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Detailed derivation of the impulse response 
Here we provide a full derivation for the impulse response function (Equation 

1 in the main text) based on the fact that it follows an extreme value problem. 

We define as v(x) the probability a break point occurs at a distance x from a 

reference binding site and V (x) = v(i)
i=0

x
∑ the cumulative distribution function 

(cdf), indicating the probability a break point occurs up to a distance x from a 

binding site. The immunoprecipitation step selects the break point, at each edge, 

with the closest distance to a binding site. If V(x) is sampled N times, the cdf 

describing the minimum value out of N samples is represented by the following 

equation: 

V1:N (x) =1− (1−V (x))
N  [S1] 

The number of samples is equivalent to be number of break points that occur 

in a region surrounding the binding site. Since the shearing step occurs at 

random, N is best described as a stochastic process and the correct cdf that 

describes the impulse response is computed as:  

F(x) = P(N = n | n > 0) ⋅
n=1

∞

∑ V1:N (x)  
[S2] 

Assuming N follows a Poisson distribution with parameter λ, the Equation S2 

can be written as F(x) = e−λλ n

n!(1− e−λ )
V1:N (x)n=1

∞

∑ . After simplification, it will take the 

form of the Equation 1 (main text), which we repeat in the following equation: 

F(x) = 1− e
−λ⋅V (x )

1− e−λ
 

[S3] 

 

Impulse response as a Gumbel distribution. 

It is hard to know the exact distribution for V(x). A precise value might depend 

on different variables such as the DNA conformation, nucleotide composition, 

presence of ligands, elasticity, bound factors, and intensity of sonication. 

However, assuming V(x) has a truncated exponential shape (e.g. V (x)∝ e
x
β ), 
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Equation S3 becomes F(x) ≈1− e−e
x+ln(λ )⋅β

β

 and can be approximated into a 

Gumbel distribution: 

F(x) ≈1− e−e
x−µ
β

 
[S4] 

 

The advantage of this assumption is that the parameters of the Gumbel 

distribution provide a physical interpretation for the impulse response. The 

parameter β corresponds to the shape of the impulse response and indicates the 

break resistance around a binding site. The higher the value of β the harder it is 

for a break point to occur near the binding site, suggesting that the transcription 

factor creates a protective region around the site it binds. The parameter µ 

represents half of the peak shift between the coverage of the negative and 

positive strands (see Fig. 2B). The physical interpretation for µ depends on both 

the Poisson parameter (λ) and β, in the form of µ=ln(λ)⋅β. The parameter µ also 

contains, implicitly, the possibility that the best reference for V(x) is not the center 

of a binding site, but some point at the edge outside the region the protein binds. 

In this case, we would have µ=x0 + ln(λ)⋅β, where x0 indicates a region fully 

protected from shearing. 

The impulse response used in the deconvolution process takes the form of a 

probability distribution function. The derivation showed so far represents the 

cumulative distribution function for the impulse response. The probability density 

function comes from the derivative of the cdf, and the impulse response is 

represented in the form:  

f (x) ≈ 1
β
⋅e

x−µ
β ⋅e−e

x−µ
β

 
[S5] 

The full validation of the assumptions used to derive the impulse response 

into a Gumbel distribution is not part of the scope of this paper. However, the 

representation of the impulse response in terms of an extreme value problem is 
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mathematically compelling and motivates the use of a Gumbel distribution. The 

physical insights of this model are focuses of future research. 
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Empirical estimation of V(X) 
 Equation S3 (Equation 1 in the main text) contains a parameters, V(x), that 

indicates the probability that a break point occurs up to a distance x from a given 

binding site. Rearranging this equation, we can predict V(x) from the ChIP-seq 

coverage, according to the following equation:  

 

Where Fc(x;x0) represents the empirical cumulative distribution function 

around a binding site that is centered at x0 and is obtained from the ChIP-seq 

coverage. 

We illustrate the estimation of V(x) from the ChIP-seq coverage in Figure S1. 

The purpose of Figure S1 is to show a potential physical interpretation that arises 

from modeling the impulse response as an extreme value distribution and does 

not affect the blind-deconvolution model of BRACIL. The upward concave shape 

near the center of the binding site, represented by an exponential fit with positive 

parameters, indicates that DNA shearing is harder to occur at a distance close to 

the binding site (up to around 75 bp apart). This result is consistent with the 

results of ultrasound cleavage of DNA, in which DNA shearing saturates at small 

size of DNA fragments (Fukudome et al. 1986), and might be consequence of 

decreasing chance to shear short DNA pieces. An alternative explanation is that 

it might be consequence of a protection region around the site a TF binds. 

 

V (x) = − log(1−FC (x; x0 )(1− e
−λ ))

λ
 

[S6] 
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Motivation for the penalty function after motif 

integration 
The penalty function takes into account motif conservation. In this context, a 

motif with better conservation (by means of motif p-value) will be penalized less 

than one that is weakly conserved. Studies of protein-DNA binding have shown 

that the probability of in vitro binding (Maerkl and Quake 2007) can be measured 

according to a logistic function of the binding affinity estimated from motif 

conservation (Zhao et al. 2009). This logistic behavior supports a binary 

classification for the penalty function, with a zero contribution for strong sites and 

a constant to weak sites.  
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Estimating cooperative interaction from ChIP-seq 
In order to use ChIP-seq to test for cooperative interaction, we need to 

define a null hypothesis that assumes independent binding and an alternative 

hypothesis that suggests cooperative interaction. A formal statistical test for 

cooperative interaction is defined below.  

Definition of null and alternative model 
Before defining the null and the alternative hypothesis to test for 

cooperative interaction, we need to define cooperative interaction. Cooperative 

interaction occurs when the binding to two neighboring sites is not independent 

from each other. 

Considering a region with two neighboring sites, four binding 

configurations are possible: (0,0), (0,1), (1,0) and (1,1), where each number 

refers to a binding site and the values 1 and 0 indicate whether it is bound or not. 

This representation allows cooperative interaction to be defined in terms of the 

probability that both sites are simultaneously bound (p1,1) and the probability of 

binding to each site (p1,• = p1,0 + p1,1 and p•,1 = p0,1 + p1,1). The formal definition of 

cooperative interaction is represented in the following equation: 

ω =
p1,1

p1,• ⋅ p•,1
 [S7] 

In this context, ω=1 indicates that binding is independent and ω≠1 indicates 

cooperative interaction. 

The binding probabilities are estimated from the impulse signal magnitudes. 

The rationale for this relationship is as follows. A configuration with only one site 

bound can only emit a single-binding signal. This creates an association between 

the single binding magnitudes, m1 and m2, and the corresponding binding 

probabilities, p1,0 and p0,1. Similarly, the double-binding signal occurs for the 

configuration that both sites are bound and close to each other. This justifies the 

relationship of the double binding magnitude, m1,2, and the double bound 

probability, p1,1. The magnitude of each signal also depends on the probability 

that the target transcription factor is selected by immunoprecipitation, which is 
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represented by the constant ρ. A single-binding fragment contains one TF target 

and is purified with probability ρ, while a double-binding fragment contains two 

targets and is purified if any of the targets is immunoprecipitated, i.e. with 

probability 1-(1-ρ)2. A summary of the relationship between the magnitude of the 

impulse responses and the probabilities for each configuration is described in the 

following equation: 

m1∝ρ ⋅ (p1,0 )
m2 ∝ρ ⋅ (p0,1)

m1,2 ∝ (1− (1− ρ)
2 ) ⋅ (1−Fs (d1,2 )) ⋅ p1,1

 
[S8] 

The proportion indicates that the scaling factor between magnitude and 

probability is unknown. The term Fs(d1,2) represents the probability a double-

binding fragment can be split into two single-binding fragments. In the 

representation shown in equation S8, We assume that a potentially double-

binding signal that is split into two fragments will provide neither a single-binding 

nor a double-binding impulse response.  

The theoretical derivation of the impulse response (section 2.2 and sup. 

section S1) indicates that the cumulative distribution function of the impulse 

response, F(x), represents the probability a break point occurs up to a distance x 

of a binding site. If this probability is independent of the binding configuration, the 

probability a double binding fragment is split in two single-binding signal can be 

computed from the impulse response, i.e. Fs(x) = F(x). Assuming that the double 

binding configuration increases the protective area around two closely spaced 

binding sites will reduce the chance that a double binding fragment will be split in 

two, implying that Fs(x)<<F(x). Approximated values for the impulse response 

indicates that F(x)<0.2 for a binding site distance of 20 bp. This implies that 

Fs(x)<<0.2 and the equation S8 is simplified to: 

m1 = c ⋅ρ ⋅ p1,0
m2 = c ⋅ρ ⋅ p0,1
m1,2 = c ⋅ (1− (1− ρ)

2 ) ⋅ p1,1

 
[S9] 

Here the constant c was used to transform the proportion into equality. 
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The assumption of independent binding causes m1,2 to be a function of m1 

and m2. This constraint disappears in the case of cooperative interaction. Thus, 

the assumption of independent binding is a particular case of the cooperative 

interaction.  

The closed solution for m1,2 as a function of m1 and m2 is shown for two 

extreme cases, assuming low and high immunoprecipitation rate. The solution 

comes from solving equation S9 constrained to independent binding (ω=1, 

equation S7) and to the fact that p00+p10+p01+p11=1. A detailed derivation is not 

shown, but the solution is easily achieved using an algorithm that solves systems 

of equations.  

When immunoprecipitation rate is low, ρ≈0, the term (1- (1-ρ)2) in equation S8 

is simplified to 2ρ, and m1,2 is computed as following: 

m1,2 =

−(m1 +m2 ) ⋅ p0,0 + ((m1 +m2 )
2 ⋅ (p0,0 )

2 + 4m1 ⋅m2 ⋅ (1− p0,0 ) ⋅ p0,0 )
1/2

p0,0

 
[S10a] 

Similarly, when immunoprecipitation rate is high, ρ≈1, the term (1- (1-ρ)2) in 

equation S8 is simplified to ρ, and m1,2 is computed as following: 

m1,2 =

−(m1 +m2 ) ⋅ p0,0 + ((m1 +m2 )
2 ⋅ (p0,0 )

2 + 4m1 ⋅m2 ⋅ (1− p0,0 ) ⋅ p0,0 )
1/2

2 ⋅ p0,0

 
[S10b] 

Notice that m1,2 depends not only on m1 and m2, but also on the probability 

that none of the sites are bound, p0,0. This happens because, as shown in 

equation S8, there is no signal in the ChIP-seq coverage with direct 

correspondence to p0,0. 

 The null model (independent binding) is defined from Equations S10a and 

S10b. The minimization of the objective function (ML step, equation 7a) is 

performed such that the magnitude of the double binding signal is constrained 

according to equation S10a or S10b.  Equations S10a and S10b are also used 

as a simplified model for cases with more than two binding sites. Finally, the 

probability that none of the sites are bound is unknown, thus the objective 
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function depends on an input parameter p0,0. The objective function for the null 

model is represented as following: 

objr,null;p0,0 = objr (L,M,θ;mi,i+1(mi,mi+1, p0,0 ))  [S11] 

The term mi,i+1(mi, mi+1, p0,0) indicates that the magnitude of each double binding 

signal is a function of the magnitude of its neighbor sites and p0,0. 

The magnitude of the double binding signal is unconstrained for the model 

that includes cooperative interaction and follows the representation shown in the 

main text (Equation 5). The objective function computed for the null and 

alternative models is used in the likelihood ratio test. The assumption of 

independent binding turns the null model a particular case of the alternative 

model, justifying the use of the likelihood ratio test. 

 
Defining the statistical test 
Here we derive how to use a likelihood ratio test to detect cooperative 

interactions. Let Lnull and Lalternative be the likelihood of the null and the alternative 

models, respectively. The likelihood ratio is defined by a chi-squared distribution, 

of the following parameter: 

D = −2 ⋅ (log(Lnull )− log(Lalternative ))  [S12] 

The number of degrees of freedom is equal to the number of extra parameters 

allowed for the alternative model when compared to the null model. 

The terms Lnull and Lalternative can be computed from the objective function 

(equation S11 and equation 5). The assumption that the observed coverage 

follows a normal distribution around the expected value (subsection 4.1.1), brings 

the following relationship: 

L = − n
2
log(2π )− n

2
log(σ 2 )− 1

2σ 2 obj  
[S13] 

Where obj represents the objective function and n the number of points used to 

compute it. The likelihood L is maximized when σ2=obj/n. The number n is the 

same for the alternative and null models, thus the parameter D in equation S12 is 

computed as following: 
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D = n ⋅ (log(objnull )− log(objalternative ))  [S14] 
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Evaluating binding site prediction 

Our method is validated by comparing the predicted binding events of 

BRACIL, GEM, and other peak-callers to a reference benchmark. The reference 

benchmark for DosR is obtained from the single nucleotide resolution 

experiments performed by Chauhan and Colleagues (Chauhan et al. 2011) and 

the reference benchmarks for the transcription factors GABPA (Valouev et al. 

2008) and CTCF (Chen et al. 2008) are obtained from the output of different 

motif discovery tools, as suggested in GEM paper (Guo et al. 2012).  

We evaluated predictions by matching predicted binding events to the 

reference benchmarks. For DosR, a predicted event matches a reference binding 

site if they are less than 50 bp apart from each other, this distance was relaxed to 

150 bp for the eukaryotic datasets. If two predicted sites are close to the same 

reference site, only the one with closest distance is considered to be a match. 

The matches are used to compute the true/false positives as well as true/false 

negatives of our predictions. Predictions with a match are true positives and 

predictions without a match are false positives. Reference sites without a match 

are false negatives. The true negatives correspond to binding motifs that do not 

match a reference site and are filtered out in the deconvolution step of our 

algorithm. The ROC as well as the precision and recall curves shown in Figure 

3C-D are computed by ranking predictions by the impulse magnitude (BRACIL 

predictions) or motif score (motif only predictions). 

The resolution on the eukaryotic data is evaluated based on the method 

presented by Guo and colleagues (Guo et al. 2012). In short, we compare the 

distance of binding events predicted by BRACIL and GEM to a benchmark of 

binding site locations obtained by motif discovery algorithms. The location of the 

reference binding sites is added by a constant shift to correct for an arbitrary 

definition of the motif center. This constant is defined to minimize the overall 

distance between predicted and reference binding sites. Six motif discovery 

algorithms are used for this analysis: ChIPMunk (Kulakovskiy et al. 2010), 

MEME/FIMO (Bailey and Elkan 1994), HMS (Hu et al. 2010), MDscan (Liu et al. 



! xiii!

2002), POSMO (Ma et al. 2012), and Weeder (Pavesi et al. 2001). Motif 

discovery is run with the parameters defined in GEM paper (Guo et al. 2012). 

FIMO and Weeder require a threshold for motif scan. For FIMO, we consider 

motifs with p-value less than10-3 and for Weeder we consider sites with a 

conservation threshold greater than 80% for GABPA and greater than 75% for 

CTCF. In case two motifs overlap with each other, only the one with best score is 

considered as a reference. 

The performance is evaluated in a set of 500 enriched regions (Figures 

S15 and S16). For GABPA, this data set is defined as the +/- 150 bp sequence 

that surrounds the 500 most significant GEM events. Overlapping regions are 

clustered as a unique sequence to perform motif search and scan. The set of 

CTCF enriched regions is selected based on the quality score defined in Figure 

S11. This quality score eliminates instances of highly enriched regions with 

spurious coverage. The evaluation was also expanded to include all set of 

enriched regions (Figures S17-S18). 

For the eukaryotic dataset, BRACIL prediction is obtained by using 

conservative parameters. In particular, the threshold of weak and strong sites (in 

log10(p-value)  units) are equal to 3 and 5, respectively. The penalty parameter is 

equal to 0.1. This choice of parameters causes BRACIL to predict a similar 

number of binding events as GEM. Our results show a better performance of 

BRACIL when compared to GEM. The results are illustrated in Figures S15- S19. 

We also estimate the false negative rate of BRACIL and GEM. As described in 

Table S4, the false negative rate is smaller for BRACIL when compared to GEM. 

The results presented in Figures S15-S19 indicate when BRACIL or GEM 

would be the best method to identify binding site locations. BRACIL outperforms 

GEM’s resolution for the test case in which multiple binding sites are hidden 

inside an enriched region. This result is exemplified by the GABPA dataset where 

BRACIL shows an overall better performance for both top 500 and all enriched 

regions (Figure S15 and S17, respectively). BRACIL and GEM had a similar 

performance in predicting binding site locations for the CTCF transcription factor 
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when applied to the set of 500 enriched regions with best coverage quality score 

(Figure S16, see also Figure S11 for coverage quality evaluation). GEM 

outperformed BRACIL when all CTCF enriched regions were used for evaluation 

(Figure S18). The entire CTCF set include enriched regions with spurious 

coverage in which BRACIL is not expected to perform well (Figure S11). Most 

CTCF regions contains a single binding site and the CTCF motif is more specific 

than the GABPA one. Thus CTCF motif matches are more likely to be true 

positives.  
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Computing significance of binding event predictions.  
We have defined two metrics for significance of BRACIL event predictions. 

One metric assigns a p-value to each region and the other a p-value to each 

binding event. The significance is obtained by comparing a score of the real data 

with a random score obtained from a random dataset. The random dataset is 

created by resampling with repetition the coverage per enriched region. The 

significance is measured by counting the fraction of random scores that are at 

least as good as the score from the real data. 

  The score used to compute significance per region is defined as the 

objective function (Equation 5). The score used to compute p-values per binding 

site is defined as the magnitude of the impulse response at each predicted 

binding site position (Equation 2). The fit is performed with the parameters of the 

Gumbel distribution obtained from real data. We applied this method to the 

enriched regions that contain the DosR binding sites predicted by Chauhan and 

colleagues. With the exception of one region, all cases had a p-value less than 

10-3. We also computed the p-value per binding event for the same set of 

enriched regions. The predictive power of the p-value score is shown in Figure 

S9. We observe an area under ROC curve equal to 0.89. 
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Supplementary figures  
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Figure S1: Empirical measurement of V(x) based on the ChIP-seq coverage. Our model suggests 

that the probability a break point occurs up to a distance x of a binding site (V(x)) can be 

empirically measured from the ChIP-seq coverage (Equation S5). The upward concavity (red 

dashed line) in the empirical V(x) (blue solid line) indicates that the probability for a break point to 

occur increases with the distance to the binding site. This might be consequence of a protection 

region around the site a TF binds or because DNA shearing saturates at small size of DNA 

fragments (Fukudome et al. 1986).  
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Figure S2: Our method reduces the number of orphan regions while it still filters out false binding 

sites. We call regions that show enriched coverage without an instance of binding motif as 

orphan. The number of orphan regions reduces with a more inclusive threshold, such as motif p-

value < 10-2.5, at the cost of increasing the amount of false binding sites. The threshold motif p-

value < 10-3 is commonly used to provide a balance between false positive and true positive. Our 

method allows a more inclusive threshold at the same time it uses the ChIPseq coverage to filter 

out for potential false positives. We show the fraction of orphan regions (A) and the average 

number of sites per non-orphan regions (B) per ChIP-seq experiments for three methods. Our 

method (red line) reduces the number of orphan regions when compared to what is identified 

using a motif p-value < 10-3 (blue line). The threshold motif p-value < 10-2.5 (yellow line) is more 

inclusive and shows the least number of orphan regions. The difference in the number of orphan 

regions predicted by our method and motif p-value < 10-2.5 indicates that part of this reduction is 

not supported by ChIP-seq coverage. This is in agreement that a low motif p-value threshold will 

identify false binding sites. The data used for this analysis is taken from our study of the 

regulatory network of M. tuberculosis (Galagan et al. 2013). We plotted only experiments with at 

least 10 enriched regions. The x-axis is sorted according to absolute number of orphan regions 

detected by our method.  
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Figure S3: The feasible space for independent binding. (a) This figure represents the space of 

binding configuration probabilities for two binding sites in terms of the probabilities that only one 

of the sites is bound. The space is constrained to p1,0 + p0,1 ≤ 1 (see section S4.1). Independent 

binding is only possible in the range of probabilities indicated by the blue area. This space can be 

solved analytically and is represented by (p0,1 – p1,0)
2-2⋅(p0,1 + p1,0) + 1 ≥ 0. Under the assumption 

of independent binding, each point in the blue area determines uniquely the values of p0,0 and 

p1,1. (b) Different points representing independent binding (green markers) were used to create 

the simulated set of enriched regions (see section 4.5). These points were chosen to be 

representative of the feasible space and challenge cooperative detection for different proportions 

of binding configuration (see table S2). The solid blue line shows upper boundaries for the 

independent binding feasible space, solid red line indicates boundary for probability space 

(p1,0+p0,1=1). The dashed red line indicates single binding configuration occurs with 10% 

probability (p1,0+p0,1=0.1). The ratio p0,1/p1,0 varies up to three order of magnitudes. 
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Figure S4: Schematic representation showing how a simulated enriched region was created. 

Each region was defined to contain two binding sites and the binding sites were assumed to bind 

independently from each other. (A) The theoretical representation of the single-binding and the 

double-binding impulse responses (see sections 2, 4.1 and equation 3). The forward and reverse 

coverage of the double-binding impulse response has a correspondence to each single-binding 

responses. The binding sites are represented by purple squares. The dark and light shades 

indicate if sites are bound or unbound, respectively. (B) An empirical impulse response 

corresponds to the observed coverage, taken from real data, around a region containing only one 

binding site. The empirical double-binding impulse response is simulated from the coverage of 

two single-binding empirical impulse responses, according to the model represented in (A). The 

small panels at each plot show an impulse representation for each signal. (C) The simulated 

enriched region is obtained by performing a weighted sum of the empirical impulse responses. 

The weights are scaled according to the corresponding binding probability. The binding 

probabilities are defined under the constraint of independent binding (see table S2). 
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Figure S5: The method to detect cooperative interaction is robust to an exhaustive range of the 

non-binding configuration probability. The non-binding configuration probability (p0,0) can not be 

extracted from the ChIP-seq data and is a necessary input to model independent binding 

(equations S10a-b and S11). The performance of our method is presented in terms of the true 

positive rate as a function of the false positive rate. The true positive set corresponds to regions 

experimentally validated to contain cooperative interaction and the false positive set indicates 

simulated regions containing independent binding (section 4.5). (A-I) Each plot illustrates the 

performance assuming a fixed value of p0,0. This panel assumes that immunoprecipitation occurs 

at low rates (equation S10a).  All the results corroborate our method.  
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Figure S6: Similar to Figure S5, however, it assumes that immunoprecipitation occurs at high rate 

(equation S10b). All the results corroborate our method. 
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Figure S7: Our method shows high magnitude reproducibility in eukaryote ChIP-seq data. In this 

analysis, we used the benchmarked ChIP-seq data suggested by Rye et al. (Rye et al. 2011). 

Unfortunately, this benchmark is based only on enriched regions and further work is required to 

obtain a high-resolution benchmark with binding sites mapped at single-nucleotide resolution. The 

results for the transcription factors MAX, REST, and SRF are shown in panel A, B, and C, 

respectively. At the top of each panel, we plot the reproducibility of impulse response magnitude 

replicates and in the bottom, the predicted binding motif. The predicted magnitude showed high 

correlation between REST and SRF replicates and was not as well correlated for MAX. The 

deconvolution of MAX ChIP-seq data is more challenging because ChIP-seq coverage has low 

abundance and because motif scan predicts an excessive number, including multiple overlapping 

candidates, of potential binding sites. This somewhat ambiguous motif prediction of MAX binding 

sites was previously reported (Pique-Regi et al. 2011). A higher coverage should improve the 

potential of our deconvolution model in distinguishing the most likely binding sites from the large 

number of binding site candidates and a high-resolution benchmark would enhance the 

evaluation and highlight the precision of our method. The correlation between duplicates 
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increases when we use a more conservative set of parameters (D, E, F), the parameters usage 

permits the user a tradeoff between specificity and sensitivity. The reproducibility increases by 

using a more conservative threshold. A, B, C (weak site threshold –log10(p) > 2.5, strong site 

threshold –log10(p) > 4, alpha = 0.01); D, E, F C (weak site threshold –log10(p) > 3, strong site 

threshold –log10(p) > 5, alpha = 0.1). 



! xxiv!

 

SRFRESTMAX

0
0.2
0.4
0.6
0.8
1

cu
m

ul
at

iv
e

fra
ct

io
n

0
0.2
0.4
0.6
0.8
1

cu
m

ul
at

iv
e

fra
ct

io
n

0 20 40 60 80 100
distance between

replicates

0 20 40 60 80 100
distance between

replicates

A B C

D E F

0
0.2
0.4
0.6
0.8
1

cu
m

ul
at

iv
e

fra
ct

io
n

0 20 40 60 80 100
distance between

replicates

0
0.2
0.4
0.6
0.8
1

cu
m

ul
at

iv
e

fra
ct

io
n

0 20 40 60 80 100
distance between

replicates

0
0.2
0.4
0.6
0.8
1

cu
m

ul
at

iv
e

fra
ct

io
n

0 20 40 60 80 100
distance between

replicates

0
0.2
0.4
0.6
0.8
1

cu
m

ul
at

iv
e

fra
ct

io
n

0 20 40 60 80 100
distance between

replicates

 
Figure S8: BRACIL shows high-reproducibility in distance between replicates from the data set 

suggested by Rye et al (Rye et al. 2011). Each panel corresponds to the transcription factor 

highlighted at the top. . Distance reproducibility is shown by using a less conservative set of 

parameters (top row, weak site threshold –log10(p) > 2.5, strong site threshold –log10(p) > 4, alpha 

= 0.01) or a more conservative set of parameters (bottom row, weak site threshold –log10(p) > 3, 

strong site threshold –log10(p) > 5, alpha = 0.1). We considered only sites with less than 100 bp 

distance from each other. This figure illustrates that reproducibility is similar for a conservative (A, 

B, C) and non-conservative (D, E, F) set of parameters.   
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Figure S9:  The significance metric of binding events indicates that BRACIL predicts binding sites 

with high sensitivity and specificity. We plot an ROC curve of binding event prediction in which 

binding events are ranked according to the event specific p-value (see supporting text Computing 

significance of binding event predictions for details). The results show high sensitivity and 

specificity, with an area under the curve of 0.8875. The total number of positives is defined as the 

47 binding sites obtained by Chauhan and Colleagues. The total number of negatives is defined 

as the number of motifs predicted by FIMO that are used in the refined step of BRACIL and are 

not matched to the reference binding sites. Binding sites that are not predicted by BRACIL and 

binding motifs that are filtered by the deconvolution step are assigned to a p-value equal to 1 for 

evaluation purpose.
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Figure S10: A small sample of enriched regions can reduce the computational cost of our method 

while it is still informative to train the impulse response parameters. We illustrate this 

phenomenon by estimating the effect of the subsample size used for training data (16, 50 and 

500) in the prediction of binding site locations for the human transcription factor GABPA. The 

performance is presented as the cumulative fraction of binding site distances predicted by 

different training sets. Predictions based on the training set of 500 most enriched regions are 

used as reference. The results suggest that a subsample of size as small as 16 is informative for 

binding site prediction for predictions based only in ChIP-seq coverage (A) as well as prediction 

that is refined by motif discovery (B). The predicted parameter pair (µ; β) (see Equation S5) for 

each subsample is shown as following: 16 (31.39, 37.04), 50 (32.35, 38.82), 500 (32.13, 39.11) 

for predictions based only in ChIP-seq coverage and 16 (30.42; 28.11), 50 (31.39, 28.21), 500 

(31.00, 31.55) for predictions that are refined by motif discovery. 
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Figure S11: Enriched regions may contain artifacts in the ChIP-seq coverage. Training regions 

can be provided as input in order to avoid bad quality regions. A metric was defined to evaluate 

regions’ quality. Three parameters were considered to indicate quality, they are: (i) average 

coverage per nucleotide, Ct, (ii) cross-correlation between forward and reverse strand, xcorr, and 

(iii) the ratio between average coverage in the forward and reverse strand (ratio). Mathematically, 

regions were ranked according to the following equation: ϕ = exp(3⋅Ct/Cmax)!⋅exp(5⋅(xcorr-0.3))!

⋅exp(-3⋅log2(ratio)).The term Cmax indicates the maximum value of Ct observed in the dataset. The 

term xcross represents the cross-correlation with maximum value in the shift interval from 60 to 

120 bp. This approach correctly classified bad quality enriched regions with low rank values. This 

figure illustrates an instance of region with low (top) and high (bottom) quality scores for the 

transcription factors CTCF (A,C) and GABPA (B, D). 

 



! xxviii!

 

0 5 10 15 200.75

0.8

0.85

0.9

0.95

1

Cooperative test ( −log10(pvalue) )

Cu
mu

lat
ive

 fr
ac

tio
n

 o
f r

eg
ion

s

 

 

CTCF, p00=0.1
CTCF, p00=0.9
REST, p00=0.1
REST, p00=0.9

 
Figure S12: Cooperative interaction test does not reject the hypothesis of independent binding for 

most CTCF (red lines) and REST  (blue lines) regions. This figure illustrates the cumulative 

fraction of regions as a function of p-value obtained by performing test for independent binding. 

Results assume a low immunoprecipitation rate (see equation S10) and are shown for two values 

of probability of non-binding conformation, p00. The results for CTCF are shown for the 500 most 

enriched regions predicted by GEM and ranked according to the metric described in Figure 11. 

REST regions were obtained from Rye et al. dataset (Rye et al. 2011). BRACIL binding site 

prediction was obtained by defining the threshold of weak and strong site (in log10(p-value)  units) 

to be equal to 3 and 5, respectively. The penalty parameter was equal to 0.1. 
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Figure S13: The signal to predict cooperative interaction decays with low coverage depth. For this 

analysis, the DosR ChIP-seq coverage was randomly subsampled. This process reduces the 

relative coverage according to the probabilities indicated in the legend of each plot. We plot two 

replicates for each subsample probability. The reduction in the signal for cooperative interaction 

can be observed by the shift to the left in lines with lower coverage. Our results indicate that the 

statistical significance decreases in proportion to the ChIP-seq coverage for both the positive (A) 

and the negative (B) control data sets. 
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Figure S14:  Cooperative interaction prediction in human TF GABPA. The hypothesis of 

independent binding is less likely for highly enriched regions (top 500) than for lowly enriched 

regions (bottom 500). The results are shown for two probabilities of non-binding conformation p00 

= 0.1 (A) and p00 = 0.9 (B). BRACIL binding site prediction was obtained by defining the threshold 

of weak and strong site (in log10(p-value)  units) to be equal to 3 and 5, respectively. The penalty 

parameter is equal to 0.1.  
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Figure S15: BRACIL improves spatial resolution of GABPA binding event predictions when 

compared to GEM in highly enriched regions. The legends inside each plot indicate whether 

BRACIL predictions are refined by motif input (BRACIL-MI) or coverage only (BRACIL-co). The 

dataset used for this figure considers the top 500 regions enriched regions. On the top of each 

panel we indicate the motif discovery tool used to create the reference benchmark. It indicates 

the number of binding sites (nsites) in the benchmark and the number of regions that contain at 

least one binding site (nregions with sites) per motif discovery tool. The ratios in the legend indicates 

the fraction of binding events that matches a reference binding site in the benchmark with the 

denominator indicating the number of binding events predicted by BRACIL-mi, BRACIL-co, and 

GEM. A match between a binding event and a reference binding site occurs when they are up to 

150 bp apart and unique (see supporting section Evaluating binding site prediction). The results 

corroborate an improved performance of BRACIL when compared to GEM for all cases. 
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Figure S16: BRACIL and GEM predict CTCF binding events with similar resolution in highly 

enriched regions. Figure legends and panels follow the same format described in Figure S15. The 

dataset used for this figure considers the top 500 regions enriched regions. BRACIL shows better 

performance in the benchmark created by FIMO or Weeder, GEM shows better performance in 

the Benchmark created by ChIPMunk or POSMO, and a similar performance is observed in the 

benchmark created by HMS or MDscan. Notice, at the title of the corresponding panel, that over 

30% of the enriched regions do not contain any reference binding site by means of three motif 

discovery tools (HMS, MDscan, and POSMO). Since all regions are expected to contain at least 

one binding event, this result indicates that motif discovery tools overlook many true binding sites 

and highlights the need of a high-scale, single-nucleotide resolution, and experimentally validated 

benchmark, as in the case of DosR binding sites (Chauhan et al. 2011) for more accurate 

measurements. It also indicates that many motif discovery tools are not able to capture the 

relevance of weak binding sites. Finally, BRACIL outperformed GEM when the reference binding 

events capture weakly conserved binding sites (as in the case of Weeder and FIMO).  
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Figure S17: Comparison of BRACIL and GEM for all GABPA regions. Plot follows the same 

standard of Figure S15. BRACIL shows an overall improved performance when compared to 

GEM. The only exception is when POSMO is used to obtain the reference set of binding sites. 

We were not able to run HMS for the large dataset. Also, MEME/FIMO and Weeder used the top 

500 regions to predict the binding motif and scanned the motif for all enriched regions. 
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Figure S18: Same as Figure S17, but for the entire set of CTCF enriched regions. GEM shows an 

overall better performance than BRACIL when all enriched regions are used for evaluation. The 

entire CTCF set includes regions of spurious coverage (Figure S11) in which the deconvolution 

step of BRACIL is not expected to perform well. 
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Figure S19: The qualitative results of the resolution analysis presented in Figures 17 and 18 do 

not change by conservative threshold for motif discovery. The reference set of binding sites for 

FIMO and Weeder depends on a motif threshold. This figure shows results for more conservative 

results. We used a p-value< 10-4
  for FIMO and 85% match for Weeder. GABPA cases are 

presented in top panels (A, B) and CTCF case in the bottom ones (C, D). Figure follows same 

representation of Figures S17-S18. 
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Table S1: Effect of penalty parameter in binding site detection. Penalty is scaled to vary from 0 to 

1, where 0 means no penalty and 1 means a penalty proportional to the sum of squares of 

coverage.a 

 Single binding only Single and double binding 

Penalty TP FP AUCROC AUCP&R TP FP AUCROC AUCP&R 

0.01 40 4 0.8941 0.9440 44 6 0.9397 0.9683 

0.02 38 2 0.8774 0.9378 44 5 0.9420 0.9702 

0.05 34 1 0.8376 0.9199 42 5 0.9182 0.9575 

0.10 32 1 0.8159 0.9087 42 5 0.9182 0.9575 

0.15 31 1 0.8050 0.9031 42 5 0.9182 0.9575 

0.20 31 1 0.8050 0.9031 42 5 0.9182 0.9575 

0.30 31 1 0.8050 0.9031 42 5 0.9182 0.9575 

0.50 30 1 0.7941 0.8975 41 5 0.9063 0.9510 

1.00 30 1 0.7941 0.8975 41 5 0.9063 0.9510 
aTP, FP represent the number of true and false positives, respectively. AUCROC represents the area under a 

ROC curve and AUCP&R represent the area under a precision and recall curve. 
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Table S2: List of binding configuration probabilities used to create a simulated set of enriched 

regions. This set is chosen to be representative of the feasible space of independent binding (see 

Figure S3b).  

P0,0 P1,0 P0,1 P1,1 

0.09 0.10 0.3837 0.4263 

0.09 0.01 0.8100 0.0900 

0.09 0.001 0.8990 0.0100 

0.19 0.10 0.4652 0.2448 

0.19 0.01 0.7600 0.0400 

0.19 0.001 0.8048 0.0042 

0.29 0.10 0.4536 0.1564 

0.29 0.01 0.6767 0.0233 

0.29 0.001 0.7066 0.0024 

0.39 0.10 0.4059 0.1041 

0.39 0.01 0.5850 0.0150 

0.39 0.001 0.6074 0.0016 

0.49 0.10 0.3405 0.0695 

0.49 0.01 0.4900 0.0100 

0.49 0.001 0.5080 0.0010 

0.59 0.10 0.2651 0.0449 

0.59 0.01 0.3933 0.0067 

0.59 0.001 0.4083 0.0007 

0.69 0.10 0.1834 0.0266 

0.69 0.01 0.2957 0.0043 

0.69 0.001 0.3086 0.0004 

0.79 0.10 0.0976 0.0124 

0.79 0.01 0.1975 0.0025 

0.79 0.001 0.2087 0.0003 

0.89 0.10 0.0090 0.0010 

0.89 0.01 0.0989 0.0011 

0.89 0.001 0.1089 0.0001 
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Table S3: This table summarizes the key features in BRACIL that was borrowed from csdeconv 

and also highlights new ones that is introduced in BRACIL. 

Feature BRACIL Csdeconv 

Blind-deconvolution model Yes Yes 

Penalty parameter to avoid 

overfitting 

Yes Yes 

Predicts multiple binding sites 

based only in ChIP-seq 

coverage 

Yes Yes 

Versatile with any peak-caller Yes No 

Parametric impulse response Yes No 

Physical interpretation of the 

impulse response 

Yes No 

Integrated with motif discovery Yes No 

Exploit weak motifs Yes No 

Single-nucleotide resolution Yes No 

Parallel deconvolution Yes No 

Feasible to high-throughput 

and eukaryote application 

Yes No 

Double-binding signal Yes No 

Predicts cooperative 

interaction 

Yes No 

 



! xxxix!

Table S4: BRACIL has a lower false negative rate than GEM. The false negative rate is computed 

as the number of reference binding sites that are not identified by BRACIL or GEM. Results are 

shown for both GABPA (Valouev et al. 2008) and CTCF (Chen et al. 2008) and specific per motif 

discovery tool. The predictive methods are BRACIL-MI (BRACIL with motif input), BRACIL-co 

(BRACIL using coverage only), and GEM. The motif discovery tools used to obtain the reference 

binding sites are listed in the column at the left. The numbers used for computing false negative 

rate are taken from Figures S15 and S16. 

Motif 

discovery 

tool 

False Negative Rate 

 GABPA CTCF 

 BRACIL-mi  BRACIL-co GEM BRACIL-mi  BRACIL-co GEM 

ChIPMunk 0 0.002 0 0 0 0 

FIMO 0.722 0.805  0.726 0.493 0.558  0.528 

HMS 0.225 0.306 0.239 0.317 0.349 0.324 

MDScan 0.160 0.314 0.216 0.023 0.085 0.069 

POSMO 0.148 0.270 0.219 0 0 0 

Weeder 0.723 0.791 0.727 0.303 0.371 0.333 
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