value) whose value is fitted together 

with the other free parameters. 

 

Fitting procedure 
We fitted the model’s parameters to the measured data in a cross-validation scheme, 

where we used 30 bootstrapped cross-validations, each with 20% of the data held out 

as test set and the rest used as train set. The fitting procedure is as follows: We used a 

non-linear constrained optimization function to minimize an objective function that 
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computes for each of the 2x128 promoters the root mean square error (RMSE) of the 

predicted mean expression and noise compared to the measured mean expression and 

noise. In each iteration of the fitting process, 256 kinetic schemes are generated and 

solved as we describe above. For the optimization we used MATLAB’s fmincon function 

(using the interior-point algorithm), where we minimize the following error function: 

 

7   𝑓 𝑥 = log 𝜂! − log 𝜂!
! + log 𝜇! − log 𝜇!

! 

where 𝜇! and 𝜇! are vectors of measured and predicted mean expression respectively, 

and 𝜂! and 𝜂! are vectors of measured and predicted noise values respectively. 

 

See Table S1 for the input data for the model (promoter configurations and contexts) 

and the measured and fitted mean and noise values for each promoter. We note that 

simulating our model numerically, using the Gillespie algorithm(Gillespie 1977) gives the 

same result as the analytical solution (R2=0.99, Fig. S15). See Fig. S11 and S12 for the 

performance of the model in a 30x bootstrapped 5-fold (20% test data) cross-validation 

and see Table S2 for its parameter values. 

Sensitivity analysis 

To test whether our model contains any redundant parameters we investigate the 

sensitivity of the parameters of our model by performing the rigorous sensitivity analysis 

procedure, LHS-PRCC, described by Marino et al. (Marino et al. 2008). First, we sample 

10,000 instances of the model, each with a unique parameter setting. This sampling is 

done using a Latin Hypercube, to ensure uniform sampling in the multidimensional 

parameter space of our model. Next we perform a rank transformation on the sampled 

instances using the distance of the model instances to the measured data (for both 

mean expression and noise) and quantify the correlation that each parameter has with 

the goodness of fit measure. See Fig. S16 and Fig. S17 for the scatter plots and 

correlation coefficient for each parameter of the kinetic model. We note that one of the 

most sensitive parameters in the model is the scaling parameter (S). This parameter 
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converts measured fluorescence units to number of proteins and therefore we would 

expect this parameter to influence model outcome hugely. Other (some even more) 

sensitive parameters were b (protein burst size), ron/roff (transcription rates), and non-

specific binding. It is not surprising that the model is sensitive to these parameters as 

they directly affect the mean expression but also the noise (such as b which directly 

affects the mean and noise via bursting). Reassuringly, we find that the model is 

sensitive to almost all parameters (with exception to kdsp3 and kdsp5), suggesting that 

separation between non-specific and specific binding, modeling binding at individual 

sites, and including sliding are non-redundant components of our model. In addition, the 

significant sensitivity to D (diffusion coefficient) suggests that interaction between sites 

is an important mechanism in this model. However, the sensitivity analysis also tells us 

that the model is more sensitive to general non-specific binding and unbinding 

parameters, such as kans and kdns, than to the specific (un)binding parameters of the 

individual sites, suggesting that the model is dominated by general binding and 

unbinding to the promoter, rather than by binding events at individual sites. 

 

Extracting expression mean and variance from pooled promoter 
expression distribution measurements 
Removing experimental noise from expression distribution measurements using 
peak detection 
To remove experimental noise from measurements of promoter distribution across 

expression bins, the distribution peak that contained the largest fraction of cells of each 

promoter was detected and any cells outside of the peak were considered as technical 

noise. Here is a description of the procedure applied to each promoter expression 

distribution: 

1. Expression bins that contained a fraction of cells smaller than a threshold were 

set to zero. The threshold used in this work was 1 / (#bins * 10) =0.3125%.  

2. The main peak of the distribution across the expression bins was detected using 

the following procedure:  
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a. Bins values (fraction of cells in each bin) were smoothen using ‘rlowess’ 

procedure with a span of three bins (MATLAB, Curve fitting toolbox, 

smooth function). 

b. The segment of non-empty neighboring bins with the largest sum of cells 

was selected. 

c. Within this segment the bin with the largest fraction of cells was detected 

as the center of the peak. 

d. The peak was defined as bins with decreasing cell fractions relative to 

bins closer to the peak center. In case that the first increase in cell fraction 

was less than 30% the bin in which the fraction increased was also 

included in the peak. This heuristic allows small improvements in the 

detection of the peak edges as estimated by eye examination. 

e. Fractions of cells in bins outside the main peak were set to zero. 

f. Finally, the filtered distribution of cells across expression bins was 

calculated by normalizing the sum of non-smoothen fraction of cells in the 

main peak bins to one. The value of bins outside the main peak was set to 

zero.  

This procedure is implemented in the MATLAB script: 

“SynLibConvertBinFractionVec2SinglePeak.m”, which is publically available in our web 

site. Table S3-4 contain the un-processed fractions of cell containing each promoter in 

each expression bin.   

 

Extracting expression mean and variance by fitting a gamma distribution to the 
expression distribution of each promoter 
Following the removal of experimental noise from the data through expression 

distribution peak detection the mean and the variance of each promoter expression 

distribution were extracted by fitting a Gamma distribution to the data. The below 

procedure (implemented in MATLAB script 

“FitGammaDistributionToValRangesProbabilities.m”) was used for this purpose:  
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First, the mean and the variance of the expression distribution were estimated directly 

from the data. The mean expression of each promoter was calculated as a weighted 

average of the mean expression of all bins, where the weight of each bin is the fraction 

of cell containing the promoter in that bin.  We used the following formula: 𝐸𝑥𝑝 =

𝐸𝑥𝑝! ∗ 𝑃!!"
!!!  where   𝐸𝑥𝑝! is the mean expression of cells in bin I and 𝑃! is the fraction of 

cells containing the promoter in bin 𝑖. Similarly, we computed the standard deviation of 

each promoter using the standard deviation of each bin and the distribution of the 

promoter across the bins. We used the following formula:  𝑣𝑎𝑟(𝐸𝑥𝑝) = (𝑣𝑎𝑟 𝐸𝑥𝑝! +!"
!!!

   𝐸𝑥𝑝 − 𝐸𝑥𝑝!
!
  (𝐸𝑥𝑝 − 𝐸𝑥𝑝!)!) ∗ 𝑃! where: 𝐸𝑥𝑝 is promoter expression mean,   𝐸𝑥𝑝! is the 

mean expression of cells in bin 𝑖 and 𝑣𝑎𝑟(𝐸𝑥𝑝!) is the variance of the expression of cells 

in bin 𝑖 (implemented in the MATLAB script: ComputeStdFromBinStdsAndMeans.m). 

Expression levels mean, standard deviation and minimal and maximal expression level 

of cells in all bins are attached (Sup Table S5-6). 

 

Next a Gamma distribution was fitted to the distribution of cells using MATLAB 

optimization and statistics toolboxes. The mean of and variance calculated above were 

used as a starting point for the learning algorithm. The algorithm (implemented in the 

script: FitGammaDistributionToValRangesProbabilities.m and functions called within) 

apply optimization algorithm that minimizes three criteria: kolmogorov-smirnov distance, 

Kuiper’s test distance and L2 distance between the fraction of cells in each bin and the 

predicted fraction according to the Gamma function. The formula used the L2 distance 

is: 𝐷 =    (𝑃! −    𝑃(𝑥)~!"##"(!,!)𝑑𝑥
!"#!
!!!"#!

)!!"
!!!  where 𝑃! is the fraction of cells in bin 𝑖 , 

𝑚𝑖𝑛!  and 𝑚𝑎𝑥!are the minimal and maximal expression levels of cells in bin 𝑖. The 

integral calculates the fraction of cells predicted by the Gamma function to be in the bin. 

The results of the optimization algorithm that preform best on the three criteria were 

selected as the output. Table S7 contains the processed values and this filter indicator. 
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Assessing the quality of pool promoter expression mean and variance 
measurements 

The quality of our pooled measurements of the noise (!"#$"%&'
!"#$!

) and mean of expression 

level was assessed by two criteria – reproducibility and accuracy. These criteria were 

used to assess three alternative data processing methods:  1) extracting mean and 

variance directly from the data (“Raw data”) 2) Extracting mean and variance directly 

from data after removing experimental noise by detecting the peak of the distribution 

across expression bins as described above (“Expression distribution peak”) 3) 

Extracting mean and variance by fitting a Gamma function to the expression distribution 

peak (“Gamma fitted”, this is the data used for the analysis in this manuscript). As 

shown in Fig. S1 and Fig. S18 the reproducibility of expression noise level 

measurements decreased following the expression peak detection step probably due to 

the technical noise added by the procedure (Pearson’s R2 = 0.74, 0.47, 0.53 for 

methods 1-3 correspondingly). However, after filtering low quality measurements (as 

described in Methods), the reproducibility of our noise estimates was similar to using 

the raw data (Pearson’s R2=0.78). 

To assess the accuracy of our pooled mean and noise measurements we compared 

them to measurements of 54 strains that were isolated from the library and measured 

using FACS separately. As shown in Fig. S19, while the expression mean can be 

predicted accurately by all three methods (Pearson’s R2 = 0.976, 0.974, 0.939 for 

methods 1-3 correspondingly) the accuracy of expression noise level measurements 

increased considerably by using our data processing scheme (Pearson’s R2 = 

0.20,0.71,0.80 for methods 1-3 correspondingly). 

We concluded that, while extracting expression mean directly from the data gives highly 

reproducibility and accurate results, extracting the noise (which requires to extract the 

variance) requires filtering of low quality measurements and data processing by a 

combination of peak detection and Gamma function fitting.  
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Supplementary Figures 
Fig. S1:	
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Figure S1. Obtaining reproducible and accurate expression and noise 
measurements for thousands of designed promoter sequences. (A-C) A 

comparison of expression noise (A), noise strength (B) and mean expression (C) 
measurements obtained for two independent replicates (x-axis: replicate 1, y-axis: 

replicate 2) for all 6500 constructs in the library (green points) or the subset of the 

promoters that passed our quality control filter (red dots, see Methods). (D-F) A 

comparison of expression noise (D), noise strength (E) and mean expression (F) for 54 

individual strains isolated and sequenced from the pool of transformed yeast cells (x-

axis). Each strain was measured in isolation using a flow cytometer (x-axis) or within a 

single experiment using our method (y-axis). 
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Fig. S2: 

 
Figure S2. Synthetically designed promoters span similar ranges of mean and noise 

expression levels as native promoters. Shown are mean (x-axis) and noise (y-axis) 

measurements of individual, non-pooled strains from the synthetic promoter library 

(blue) and from a native promoter library (black)(Lubliner et al. 2013). The solid red line 

marks the lower noise limit, the dashed red line marks two-fold above the lower noise 

limit, and the dotted red line marks 10-fold above the lower noise limit. 
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Fig. S3: 
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Figure S3. Nucleosome disfavoring sequences increase mean expression, 
decrease expression noise and have little effects on noise strength. Shown is a 

comparison of expression mean (A), noise (B) and noise strength (C) for 1268 promoter 

pairs with (y-axis) or without (x-axis) a nucleosome disfavoring sequence (15bp long 

poly(dT:dA) tract). Note that in most pairs, adding a nucleosome disfavoring sequence 

significantly increases the mean expression and significantly decreases the noise, but 

has little effect on noise strength. P values were computed using Student’s t-test. (D) 
Boxplot of log2 ratio of expression mean, noise and noise strength of the 1268 promoter 

pairs presented in (A)-(C). Ratio values median and median 95% confidence intervals 

(CI, computed using 100,000 bootstrapping iterations) are 1.86 (CI 1.76-1.93), 0.40 (CI 

0.37-0.43) and 0.88 (0.84-0.93) for expression mean, noise and noise strength 

respectively. The median of each pair of the three distributions is significantly different 

(Wilcoxon rank sum test P values < 10-80) 
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Fig. S4: 

 
Figure S4. Promoters with more nucleosome disfavoring sequence have higher 
mean expression and lower noise. Shown is the mean expression and noise of 205 

promoters with 0 (blue points), 1 (light blue points), or 2 (red points) poly(dT:dA) 

sequences of length 15bp and two Gcn4 binding sites. Promoters with more poly(dT:dA) 

tracts tend to have higher expression and lower noise. 
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Fig. S5: 
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Figure S5 Promoters with longer poly(dT:dA) tracts have higher mean expression 
and lower noise. (A) Shown is the effect of gradually increasing the length of a 

poly(dT:dA) tract from 0bp (none, dark blue) to 40bp (dark red) in six different promoter 

configurations (each marked with a different symbol, for a detailed description see 

Sharon et al.(Sharon et al. 2012)). Also shown is the effect of the length of the inserted 

poly(dT:dA) tract (x-axis) on expression noise (B, y-axis) and noise strength (C, y-axis) 

in the six promoter configurations. While increasing the length of the poly(dT:dA) tract 

increases noise (R2=0.73) it does not have a consistent effect on noise strength 

(R2=0.04). 
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Fig. S6: 

	
  
Figure S6 Noise changes for pairs of similar mean expression. (A) Shown are the 

changes in mean expression and noise (log2 ratio between each pair promoter with TF 

binding site and promoter with nucleosome disfavoring sequence) for 417 promoter 

pairs in which adding a TF binding site or a poly(dT:dA) tract resulted in similar increase 

of the mean expression, as is shown in Fig. 2B. The blue bar (A) shows that each pair 

has very small difference in mean expression. The red bars show the distribution of 

changes in noise. (B) Shown is the distribution of the changes in mean expression 

(similar to the blue bar in (A) but zoomed in). (C) Shown is the data of (A) and (B), but 

in a dot plot where the X-axis shows the change, for each pair (dot), in mean expression 

and the Y-axis the difference in noise (both in log2). While the pairs of promoters were 

selected such that they induce highly similar expression levels (mean of expression 

mean changes ratio distribution is almost zero, Student’s t-test P>0.13) the noise of 

promoters with TF binding site is significantly larger than promoters with nucleosome 

sequence (expression noise changes ration distribution Student’s t-test P<10-30)  
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Fig. S7: 

 
 

Figure S7 Promoters with more Gcn4 binding sites have higher expression noise 
strength. Shown is a histogram of noise strength for the promoter sets of Fig. 2. The 

distributions have significantly different means (ANOVA test P<10-19). 
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Fig. S8: 

 
Figure S8. Promoters with more Leu3 binding sites have higher mean expression 
and higher noise. Shown is expression mean and noise for 442 promoters with 0 (dark 

blue points) to 2 (cyan points) Leu3 binding sites. For a given expression level, 

promoters that contain more Leu3 binding sites have higher noise.  
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Fig. S9: 
	
  

 
Figure S9. Five-fold cross-validation results of the linear model on the single site 
set. (A,B,C) Noise predicted from expression. (D,E,F) Noise predicted from sequence 

features and expression. (B,E) Coefficient of determination (R2) of 5-fold cross-

validation. (C,F) Spearman’s rank correlation coefficient (ρ) of 5-fold cross-validation.	
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Fig. S10: 

 
Figure S10. Five-fold cross-validation results of the linear model on the multiple 
site set. (A,B,C) Noise predicted from expression. (D,E,F) Noise predicted from 

sequence features and expression. (B,E) Coefficient of determination (R2) of 5-fold 

cross-validation. (C,F) Spearman’s rank correlation coefficient (ρ) of 5-fold cross-

validation. 
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Fig. S11: 

	
  
Figure S11. Prediction of the kinetic model of transcriptional regulation on held-
out data. Shown are measured versus predicted data for the mean (A,D) noise (B,E) 

and Fano factor (C,F). (A,B,C) Show the model in which binding is assumed to be only 

specific. (D,E,F) show the model in which binding is non-specific and TFs slide to their 

target sites. 
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Fig. S12: 

	
  
Figure S12. Performance of the kinetic model of transcriptional regulation on train 
and test sets. Shown are the model performances on mean expression (A,B,C), noise 

(D,E,F) and fano factor (G,H,I) in terms of R2 (A,D,G), Pearson’s correlation (B,E,H) and 

Spearman’s rank correlation (C,F,I) for both models (3D only and 3D+1D sliding) on 

train and test data (from a 5-fold cross-validation in 30 bootstraps, see Methods). Plot 

titles show the P-values for Wilcoxon rank sum tests on the train and test data to 

compare the 3D model performance with the 1D model performance. The significant P-

values indicate that the 1D model performs significantly better. 
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Fig. S13: 

 
Figure S13. Mean expression and noise as a function of the predicted number of 
binding sites and measured TF binding in native yeast genes. Shown is the 

cumulative distribution of measured expression mean (A,C) and noise strength (B,D) of 

a set of 466 native yeast genes(Stewart-Ornstein et al. 2012). Genes are split by their 

high (red line) and low (blue) TF binding as measured by ChIP-seq(Venters et al. 2011) 

(A,B) or average of all TF PSSM scores(Basehoar et al. 2004; MacIsaac et al. 2006; 

Portales-Casamar et al. 2010; Pachkov et al. 2013)(C,D). P-values are computed using 

Kolmogorov-Smirnov test. Notice that while native genes with more binding sites may or 

may not have higher expression (A,C), they have, on average, significantly higher noise 

(B,D) for both methods of estimating TF binding. 
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Fig. S14: 

 
Figure S14. Filtering low quality expression measurements. (A) Shown is the 

cumulative distribution, for all promoters, of the fraction of cells in the main detected 

peak of the distribution. The main peak contains 75% of the cells for 98% of the 

promoters. (B) Shown is the cumulative distribution, for all promoters, of the fraction of 

the distribution across the bins that is explained by fitting a gamma distribution. This is 

an estimate of how well the derived expression distributions are matching the expected 

gamma distribution shape. A gamma distribution can explain 80% of the distribution 

across the bins for 96% of the promoters.  
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Fig. S15: 

	
  
Figure S15 Analytical solution versus stochastic simulations. (A) Mean expression 

predicted per construct using an analytical solution (x-axis) versus mean expression 

predicted using stochastic simulations using the Gillespie algorithm(Gillespie 1977) (y-

axis). (B) Noise predicted per construct using an analytical solution (x-axis) versus 

noise predicted using stochastic simulations using the Gillespie algorithm (y-axis). 
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Fig. S16: 

	
  
Figure S16 Sensitivity analysis. Shown are the parameter sensitivities obtained from 

the LHS-PRCC sensitivity analysis. See supplemental methods for details of the 

procedure. 
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Fig. S17: 
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Figure S17 Sensitivity analysis. Shown are the sensitivity plots for each of the 

model’s parameters. X-axes show the parameter values that were sampled randomly 

using latin hypercube sampling. Y-axes show the rank transformed distance scores of 

the model to the measured data. Plot titles show the PRCC (ranked correlation) 

coefficient and P-value. The colors represent density of the scatter plot (in arbitrary 

units). See supplemental methods for details. 
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Fig. S18: 

 
 

Figure S18 Reproducibility of noise level estimates form raw data and from 
expression distribution peak. A comparison of expression noise measurements 

estimated directly from raw data (A) or from expression distribution peaks (B). The 

measurements were obtained for two independent replicates (x-axis: replicate 1, y-axis: 

replicate 2) for all 6500 constructs in the library (green points) or the subset of the 

promoters that passed our quality control filter (red dots). Compare this result with 

similar measurements extracted from a gamma fitted data in Fig. S1. 
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Fig. S19: 
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Figure S19 Comparison of three methods of estimating expression mean and 
noise levels from our data. A comparison of expression mean (A-C) and noise (D-F) 
levels estimated directly from the raw data (A,D), estimated from the data expression 

distribution peak (B,E) and estimated from expression distribution peak by fitting a 

gamma distribution to is (C,F). Pooled measurements (y-axis) were compared to 

measurements of 54 individual strains of transformed yeast cells isolated from the pool, 

sequenced and measured in isolation using a flow cytometer (x-axis). 
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Table S1: Promoter configurations and expression noise values 
For each promoter configuration (shown as a binary vector of length 7 representing the 

presence of a binding site in each of the 7 predefined positions) and sequence context 

(Gal1 10 or His3) the measured and predicted mean and noise values (in log10) are 

given. NaN values mean that the value didn’t pass our quality control filters. 
 
Table S2: Fitted parameter values of the kinetic model. Shown are the lower and 

upper bounds for each parameter that were used in the fitting procedure, and the final 

fitted values. Are values are in log10 and in min-1. Kasp1 to kasp7 are the specific 

binding rates. Kdsp1 to kdsp7 are the specific unbinding rates. Kans (gal110 and his3 

for each context) and kdns are the non-specific binding and unbinding rates respectively. 

D is the 1D diffusion coefficient, from which we compute the sliding distance (s) through 

s = (D/kdns)1/2. Ron is the contribution to transcription per bound site. Roff is the 

transcription rate of the unbound state. B is the average burst size (proteins per mRNA). 

Delta is the protein degradation rate, mostly due to dilution from cell division. S is a 

scaling factor to convert protein abundance to fluorescence units. 

 
Table S3: Replicate 1 mapping of strains to expression bins. Fraction of cells 

containing each promoter any of the 32 expression bins. 

 

Table S4: Replicate 2 mapping of strains to expression bins. Fraction of cells 

containing each promoter any of the 32 expression bins. 
 
Table S5: Replicate 1 expression bin values. The standard deviation, mean, 
minimal value (left edge) and maximal value (right edge) of expression level of 
cells sorted to each expression bin. 
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Table S6: Replicate 2 expression bin values. The standard deviation, mean, 
minimal value (left edge) and maximal value (right edge) of expression level of 
cells sorted to each expression bin. 

	
  
Table S7: Promoters expression values. The table contains for each promoter the 

number of sequencing reads mapped to the promoter, expression mean and expression 

noise in the two replicates. Library id is similar to Sharon et al.(Sharon et al. 2012). 
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