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Plant Generation % Observed % Expected Citation
Arabidopsis F8 0.42 0.78125 Lister and Dean (1993)
Tomato F7 15.0 1.5625 Paran et al. (1995)
Maize F10 1.6 0.1953125 Burr and Burr (1991)
Maize F10 2.7 0.1953125 Burr and Burr (1991)
Sorghum F6 4.69 3.125 Peng et al. (1999)
Sorghum F5 19.76* 6.25 Kong et al. (2013)

Table S1: Reports of deviation from expected heterozygosity maintained
per generation. The 19.76% from Kong et al. comes from an average of
the reported distorted regions across the genome; the total proportion of
heterozygosity could not be located in the publication, so this is likely an
overestimate.

Marker # Reported map size (cM) Citation Marker Type
145 1279 Hart et al. (2001) RFLP, SSR
323 1347 Peng et al. (1999) RFLP
466 1406 Bhattramakki et al. (2000) RFLP, SSR
792 1528 Mace et al. (2009) DaRT, RFLP, SSR
2926 1713 Menz et al. (2002) AFLP, RFLP, SSR

Table S2: Reported genetic map sizes for the sorghum BTx623 x IS3620c
RIL population used in this study.
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Figure S1: Estimated recombination fractions, r̂, of excess het-
erozygosity versus Mendelian expectations for t = 3. Recombination
fractions estimated from genotype frequencies under Mendelian expectations
(h=0.5) versus under modeling a global heterozygosity advantage (h=0.6373)
at generation t = 3 of a selfing population. This shows that if the population
was retaining excess heterozygosity (at a rate of 63.73% each generation as
opposed to the Mendelian 50%), then estimating recombination fractions un-
der Mendelian expectations would shrink the map if observed at generation
t = 3.
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SOLVING FOR THE GENERAL SOLUTION, PFT
, IN

MATLAB

Given the theory derived for pFt
′ = TpFt−1

′ we solved for the general solution
of pFt using MATLAB (2010) and an M-file is provided as a supplemental
file to document all variables defined and calculations. The M-file can be
found on https://github.com/MulletLab/exHet_Supplement, and we also
provide it below.

% MATLAB M-file to derive the general solution for the probability of
% a marker in a genotype class given a selfing population, Ft, for t
% generations. This is supplemental information for Truong & McCormick
% et al (2014) where we incorporate a heterozygosity zygotic viability term.
%

% assign variables:
% r is the recombination frequency, and t is the generation interval
syms r t;

% h is amount of heterozygosity maintained in each generation and can
be
% parameterized given generation t. That is if H is the amount of
% heterozygosity in an Ft population, then hˆ(t-1)=H
syms h;

% u is the viability of Aa to AA and aa
% solve(h == ((2*uˆ2)*((1-r)ˆ2+rˆ2) + (2*2*u*r*(1-r)))/d , u )
syms u;

u = -(2*h*r - r + ((rˆ2 - 2*h*r + h)*(2*h*r - 2*r - h + rˆ2 + 1))ˆ(1/2) -
2*h*rˆ2 + rˆ2)/(h + 2*r - 2*h*r + 2*h*rˆ2 - 2*rˆ2 - 1);

% d is a parameter necessary to weigh to u appropriately
syms d;

d = 2*((1-r)ˆ2)+8*u*r*(1-r)+ 2*(rˆ2)+ 2*(uˆ2)*(((1-r)ˆ2)+(rˆ2);
% Transition probability matrix for 5 classes of genotypes
T = [

1, 0, (1-hˆ1)/2, (2*((1-rˆ1)ˆ2))/dˆ1, (2*(rˆ2))/dˆ1;
0, 1, (1-hˆ1)/2, (2*(rˆ2))/dˆ1, (2*((1-rˆ1)ˆ2))/dˆ1;
0, 0, (hˆ1), (8*uˆ1*rˆ1*(1-rˆ1)ˆ1)/dˆ1, (8*uˆ1*rˆ1*(1-rˆ1)ˆ1)/dˆ1;
0, 0, 0, (2*uˆ2*(1-rˆ1)ˆ2)/dˆ1, (2*uˆ2*rˆ2)/dˆ1;
0, 0, 0, (2*uˆ2*rˆ2)/dˆ1, (2*uˆ2*(1-rˆ1)ˆ2)/dˆ1];

S.K. Truong and R.F. McCormick et al.
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% Take eigenvalues of Transition probability matrix to set up system of
% equations to find the general solution given generation t for all 5
% classes
eigT = eig(T);

% qit=[
% p(class 1 in generation t);
% p(class 2 in generation t);
% p(class 3 in generation t);
% p(class 4 in generation t);
% p(class 5 in generation t)];
% Initialize probability of class given generation t. For an F1 (t=1)
% from the initial mating of homozygous parents (ie AABB x aabb), all
% individuals in the F1 are of class 4 (ie AaBb in coupling (AB/ab))
qi1=[0;0;0;1;0];

qi2 = T*qi1;
qi3 = T*qi2;
qi4 = T*qi3;
% bclass = [
% p(class in F1);
% p(class in F2);
% p(class in F3);
% p(class in F4)];
% Set up the frequences directly in F1, F2, F3, and F4 for each
% class
b1=[qi1(1,1);qi2(1,1);qi3(1,1);qi4(1,1)];

b2=[qi1(2,1);qi2(2,1);qi3(2,1);qi4(2,1)];
b3=[qi1(3,1);qi2(3,1);qi3(3,1);qi4(3,1)];
b4=[qi1(4,1);qi2(4,1);qi3(4,1);qi4(4,1)];
b5=[qi1(5,1);qi2(5,1);qi3(5,1);qi4(5,1)];
% Set up the 4 linear equations (for each generation t=1,2,3,4)
A=[

eigT(1,1)ˆ1 eigT(2,1)ˆ1 eigT(3,1)ˆ1 eigT(4,1)ˆ1;
eigT(1,1)ˆ2 eigT(2,1)ˆ2 eigT(3,1)ˆ2 eigT(4,1)ˆ2;
eigT(1,1)ˆ3 eigT(2,1)ˆ3 eigT(3,1)ˆ3 eigT(4,1)ˆ3;
eigT(1,1)ˆ4 eigT(2,1)ˆ4 eigT(3,1)ˆ4 eigT(4,1)ˆ4];
% We now have a system of 4 linear equations with 4 unknowns for each
class
% A*[coefficients of general solution]=bclass

S.K. Truong and R.F. McCormick et al.
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x1=linsolve(A,b1);
x2=linsolve(A,b2);
x3=linsolve(A,b3);
x4=linsolve(A,b4);
x5=linsolve(A,b5);
q it=[eigT(1,1)ˆt eigT(2,1)ˆt eigT(3,1)ˆt eigT(4,1)ˆt];
% pclass is the probability of class i (where i=1,2,3,4,5) given
% heterozygosity maintained h, recombination r, and generation t
p1=q it*x1;

p2=q it*x2;
p3=q it*x3;
p4=q it*x4;
p5=q it*x5;

S.K. Truong and R.F. McCormick et al.
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Figure S2: Heterozygosity landscape. Dot plot of the proportion of heterozygous genotypes versus the
physical base pair position of the 10,081 markers. The coloring of the markers correspond to the percentage
of heterozygosity as explained in Figure 3. The Mendelian expected proportion of heterozygosity of an F7

RIL population is 0.016 and the observed heterozygosity as an average of the BTx623×IS3620c F7 is 0.067
depicted by a red dashed line and purple solid line, respectively.
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PARAMETERIZATION OF THE HETEROZYGOSITY
TERM

To generate the sorghum genetic map presented in this study, we modeled a
global heterozygosity maintained per generation parameter, h, based on the
average heterozygosity observed, H. We briefly discussed the possibility of
more local estimations of h, and here we explore the topic in greater detail.
Here, we (i) analyze the distribution of heterozygosity, (ii) provide further
reasoning to using a global heterozygosity term as well as (iii) present two
methods for parameterizing more local fluctuations in h. The first method
estimates an h for each linkage group and is implemented as an option in
est.rf.exHet(), and the second method derives an h for each marker pair.
We also acknowledge an intermediate approach whereby local heterozygosity
could be estimated on a regional basis to parameterize a regional h, perhaps
with a sliding window.

A global heterozygosity term

Figures S2 and S4 show that there are regions of variable heterozygosity such
that groups of markers vary in their proportion of individuals heterozygous
relative to the genome-wide average. When modeling recombination frac-
tions under either Mendelian or excess heterozygosity (as done in the paper)
it is assumed that genotypes are uniformly distributed. However, we find
that the proportion of heterozygous individuals at a marker more closely
follows a normal distribution, suggesting that the assumption of a uniform
distribution underlying both models may need to be revisited (Figure S3).
However, given (i) that the proportions of heterozygosity are greater than
those expected under the Mendelian model genome-wide (Figures S2 and
S3) and (ii) the precedence for assuming a uniform distribution used when
estimating recombination fractions under the Mendelian model, we found
the use of a global heterozygosity parameter taken from the average of all
markers’ genotypes to be a reasonable choice.

Local heterozygosity term for each linkage group, hlinkage group #

An alternative to map estimation using a global heterozygosity term is to
estimate h for each linkage group. We implemented this alternative, and
in our use cases, employing a local parameterization of the heterozygos-

S.K. Truong and R.F. McCormick et al.
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Figure S3: Heterozygosity distribution in sorghum F7 mapping pop-
ulation. (A) A rough assessment of the distribution of (excess) heterozy-
gosity of the markers used to genotype the sorghum mapping population
shows that most markers display more heterozygosity than expected under
Mendelian assumptions of segregation (depicted by a red dashed line). The
histogram also shows the average excess heterozygosity (depicted by a purple
dashed line) that was used to estimate recombination in the RIL. Quantile-
Quantile (Q-Q) plots compare the heterozygosity distributions against (B)
a uniform distribution and (C) a normal distribution. By plotting sample
quantiles against theoretical quantiles for the distributions, it can be argued
that the excess heterozygosity appears to be more normally distributed than
it is uniformly distributed.

ity based on linkage groups gave similar results to the global heterozygos-
ity parameterization (see Figure S5 and spreadsheet provided at https:

//github.com/MulletLab/exHet_Supplement). Calculating recombination

S.K. Truong and R.F. McCormick et al.
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Figure S4: Heterozygosity on chromosome 2. Dot plot of the proportion
of heterozygous genotypes vs the physical base pair position of markers on
chromosome 2 illustrates the variability of heterozygosity observed in regions
of the genome.

fractions with local heterozygosity based on linkage groups can be used by
invoking est.rf.exHet(hetByLinkageGroup=TRUE). An example of how to
call the function used to parameterize h by linkage groups is provided in the
example code at https://github.com/MulletLab/exHet_Supplement.

The derivation for a local heterozygosity term for each marker,
hmarker

Here we briefly discuss a general solution, pFt
′ = TpFt−1

′, to be solved for in
order to incorporate differential heterozygosity for each marker. While we
derive it here, we chose not to use it and did not implement it due to the
pitfalls associated with overfitting data.

This follows the theory described in the paper such that we will build the
transition probability matrix and then solve for the general solution of pFt .
First we will redefine our genotype classes. We are going to treat different
markers with differential heterozygosity terms, so it would be nice to split
the single heterozygote class (enumerated class 3 in the paper) to class 3α
and class 3β. Such that now we have

S.K. Truong and R.F. McCormick et al.
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pFt =


p(class 1)
p(class 2)
p(class 3α)
p(class 3β)
p(class 4)
p(class 5)


t

=



p(genotypes)

p(AB
AB

) + p(ab
ab

)
p(Ab

Ab
) + p(aB

aB
)

p(AB
aB

) + p(Ab
ab

)
p(AB

Ab
) + p(aB

ab
)

p(AB
ab

)
p(Ab

aB
)


t

class 1 and class 2: The transition from class 1 and class 2 in generation
t to generation t+ 1 are fixed.

class 3: The transition from class 3 in generation t to generation t +
1 will take into consideration only the segregation of one marker that is
heterozygote in generation t as the other marker will be homozygote and
thus fixed in any subsequent generation after t.

If Hα,Ft proportion of heterozygosity observed in marker α for an Ft family
and we assume that the amount of heterozygosity maintained in marker α,
hα, each generation prior to generation t is the same, then we can solve for
hα through the following relationship hα

t−1 = Hα,Ft . hα will be modeled into
the transition probability matrix as a modifier of expected segregation. To
do so, we can treat marker α’s genotypes (zygotes) with differential viability
(expectation to be observed in the next generation). Define the amount
of heterozygosity maintained at marker α as hα (parameterized from data
as shown above) through selfing. Then our expected segregation ratio for
AA : Aa : aa is

1− hα
2

: hα :
1− hα

2
.

Notice that under the assumption of Mendelian segregation, hα = 1/2 and
the expected Mendelian segregation would then be the familiar 1 : 2 : 1. The
same model is true for marker β.

class 4 and 5: The transition from class 4 and 5 in generation t to gen-
eration t+ 1 will take into consideration both the segregation of two markers
that are heterozygous at generation t and the recombination frequency be-
tween the two markers.

Similar to treatment of heterozygosity for one marker, we now have a
heterozygosity term for both marker α, hα, and marker β, hβ. Given two het-
erozygosity terms (one for each marker), we can parameterize both hmarker’s
for each pair of markers in genetic map construction. Now, in the context of
zygotic differential viability, assume that

S.K. Truong and R.F. McCormick et al.
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1. the viability of genotype Aa relative to AA or aa is uα (dependent on
hα)

2. the viability of genotype Bb relative to BB or bb is uβ (dependent on
hβ)

such that the expected segregation is now

prob(genotype t | class 4 t−1) =


AA Aa aa

BB 1
d
(1− r)2 2uα

d
r(1− r) 1

d
r2

Bb
2uβ
d
r(1− r) 2uαuβ

d
[r2 + (1− r)2)] 2uβ

d
r(1− r)

bb 1
d
r2 2uα

d
r(1− r) 1

d
(1− r)2


where d = 2(1− r)2 + 4uαr(1− r) + 4uβr(1− r) + 2r2 + 2uαuβ[(1− r)2 + r2].
Then, the amount of heterozygosity retained in generation t for a marker
pair of either class 4 or 51 in the previous generation t− 1 should satisfy

h =
1

2
prob(AaBB)+

1

2
prob(AABb)+prob(AaBb)+

1

2
prob(aaBb)+

1

2
prob(Aabb)

such that given data Hα,Ft , Hβ,Ft , and t we can calculate

hmarker = e
ln (Hmarker,Ft)

t−1 .

Furthermore, given data r for each marker pair we can subsequently calculate
uα, uβ and d . Transition probability matrix: Incorporating the tran-
sition from a class # to other classes (from the previous sections) in every
generation, we now have a transition probability matrix,

T =



class 1 class 2 class 3α class 3β class 4 class 5

class 1 1 0 1−hα
2

1−hβ
2

2(1−r)2
d

2r2

d

class 2 0 1 1−hα
2

1−hβ
2

2r2

d
2(1−r)2

d

class 3α 0 0 hα 0 4uαr(1−r)
d

4uαr(1−r)
d

class 3β 0 0 0 hβ
4uβr(1−r)

d

4uβr(1−r)
d

class 4 0 0 0 0
2uαuβ(1−r)2

d

2uαuβr
2

d

class 5 0 0 0 0
2uαuβr

2

d

2uαuβ(1−r)2
d


1A probability matrix of all genotypes created after selfing of class 5 would look similar

except for the exchange of rows 1 and 3.

S.K. Truong and R.F. McCormick et al.
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With T defined, we can solve for the general solution of pFt dependent
on t, r, and HFt for every marker pair. Solving for the general solution here
is conceptually similar to the process described for the global heterozygosity
term and described in the M-file in section 1.

S.K. Truong and R.F. McCormick et al.
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GENETIC MAP ESTIMATIONS OF SIMULATED
DATASETS WITH EXCESS HETEROZYGOSITY

Figure S5: Screenshot of spreadsheet containing map estimation
results for the sorghum mapping population and simulated data
with different models and methods. This spreadsheet is provided as a
.ods and a .xlsx file at https://github.com/MulletLab/exHet_Supplement
and a description of its results are here in the Supplemental Information text.

This section describes a simulation study performed to demonstrate the
effect of accounting for excess heterozygosity in the genetic model. Figure S5
and the associated spreadsheet found at https://github.com/MulletLab/

exHet_Supplement provide the results of estimating genetic maps for the
sorghum mapping population and the simulated data using different models
and methods. The following factors were considered:

1. Dataset

(a) BTx623 x IS3620c with tight double recombinations removed

(b) BTx623 x IS3620c without tight double recombinations removed

(c) Simulated data generated under conditions of excess heterozygos-
ity

S.K. Truong and R.F. McCormick et al.
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(d) Simulated data generated under conditions of excess heterozygos-
ity with 1% error rate and 5% missing data

(e) Simulated data generated under conditions of excess heterozygos-
ity with 1% error rate and 5% missing data with tight double
recombinations removed

2. Method

(a) Pairwise estimation using est.rf() or est.rf.exHet(), where est.rf.exHet(h
= 0.5) is equal to est.rf()

(b) Multipoint estimation with a hidden Markov model using est.map()
and a 1% error probability

3. Model

(a) Mendelian model (h = 0.5)

(b) Derived heterozygosity model, global h (h = 0.6373)

(c) Derive heterozygosity model, local h by linkage group (hetByLink-
ageGroup=TRUE)

4. Generation Interval

(a) F7

(b) Fixed RIL (t→∞)

Tight double recombinations

Tight double recombinations, also referred to as short double crossovers (SD-
COs) in the provided code and results, are most often treated as genotyping
errors. In the sorghum mapping population dataset used in this paper, set-
ting short double crossovers smaller than 2 cM to missing removed 1.1% of
the genotypes (37,299 out of 3,407,539). When simulating genotyping er-
rors, we used a 1% error rate. The method we used to remove short double
crossovers was sufficient to compensate for a 1% error rate in the simulated
dataset, such that both pairwise estimation (i.e. using est.rf.exHet()) and
multipoint estimation using the HMM (i.e. using est.map()) provided com-
parable results between (i) the simulated data with 1% error rate with tight
double recombinations removed and (ii) the simulated data without error.
The method we used to remove tight double recombinations is provided as a
Python script at https://github.com/MulletLab/exHet_Supplement.

S.K. Truong and R.F. McCormick et al.
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Error probability in the hidden Markov model

The results from map estimation using a hidden Markov model (HMM) as
implemented in R/qtl’s est.map() function on the simulated datasets and the
sorghum mapping population showed that the HMM methodology handled
the error rate effectively in the simulated data, compensating for the 1%
error rate in the simulated data and yielding very similar results whether
or not tight double recombinations were removed (though still giving ex-
panded maps since the underlying genetic model assumed h = 0.5). How-
ever, the HMM multipoint methodology yields very different results between
the sorghum mapping dataset with and without tight double recombinations
removed. Both the multipoint and the pairwise give grossly inflated maps
if tight double recombinations are not removed (> 3000 cM), and give com-
parable results once tight double crossovers are removed (around 1600 cM).
This suggests that the random errors introduced in the simulation were not
representative of the errors in sorghum mapping dataset.

F7 versus fixed RIL (t→∞)

Removal of all heterozygous genotypes (e.g. treating the map as a fixed RIL)
reduces the map size for both the simulated and real datasets (under both
pairwise and multipoint methods). This is expected since the removal of
heterozygous genotypes effectively removes recombination events; in the case
of our real dataset this omits 6.7% of the genotypes, or 224,437 genotype
calls. For the simulated dataset, the estimated map is still larger than the
simulated linkage group since the underlying genetic model does not account
for the excess heterozygosity. Unlike the simulated dataset, the multipoint
method (i.e. est.map()) yields very different results between treating the
real data as an F7 and as a fixed RIL, especially if tight double recombinants
are not removed. We suspect that this may be a consequence of the error
modeled by the HMM not being representative of how the error exists in the
read data.

S.K. Truong and R.F. McCormick et al.
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