Supplementary Information Ranking scientific publications: the effect of nonlinearity

Liyang Yao, Tian Wei, An Zeng, Ying Fan and Zengru Di

1 Basic Properties

Here we discuss the basic properties of the NonlinearRank method, including convergence, score distribution and similarity to PageRank and degree rank. In the following study, we make use of the APS citation network data.

Since our method has nonlinearity in the iterative equation, its convergence cannot be directly proved by the Perron-Frobenius theorem [1, 2]. However, we numerically investigate the convergence of our method. We first study the dependence of the total score on the iteration steps in Fig. S1(A). One can see that the total score is kept unchanged when $\theta = 0$ (i.e. the PageRank algorithm). If $\theta > 0$, the total score first decreases with the iteration steps and then becomes stable. In Fig. S1(B), we define the quantity *error* at step t as $\sum_i |s_i(t) - s_i(t-1)|$ where $s_i(t)$ is the score of node *i* at iteration step t. If the *error* can finally approach a small value, then the ranking algorithm converges (as the score of nodes no longer changes). One can see in Fig. S1(B) that in the whole parameter range, our algorithm converges. We also observe that NonlinearRank converges faster when θ is bigger. Based on these results, we stop the iterations when t = 50in our simulation since nodes' score already reaches stable state.

Figure S1 (A) the dependence of the total score on iteration step t in NonlinearRank, and (B) the dependence of the quantity *error* on iteration step t in NonlinearRank. In this figure c = 0.15 but different θ values are considered. Notice that NonlinearRank reduces to Pagerank when $\theta = 0$.

We then study the distribution of final NonlinearRank score s under different θ in Fig. S2. One immediate observation in this figure is that the distribution follows power-law form. The parameter θ can control the exponent of the power-law. Generally speaking, the power-law exponent increases with θ . The narrow distribution doesn't necessarily mean that the nodes are not well separated. Instead, we show in the manuscript that the ranking based on the NonlinearRank score is actually outstanding with respect to awarded papers, spreading, prediction and reliability.

In order to investigate the similarity between NonlinearRank and the other two methods (i.e. PageRank and degree rank), we investigate the Pearson correlation coefficient between their scores. The results are reported in Fig. S3. In Fig. S3(A) and (B), we take all nodes into account and find that the correlation between NonlinearRank and PageRank decreases with θ . The curve starts from 1 because NonlinearRank degenerates to PageRank when $\theta = 0$. The correlation between NonlinearRank and degree rank stays a low

Figure S2 The cumulative distribution of the final NonlinearRank score under c = 0.15 but different θ .

value under all θ values. These results indicate that the NonlinearRank has completely new properties that cannot be reproduced by PageRank and degree rank. Usually, people are more interested in the most-cited papers. We then consider the ranking of the top-100 and top-1000 most popular papers in Fig. S3(C)(D) and (E)(F), respectively. One can see that the ranking of these hub papers are very different in NonlinearRank and the other two methods, which confirms again that NonlinearRank has entirely new properties.

Figure S3 The Pearson correlation of NonlinearRank score with Pagerank score and indegree, respectively. We fix c = 0.15 but change the value of θ to see the correlation of (A) all, (C) top-100 and (E) top-1000 papers. We make c tunable, then change the value of θ again, to see the correlation of (B) all, (D) top-100 and (F) top-1000 papers.

2 Nobel prize papers

In Table S1, we listed the 39 Nobel prize papers we used in the manuscript to validate our method.

Table S1. 39 Nobel prize papers that published in APS from 1950-2009

ID	Title	Authors	Year
1	Dynamical model of elementary particles based on (I)	Y. Nambu	1961
2	Dynamical model of elementary particles based on (II)	Y. Nambu	1961
3	Giant magnetoresistance of (001) Fe/ (001) Cr magnetic	A. Fert	1988
4	Enhanced magnetoresistance in layered magnetic	P. Grnberg	1989
5	Coherent and incoherent states of the radiation field	R. J. Glauber	1963
6	Ultraviolet behavior of non-abelian gauge theories	D. J. Gross, F. Wilczek	1973
7	Reliable perturbative results for strong interactions?	H. D. Politzer	1973
8	A theoretical description of the new phases of $liquid^3$ He	A. J. Leggett	1975
9	Evidence for X-rays from sources outside the solar system	R. Giacconi	1962
10	Bose-Einstein Condensation in a Gas of Sodium Atoms	E. A. Cornell et al.	1995
11	Trapping of neutral sodium atoms with radiation pressure	S Chu	1987
12	Evidence for a New Phase of Solid He^3	D. M. Lee et al.	1972
13	Evidence for Anomalous Lepton Production	M. L. Perl	1975
14	Neutron diffraction by paramagnetic and	C. G. Shull	1951
15	Inelastic electron-proton scattering at large	J. I. Friedman et al.	1972
16	Electron coupled interactions between	N. F. Ramsey	1953
17	New high-precision comparison of electron and	H. G. Dehmelt	1987
18	New method for high-accuracy determination of	K. Klitzing	1980
19	Renormalization Group and Critical Phenomena (I)	K. G. Wilson	1971
20	Renormalization Group and Critical Phenomena (II)	K. G. Wilson	1971
21	Relaxation effects in nuclear magnetic resonance absorption	N, Bloembergen	1948
22	Evidence for the 2 Decay of the K_2^0 Meson	J. W. Cronin, V. L. Fitch	1964
23	Localized magnetic states in metals	P. W. Anderson	1961
24	Evidence for Anomalous Lepton Production in	B. Richter	1975
25	Experimental observation of a heavy particle J	S. C. Ting	1974
26	New phenomenon in narrow germanium pn junctions	L. Esaki	1958
27	Energy gap in superconductors measured by	I. Giaever	1960
28	Theory of superconductivity	J. Bardeen	1957
29	Evidence for $at = 0$ three-pion resonance	L. W. Alvarez	1961
30	On gauge invariance and vacuum polarization	J. Schwinger	1951
31	Space-time approach to non-relativistic quantum mechanics	R. P. Feynman	1948
32	Infrared and optical masers	C. H. Townes	1958
33	Electron scattering and nuclear structure	R Hofstadter	1956
34	Some effects of ionizing radiation on the formation of	D. A Glaser	1952
35	Observation of antiprotons	E. G. Segr	1955
36	Question of Parity Conservation in Weak Interactions	C. N. Yang	1956
37	Fine structure of the hydrogen atom by	W. E. Lamb	1947
38	Nuclear induction	F. Bloch	1946
39	Resonance absorption by nuclear magnetic moments in	E. M. Purcell	1946

References

- [1] Perron, O., Zur Theorie der Matrices, Mathematische Annalen 64, 248 (1907).
- [2] Frobenius, G., Ueber Matrizen aus nicht negativen Elementen, Sitzungsber. Konigl. Preuss. Akad. Wiss., 456 (1912).