Visibly Emissive and Responsive Extended 6-Aza-Uridines

Patrycja A. Hopkins, Renatus W. Sinkeldam, Yitzhak Tor*

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. * Correspondence to: ytor@ucsd.edu

Table of Contents

S1.	Synthesis	S2
	S1.1. General	S2
	S1.2. Synthesis of 1a-f	S3
	S1.3. ¹ H-NMR and ¹³ C-NMR spectra of 1a-f	S6
S2.	Crystal structures	S22
S 3.	X-ray crystal structure: packing	S29
S4 .	Photophysics	S30
S 5.	Sensitivity to polarity	S31
	S5.1. Absorption and steady-state emission spectroscopy for 1a in methanol/dioxane	S32
	S5.2. Absorption and steady-state emission spectroscopy for 1b in methanol/dioxane .	S33
	S5.3. Absorption and steady-state emission spectroscopy for 1c in methanol/dioxane	S34
	S5.4. Absorption and steady-state emission spectroscopy for 1d in methanol/dioxane .	S35
	S5.5. Absorption and steady-state emission spectroscopy for 1e in methanol/dioxane	S36
	S5.6. Absorption and steady-state emission spectroscopy for 1f in methanol/dioxane	S37
S6.	Absorption and steady-state emission spectroscopy for 1a-f in water	S38
S7 .	Sensitivity to pH	S39
	S7.1. Absorption and steady-state emission spectroscopy for 1c	S39
S8 .	Enlarged Figure 3c and Figure 3d.	S40
S9 .	References	S41

S1. Synthesis

Scheme S1. Synthesis of nucleosides 1a-f.

S1.1. Synthesis: General

Palladium acetate, (4-(dimethylamino)phenyl)boronic acid, 1,2-dichloroethane and dry acetonitrile were purchased from Sigma-Aldrich. Sodium thiosulphate was purchased from Amresco. Ammonium chloride was purchased from Mallinckrodt. Sodium sulfate, sodium carbonate and all solvents were purchased from Fisher. Tris(3-sulfophenyl)phosphine trisodium salt was purchased from Alfa-Aesar. (4-Methoxyphenyl)boronic acid was purchased from Frontier Scientific. (4-hydroxyphenyl)boronic, (4-methylphenyl)boronic, phenylboronic and (4-fluorophenyl)boronic were purchased from Combi-Blocks. All reagents and solvents were used without further purification. Moisture and oxygen sensitive reactions were performed in an inert argon atmosphere. 5-(thiophene-2-yl)-6-aza-2',3',5'-tribenzoyl-uridine **2** synthesized by previously published method in our laboratory.¹

S1.2. Synthesis

Synthesis of 5-(5-bromothiophene-2-yl)-6-aza-2',3',5'-tribenzoyluridine (3). 5-(thiophene-2-yl)-6-aza-2',3',5'-tribenzoyl-uridine 2 (1.1 g, 1.72 mmol) was dissolved in 1,2-dichloroethane (22 mL) at rt. Bromine (0.18 mL, 3.51 mmol) was then added and the reaction mixture left to stir at rt. After 1h, saturated aqueous solution of sodium thiosulphate (0.5 mL) was added and mixed until the red color changed to yellow. The reaction mixture was washed with water (3 × 100 mL). The combined organic layers were dried over Na₂SO₄ filtered over a glass frit and

concentrated to dryness. Purification of the crude residue by column chromatography (silica, 7 ν % DCM in EtOAc) yielded **3** as an almost white foam (1.18 g, 1.64 mmol, 95%).

¹H NMR (400 MHz, DMSO-d₆) δ 12.65 (br s, 1H), 8.05 – 7.73 (m, 7H), 7.72 – 7.20 (m, 10H) 6.49 (s, 1H), 6.10 – 5.95 (m, 2H), 4.90 – 4.75 (m, 1H), 4.68 (dd, *J* = 12.2, 3.4 Hz, 1H), 4.56 (dd, *J* = 12.2, 4.6 Hz, 1H);

 ^{13}C NMR (125 MHz, DMSO-d_6) δ 165.85, 165.14, 165.01, 155.85, 148.21, 137.93, 135.56, 134.44, 134.29, 133.93, 131.46, 129.92, 129.82, 129.76, 129.60, 129.46, 129.30, 129.15, 128.97, 128.92, 117.13, 88.11, 78.79, 74.36, 71.05, 63.67.

HR-MS-ESI: m/z calcd. for C₃₃H₂₄BrN₃O₉S (M+Na)⁺: 740.0309, found 740.0307.

5-(5-bromothiophen-2-yl)-6-aza-uridine (4). A solution of **3** (1.14 g, 1.58 mmol) in saturated methanolic ammonia (10 mL) was heated at 60 °C in a pressure vessel for 24h. The mixture was cooled to rt, concentrated and the residue was triturated with DCM (3×60 mL). Purification of the crude residue by recrystallization from water/methanol (60 mL/20 mL) yielded **4** as a white solid (495.5 mg, 1.22 mmol, 77%).

¹H NMR (400 MHz, DMSO-d₆) δ 12.50 (br s, 1H), 7.75-7.67 (m, 1H), 7.35-7.25 (m, 1H), 5.98 (d, J = 2.0 Hz, 1H), 5.32 (d, J = 4.7 Hz, 1H), 5.09 (d, J = 6.1 Hz, 1H), 4.65 (t, J = 5.6 Hz, 1H), 4.28 – 4.12 (m, 2H), 3.88 – 3.78 (m, 1H), 3.64 – 3.54 (m, 1H), 3.49 – 3.38 (m, 1H).

 ^{13}C NMR (125 MHz, DMSO-d_6) δ 155.69, 148.53, 137.10, 136.47, 131.56, 129.71, 116.23, 89.99, 85.14, 73.72, 70.80, 62.36.

HR-MS-ESI: m/z calcd. for C₁₂H₁₂BrN₃O₆S (M-H)⁻: 403.9557, found: 403.9558.

Synthesis of 5-(5-(4-fluorophenyl)thiophen-2-yl)-6-aza-uridine (1a). All solvents were purged with argon. Under argon, sodium carbonate (400 mg, 3.77 mmol) was dissolved in water (6 mL). Then **4** (500 mg, 1.23 mmol), (4-fluorophenyl)boronic acid **5a** (258.3 mg, 1.85 mmol) and dry acetonitrile were added to the solution and additionally purged with argon for 15 minutes. Tris(3-sulfophenyl)phosphine trisodium salt (175 mg, 0.31 mmol) and palladium acetate (13.8 mg, 0.06 mmol) were

added and the reaction mixture was heated and kept at 60 °C for 18h. The mixture was cooled to rt, neutralized with saturated aqueous solution of ammonium chloride and diluted with methanol (100 mL). A black precipitate was filtrate off, and remaining filtrate was concentrated to dryness. The residue was triturated with water (3×60 mL). Purification of the crude solid by recrystallization from methanol (50 mL) yielded **1a** as a bright yellow solid (337.0 mg, 0.80 mmol, 65%).

¹H NMR (500 MHz, DMSO-d₆) δ 12.48 (br s, 1H), 7.96 (d, *J* = 4.0 Hz, 1H), 7.80 – 7.72 (m, 2H), 7.54 (d, *J* = 4.0 Hz, 1H), 7.34 – 7.26 (m, 2H), 6.00 (d, *J* = 3.0 Hz, 1H), 5.36 (d, *J* = 4.5 Hz, 1H), 5.13 (d, *J* = 6.0 Hz, 1H), 4.70 (t, *J* = 6.0 Hz, 1H), 4.32 – 4.19 (m, 2H), 3.87 – 3.81 (m, 1H), 3.66 – 3.59 (m, 1H), 3.51 – 3.43 (m, 1H).

 ^{13}C NMR (125 MHz, DMSO-d_6) δ 163.47, 161.51, 155.72, 148.61, 145.29, 137.72, 134.32, 130.79, 130.20, 130.18, 128.18, 128.12, 124.97, 116.77, 116.60, 90.03, 85.24, 73.63, 70.95, 62.56.

¹⁹F NMR (280 MHz, DMSO-d₆) δ 116.78

HR-MS-ESI: m/z calcd. for C₁₈H₁₆FN₃O₆S (M-H)⁻: 420.0671, found: 420.0673

Synthesis of 5-(5-phenylthiophen-2-yl)-6-aza-uridine (1b).

Using the procedure described for **1a**, but starting from **5b**, **1b** was obtained as a bright yellow solid (335.2 mg, 0.83 mmol, 68%).

¹H NMR (400 MHz, DMSO-d₆) δ 12.46 (br s, 1H), 7.97 (d, *J* = 4.0 Hz, 1H), 7.80 – 7.64 (m, 2H), 7.57 (d, *J* = 4.0 Hz, 1H), 7.51 – 7.40 (m, 2H), 7.40 – 7.27 (m, 1H), 6.00 (d, *J* = 3.2 Hz, 1H), 5.33 (d, *J* = 5.2 Hz, 1H),

5.11 (d, J = 6.0 Hz, 1H), 4.68 (t, J = 6.0 Hz, 1H), 4.36 – 4.16 (m, 2H), 3.90 – 3.78 (m, 1H), 3.70 – 3.56 (m, 1H), 3.54 – 3.42 (m, 1H).

 ^{13}C NMR (125 MHz, DMSO-d_6) δ 155.73, 148.61, 146.45, 137.77, 134.32, 133.51, 130.81, 129.73, 128.90, 126.01, 124.85, 90.06, 85.24, 73.65, 70.97, 62.58.

HR-MS-ESI: m/z calcd. for C₁₈H₁₇N₃O₆S (M-H)⁻: 402.0765, found: 402.0767.

Synthesis of 5-(5-(4-methyl)phenyl)thiophen-2-yl)-6-aza-uridine (1c).

Using the procedure described for **1a**, but starting from **5c**, **1c** was obtained as a a bright yellow solid (354.5 mg, 0.85 mmol, 69%).

¹H NMR (500 MHz, DMSO-d₆) δ 12.46 (br s, 1H), 7.95 (d, J = 4.0 Hz,

^{HO} OH 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 4.0 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 6.00 (d, J = 3.0 Hz, 1H), 5.36 (d, J = 4.5 Hz, 1H), 5.14 (d, J = 6.0 Hz, 1H), 4.70 (t, J = 6.0 Hz, 1H), 4.34 – 4.18 (m, 2H), 3.90 – 3.80 (m, 1H), 3.68 – 3.57 (m, 1H), 3.53 – 3.42 (m, 1H) 2.33 (s, 3H).

 ^{13}C NMR (125 MHz, DMSO-d_6) δ 155.73, 148.61, 146.67, 138.48, 137.80, 133.74, 130.85, 130.78, 130.24, 125.90, 124.25, 90.01, 85.24, 73.62, 70.97, 62.59, 21.27.

HR-MS-ESI: m/z calcd. for $C_{19}H_{19}N_3O_6S$ (M-H)⁻ 416.0922, found: 416.0923.

Synthesis of 5-(5-(4-methoxyphenyl)thiophen-2-yl)-6-aza-uridine (1d).

Using the procedure described for **1a**, but starting from **5d**, **1d** was obtained as a yellow solid (351.9 mg, 0.81 mmol, 66%).

¹H NMR (500 MHz, DMSO-d₆) δ 12.45 (br s, 1H), 7.95 (d, *J* = 4.0 Hz, 1H), 7.70 - 7.60 (m, 2H), 7.44 (d, *J* = 4.0 Hz, 1H), 7.05 - 6.97 (m, 1H), 7.05 - 6.97 (m, 1H), 7.05 - 6.97 (m, 1H)

2H), 6.01 (d, J = 3.0 Hz, 1H), 5.37 (d, J = 5.0 Hz, 1H), 5.14 (d, J = 6.0 Hz, 1H), 4.71 (t, J = 5.5 Hz, 1H), 4.32 – 4.18 (m, 2H), 3.87 – 3.82 (m, 1H), 3.79 (s, 3H), 3.69 – 3.59 (m, 1H), 3.53 – 3.43 (m, 1H).

 ^{13}C NMR (125 MHz, DMSO-d_6) δ 159.94, 155.74, 148.62, 146.66, 137.85, 133.22, 130.96, 127.44, 126.19, 123.61, 115.10, 90.02, 85.26, 73.63, 71.01, 62.64, 55.74.

HR-MS-ESI: m/z calcd. for $C_{19}H_{19}N_3O_7S$ (M-H)⁻ 432.0874, found 432.0874

Synthesis of 5-(5-(4-hydroxyphenyl)thiophen-2-yl)-6-aza-uridine (1e).

Using the procedure described for **1a**, but starting from **5e**, **1e** was obtained as a off-yellow solid (382.5 mg, 0.91 mmol, 74%).

¹H NMR (400 MHz, DMSO-d₆) δ 12.42 (br s, 1H), 9.80 (br s, 1H), 7.92 (d, J = 4.0 Hz, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 4.0 Hz,

1H), 6.82 (d, J = 8.4 Hz, 2H), 5.99 (d, J = 2.8 Hz, 1H), 5.32 (d, J = 4.8 Hz, 1H), 5.09 (d, J = 6.0 Hz, 1H), 4.68 (t, J = 5.6 Hz, 1H), 4.34 – 4.15 (m, 2H), 3.90 – 3.77 (m, 1H), 3.68 – 3.56 (m, 1H), 3.53 – 3.40 (m, 1H).

¹³C NMR (125 MHz, DMSO-d₆) δ 158.41, 155.87, 148.73, 147.23, 137.89, 132.78, 130.99, 127.53, 124.66, 122.98, 116.42, 90.01, 85.23, 73.62, 71.03, 62.68.

HR-MS-ESI: m/z calcd. for $C_{18}H_{17}N_3O_7S$ (M-H)⁻ 418.0714, found 418.0715.

Synthesis of 5-(5-(4-(dimethylamino)phenyl)thiophen-2-yl)-6-aza-uridine (1f).

Using the procedure described for **1a**, but starting from **5f**, **1f** was obtained as a red solid (269.3 mg, 0.60 mmol, 49%).

¹H NMR (500 MHz, DMSO-d₆) δ 12.41 (br s, 1H), 7.93 (d, *J* = 4.0 Hz, 1H), 7.57 - 7.49 (m, 2H), 7.33 (d, *J* = 4.0 Hz, 1H), 6.80 - 6.73 (m, 2H), 7.33 (d, *J* = 4.0 Hz, 1H), 6.80 - 6.73 (m, 2H), 7.83 (d, *J* = 4.0 Hz, 1H), 6.80 - 6.73 (m, 2H), 7.83 (d, *J* = 4.0 Hz, 1H), 6.80 - 6.73 (m, 2H), 7.83 (d, *J* = 4.0 Hz, 1H), 6.80 - 6.73 (m, 2H), 7.83 (d, *J* = 4.0 Hz, 1H), 6.80 - 6.73 (m, 2H), 7.83 (d, *J* = 4.0 Hz, 1H), 7.83 (d, *J* = 4.0 Hz, 1H), 7.83 (d, *J* = 4.0 Hz, 1H), 6.80 - 6.73 (m, 2H), 7.83 (d, *J* = 4.0 Hz, 1H), 7.83 (d, J), 7.83 (d, J), 7.83 (d, J), 7.83 (d, J), 7.83 (d,

2H), 6.00 (d, J = 3.0 Hz, 1H), 5.32 (d, J = 5.0 Hz, 1H), 5.10 (d, J = 6.5 Hz, 1H), 4.68 (t, J = 5.5 Hz, 1H), 4.32 – 4.16 (m, 2H), 3.88 – 3.80 (m, 1H), 3.67 – 3.57 (m, 1H), 3.52 – 3.43 (m, 1H), 2.95 (s, 6H).

¹³C NMR (125 MHz, DMSO-d₆) δ 156.07, 150.76, 148.93, 147.86, 137.93, 131.91, 131.08, 126.93, 121.92, 121.24, 112.73, 90.01, 85.23, 73.62, 71.07, 62.76, 40.33.

HR-MS-ESI: m/z calcd. for $C_{20}H_{22}N_4O_6S$ (M-H)⁻ 445.1187, found 445.1190

S1.3 ¹H-NMR and ¹³C-NMR spectra of 1a-f

¹H-NMR of 5-(5-(4-fluorophenyl)thiophen-2-yl)-6-aza-uridine (1a).

S2. Crystal structures

Experimental Summary

The single crystal X-ray diffraction studies were carried out on a Bruker Kappa APEX-II CCD diffractometer equipped with Mo K_a radiation ($\lambda = 0.71073$ Å). A 0.103 x 0.011 x 0.005 mm colorless needle was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-to-detector distance was 30 mm and exposure time was 40 seconds per frame using a scan width of 1.0°. Data collection was 99.6% complete to 25.00° in θ . A total of 27161 reflections were collected covering the indices, -26<=h<=26, -7<=k<=7, -15<=l<=15. 3051 reflections were found to be symmetry independent, with a R_{int} of 0.0621. Indexing and unit cell refinement indicated a C-centered, monoclinic lattice. The space group was found to be C2. The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure. All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2013). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2013. Crystallographic data are summarized in Table 1-4.

Crystal structure(s) were deposited at the Cambridge Crystallographic Data Centre. The data have been assigned to the following deposition numbers.

Summary of Data CCDC 1018947 Compound Name: **5-(5-bromothiophen-2-yl)-6-aza-uridine (4)** Formula: C12 H12 Br1 N3 O6 S1 Unit Cell Parameters: a 21.582(3) b 5.6109(7) c 12.5574(14) C2

Summary of Data CCDC 1018950 Compound Name: **5-(5-(4-fluorophenyl)thiophen-2-yl)-6-aza-uridine (1a)** Formula: 2(C18 H16 F1 N3 O6 S1),C1 H4 O1 Unit Cell Parameters: a 9.4297(5) b 10.0067(4) c 10.3843(4) P1

Summary of Data CCDC 1025557 Compound Name: **5-(5-phenylthiophen-2-yl)-6-aza-uridine (1b)** Formula: C18 H17 N3 O6 S1,0.5(C1 H4 O1) Unit Cell Parameters: a 20.4544(12) b 5.5733(3) c 16.1707(10) C2

Summary of Data CCDC 1018949 Compound Name: **5-(5-(4-methyl)phenyl)thiophen-2-yl)-6-aza-uridine (1c)** Formula: C19 H19 N3 O6 S1,C1 H4 O1 Unit Cell Parameters: a 9.4923(7) b 19.9718(15) c 10.7103(8) P21

Summary of Data CCDC 1018948 Compound Name: **5-(5-(4-methoxyphenyl)thiophen-2-yl)-6-aza-uridine (1d)** Formula: C19 H19 N3 O7 S1,C1 H4 O1 Unit Cell Parameters: a 9.0722(10) b 10.3704(11) c 12.3104(14) P1

Summary of Data CCDC 1025556 Compound Name: **5-(5-(4-(dimethylamino)phenyl)thiophen-2-yl)-6-aza-uridine (1f)** Formula: 2(C20 H22 N4 O6 S1),C2 H6 O1 S1 Unit Cell Parameters: a 8.9567(7) b 19.8870(16) c 24.7770(19) P212121

Figure S2.1. X-ray crystal structure of 5-(5-bromothiophen-2-yl)-6-aza-uridine (4).

Table S2.1. Crystal data and structure refinement for Tor75 5-(5-bromothiophen-2-yl)-6-aza-uridine (4).

Identification code	PH140	
Empirical formula	C12 H12 Br N3 O6 S	
Molecular formula	C12 H12 Br N3 O6 S	
Formula weight	406.22	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 1 2 1	
Unit cell dimensions	a = 21.582(3) Å	α= 90°.
	b = 5.6109(7) Å	β= 98.665(4)°.
	c = 12.5574(14) Å	$\gamma = 90^{\circ}$.
Volume	1503.3(3) Å ³	
Z	4	
Density (calculated)	1.795 Mg/m ³	
Absorption coefficient	2.909 mm ⁻¹	
F(000)	816	
Crystal size	0.103 x 0.011 x 0.005	mm ³
Crystal color, habit	Colorless Needle	
Theta range for data collection	1.640 to 26.440°.	
Index ranges	-26<=h<=26, -7<=k<=	7, -15<=l<=15
Reflections collected	27161	
Independent reflections	3051 [R(int) = 0.0621]	
Completeness to theta = 25.000°	99.6 %	
Absorption correction	Semi-empirical from e	quivalents
Max. and min. transmission	0.0926 and 0.0654	
Refinement method	Full-matrix least-squar	es on F ²
Data / restraints / parameters	3051 / 5 / 224	
Goodness-of-fit on F ²	1.032	
Final R indices [I>2sigma(I)]	R1 = 0.0251, wR2 = 0.0251	.0457
R indices (all data)	R1 = 0.0321, wR2 = 0.0321, w	.0469
Absolute structure parameter	0.039(4)	
Extinction coefficient	n/a	_
Largest diff. peak and hole	0.417 and -0.408 e.Å-	3

Figure S2.2. X-ray crystal structure of 5-(5-(4-fluorophenyl)thiophen-2-yl)-6-aza-uridine (1a).

Table S2.2. Crystal data and structure refinement for tor85 5-(5-(4-fluorophenyl)thiophen-2-yl)-6-aza-uridine (1a).

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group	PH188 C37 H36 F2 N6 O13 S2 874.84 100(2) K 0.71073 Å Triclinic P 1	
Unit cell dimensions	a = 9.4297(5) Å b = 10.0067(4) Å c = 10.3843(4) Å	$ \begin{aligned} \alpha &= 74.895(2)^{\circ}. \\ \beta &= 77.875(2)^{\circ}. \\ \gamma &= 76.982(2)^{\circ}. \end{aligned} $
Volume Z	909.69(7) Å ³ 1	
Density (calculated) Absorption coefficient F(000)	1.597 Mg/m ³ 0.237 mm ⁻¹ 454	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.000° Absorption correction	0.290 x 0.080 x 0.040 mm 2.058 to 26.443°. -11<=h<=11, -12<=k<=12 18448 7444 [R(int) = 0.0511] 100.0 % Multi-scan	₁ 3 ₂, -12<=l<=13
Refinement method Data / restraints / parameters	Full-matrix least-squares	on F ²
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	1.019 R1 = 0.0401, wR2 = 0.09 R1 = 0.0453, wR2 = 0.09 0.03(4) [stereochem. conf n/a	10 44 "irmed]
Largest diff. peak and hole	0.501 and -0.459 e.Å ⁻³	

Figure S2.3. X-ray crystal structure of 5-(5-phenylthiophen-2-yl)-6-aza-uridine (1b).

Table S2.3. Crystal data and structure refinement for tor93 5-(5-phenylthiophen-2-yl)-6-aza-uridine (1b).

Identification code Empirical formula Molecular formula Formula weight Temperature Wavelength Crystal system Space group	PH189 C18.50 H19 N3 O6.50 S C18 H17 N3 O6 S, 0.5(C 419.43 100.0 K 0.71073 Å Monoclinic C 1 2 1	H4 O)
Unit cell dimensions	a = 20.4544(12) Å b = 5.5733(3) Å c = 16.1707(10) Å	α = 90°. β = 93.062(4)°. γ = 90°.
Volume Z	1840.80(19) Å ³ 4	
Density (calculated)	1.513 Mg/m ³	
Absorption coefficient F(000)	0.223 mm ⁻¹ 876	
Crystal size Crystal color, habit Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.000° Absorption correction	0.053 x 0.005 x 0.005 mm Orange Needle 1.994 to 25.732°. -24<=h<=24, -6<=k<=6, - 18065 3409 [R(int) = 0.1124] 99.9 % Semi-empirical from equiv	₁ 3 19<=I<=19 ∕alents
Refinement method Data / restraints / parameters	Full-matrix least-squares 3409 / 23 / 284	on F ²
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	1.052 R1 = 0.0708, wR2 = 0.188 R1 = 0.0915, wR2 = 0.203 0.03(19) n/a $402 \circ 4^{-3}$	31 38
Largest diff. peak and note 0.550 and -0	.493 E.A 9	

Figure S2.4. X-ray crystal structure of 5-(5-(4-methyl)phenyl)thiophen-2-yl)-6-aza-uridine (1c).

Table S2.4. Crystal data and structure refinement for tor81 5-(5-(4-methyl)phenyl)thiophen-2-yl)-6-aza-uridine (1c).

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group	PH187 C20 H23 N3 O7 S 449.47 100(2) K 0.71073 Å Monoclinic P 21	
Unit cell dimensions	a = 9.4923(7) A b = 19.9718(15) Å c = 10.7103(8) Å	$\alpha = 90^{\circ}.$ $\beta = 95.314(3)^{\circ}.$ $\gamma = 90^{\circ}.$
Volume Z	2021.7(3) Å ³ 4	
Density (calculated)	1.477 Mg/m ³	
Absorption coefficient F(000)	0.210 mm ⁻¹ 944	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.000° Absorption correction	0.300 x 0.100 x 0.050 mm 2.039 to 28.349°. -12<=h<=12, -26<=k<=26 31888 10067 [R(int) = 0.0496] 99.9 % Multi-scan	₁ 3 , -14<=l<=12
Refinement method Data / restraints / parameters	Full-matrix least-squares (10067 / 1 / 571	on F ²
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	1.012 R1 = 0.0444, wR2 = 0.100 R1 = 0.0562, wR2 = 0.107 0.00(3) n/a	09 77
Largest diff. peak and noie	0.771 and -0.401 e.A ⁻⁵	

Figure S2.5. X-ray crystal structure of 5-(5-(4-methoxyphenyl)thiophen-2-yl)-6-aza-uridine (1d).

Table S2.5. Crystal data and structure refinement for tor76 5-(5-(4-methoxyphenyl)thiophen-2-yl)-6-aza-uridine (1d).

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group	PH176 C20 H23 N3 O8 S 465.47 100(2) K 1.54178 Å Triclinic P 1	
Unit cell dimensions	a = $9.0722(10)$ A b = $10.3704(11)$ Å c = $12.3104(14)$ Å	$\alpha = 100.154(4)^{\circ}.$ $\beta = 103.516(4)^{\circ}.$ $\gamma = 105.629(4)^{\circ}.$
Volume Z	1048.5(2) Å ³ 2	
Density (calculated)	1.474 Mg/m ³	
Absorption coefficient F(000)	1.857 mm ⁻¹ 488	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 66.000° Absorption correction	0.340 x 0.080 x 0.060 mm 3.820 to 68.341°. -10<=h<=10, -10<=k<=12 8418 5428 [R(int) = 0.0362] 95.7 % Multi-scan	₁ 3 2, -14<=l<=14
Refinement method Data / restraints / parameters	Full-matrix least-squares 5428 / 3 / 582	on F ²
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	1.042 R1 = 0.0466, wR2 = 0.129 R1 = 0.0475, wR2 = 0.129 0.056(12) n/a	57 70
Largest diff. peak and hole	0.503 and -0.443 e.A ⁻⁵	

Figure S2.6. X-ray crystal structure of 5-(5-(4-(dimethylamino)phenyl)thiophen-2-yl)-6-aza-uridine (1f).

 Table S2.6.
 Crystal data and structure refinement for Tor91 5-(5-(4-(dimethylamino)phenyl)thiophen-2-yl)-6-aza-uridine (1f).

Report date	2014-08-14	
Identification code	Tor91	
Empirical formula	C21 H25 N4 O6.50 S1.50)
Molecular formula	C20 H22 N4 O6 S, 0.5(C2	2 H6 O S)
Formula weight	485.54	
Temperature	100.0 K ຸ	
Wavelength	0.71073 A	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 8.9567(7) A	α= 90°.
	b = 19.8870(16) Å	β= 90°.
	c = 24.7770(19) Å	γ = 90°.
Volume	4413.3(6) Å ³	
Z	8	
Density (calculated)	1.461 Mg/m ³	
Absorption coefficient	0.244 mm ⁻¹	
F(000)	2040	
Crystal size	0.377 x 0.035 x 0.031 mm	1 ³
Crystal color, habit	Orange Needle	
Theta range for data collection	2.048 to 26.413°.	
Index ranges	-10<=h<=11, -24<=k<=24	, -30<=l<=30
Reflections collected	29602	
Independent reflections	9013 [R(int) = 0.0799]	
Completeness to theta = 25.000°	99.9 %	
Absorption correction Max. and min. transmission	Semi-empirical from equiv 0.0932 and 0.0655	/alents
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	9013 / 8 / 633	
Goodness-of-fit on F ²	1.013	
Final R indices [I>2sigma(I)]	R1 = 0.0530, wR2 = 0.09	78
R indices (all data)	$R1 = 0.0948, wR2 = 0.11^{\circ}$	19
Absolute structure parameter	-0.04(5)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.745 and -0.320 e.Å ⁻³	

S3. X-ray crystal structure: packing.

Figure S3.1. Crystal packing of derivative 5-(5-(4-methoxyphenyl)thiophen-2-yl)-6-aza-uridine (1d) in three different views (a) side view (b) highlighting he overlap of the thiophene and the 6-aza-uridine rings (c) highlighting the aromatic layers.

S4. Photophysics

Spectroscopic grade methanol and ethanol were obtained from Sigma Aldrich. Spectroscopic grade dioxane was obtained from Acros. Aqueous samples were prepared with de-ionized water. For all spectroscopic measurements a 1 cm four-sided Helma quartz cuvette was used. All spectroscopy samples were prepared from concentrated DMSO stock solutions, hence, all samples contain 0.4 v% or 0.2 v% DMSO.

Absorption spectra were measured on a Shimadzu UV-2450 UV-Vis spectrophotometer with 1 nm resolution and corrected for the blank. The sample temperature was kept constant at 20 °C using a thermostat.

Steady state emission and excitation spectra were taken on a PTI luminescence spectrometer with a 1 nm resolution. The sample temperature was kept constant at 20 °C with a Quantum Northwest TLC50 fluorescence cuvette holder in conjunction with a software controllable TC 125 temperature controller.

	Dioxane-methanol		Water	
Sample	λ _{ex} (nm)	Concentration (µM)	λ_{ex} (nm)	Concentration (µM)
1a	365	4.25	335	4.25
1b	370	3.75	365	3.75
1c	365	6.71	360	3.35
1d	375	2.00	370	2.00
1e	385	1.60	370	1.60
1f	410	2.13	390	2.13
slit-widths	0.50 r		1.00	mm = 4.0 nm

The polarity dependent steady state fluorescence studies were performed using an excitation wavelength (λ_{ex}) of:

Stokes shifts were calculated in cm⁻¹ then converted to kcal/mol by multiplication with 0.0028591 to plot the polarity sensitivity correlations.

Samples' $E_T(30)$ values (in kcal/mol) were determined by dissolving a small amount of Reichardt's dye in the solvent (mixture) used to prepare the sample.² The observed long wavelength absorption maximum in nm ($\lambda_{abs max}$) was converted to the sample $E_T(30)$ value according the following equation:

$$E_T(30) = \frac{28591}{\lambda_{\rm abs\,max}}$$

Quantum yields were determined using Coumarin-102 in ethanol ($\Phi = 0.80$) as a standard for **1a-e**, and Coumarin-153 in ethanol ($\Phi = 0.38$) for **1f** using dilute sample solutions with an O.D. < 0.05 at the λ_{ex} , using the following equation:

$$\Phi_{s} = \frac{I_{s}}{I_{ref}} \cdot \frac{O.D._{ref}}{O.D._{s}} \cdot \left(\frac{n_{s}}{n_{ref}}\right)^{2} \cdot \Phi_{ref}$$

Here Φ , I, O.D. and *n* stand for quantum yield, integrated emission intensity, optical density at λ_{ex} and refractive index ($n_{water} = 1.333$, $n_{dioxane} = 1.42$, $n_{methanol} = 1.326$, $n_{ethanol} = 1.361$), respectively. Sample and reference are denoted by *s* and *ref*, respectively. The λ_{ex} is in a very close proximity for the sample and reference solutions to circumvent correction of the difference in excitation energy at different wavelengths.

For dioxane solutions:

Sample	λ _{ex} (nm)
1a	368
1b	371
1c	375
1d	383
1e	385
1f	421

The excitation wavelengths for methanol and water solutions were kept the same as reported above for polarity dependent steady state fluorescence studies.

S5. Sensitivity to polarity

Sensitivity to solvent polarity was studied in methanol, dioxane, and their mixtures (10, 20, 30, 40, 50, 60, 70, 80, and 90 v/v % of methanol in dioxane) at 20 °C. Emission spectra were recorded after excitation at the long wavelength emission maximum (O.D.'s < 0.1). The same samples were used to obtain excitation spectra probing at:

Sample	λ _{em} (nm)
1a	470
1b	480
1c	475
1d	480
1e	500
1f	560

All experiments were performed in triplicate with negligible differences; hence only one series is shown.

S5.1. Absorption and steady-state emission spectroscopy for 1a in methanol/dioxane

Figure 5.1.1. Assessing the effect of solvent polarity on absorption and excitation (dotted line), and emission (solid line), in dioxane (bold black line) and methanol (bold red line) and their mixtures (black lines).

Figure 5.1.2. Correlating $E_T(30)$ vs. Stokes shift (slope:0.28 and R²:0.97) (a), PL_{max} (b), emission area (c) values obtained from dioxane–methanol mixtures 90%:10% \rightarrow 90%:10%.

S5.2. Absorption and steady-state emission spectroscopy for 1b in methanol/dioxane

Figure 5.2.1. Assessing the effect of solvent polarity on absorption and excitation (dotted line), and emission (solid line), in dioxane (bold black line) and methanol (bold red line) and their mixtures (black lines).

Figure 5.2.2. Correlating $E_T(30)$ vs. Stokes shift (slope:0.33 and R²:0.99) (a), PL_{max} (b), emission area (c) values obtained from dioxane–methanol mixtures 90%:10% \rightarrow 90%:10%.

S5.3. Absorption and steady-state emission spectroscopy for 1c in methanol/dioxane

Figure 5.3.1. Assessing the effect of solvent polarity on excitation (dotted line), and emission (solid line), in dioxane (bold black line) and methanol (bold red line) and their mixtures (black lines).

Figure 5.3.2. Correlating $E_T(30)$ vs. PL_{max} (a), emission area (b) values obtained from dioxane-methanol mixtures $90\%:10\% \rightarrow 40\%:60\%$.

S5.4. Absorption and steady-state emission spectroscopy for 1d in methanol/dioxane

Figure 5.4.1. Assessing the effect of solvent polarity on excitation (dotted line), and emission (solid line), in dioxane (bold black line) and dioxane-methanol mixtures (black lines).

Figure 5.4.2. Correlating $E_T(30)$ vs. PL_{max} (a), emission area (b) values obtained from dioxane-methanol mixtures $90\%:10\% \rightarrow 40\%:60\%$.

S5.5. Absorption and steady-state emission spectroscopy for 1e in methanol/dioxane

Figure 5.5.1. Assessing the effect of solvent polarity on absorption and excitation (dotted line), and emission (solid line), in dioxane (bold black line) and dioxane-methanol mixtures (black lines).

Figure 5.5.2. Correlating $E_T(30)$ vs. Stokes shift (slope:0.41 and R²:0.99) (a), PL_{max} (b), emission area (c) values obtained from dioxane–methanol mixtures 90%:10% \rightarrow 40%:60%.

S5.6. Absorption and steady-state emission spectroscopy for 1f in methanol/dioxane

Figure 5.6.1. Assessing the effect of solvent polarity on absorption and excitation (dotted line), and emission (solid line), in dioxane (bold black line) and dioxane-methanol mixtures (black lines).

Figure 5.6.2. Correlating $E_T(30)$ vs. Stokes shift (slope:0.27 and R²:0.99) (a), PL_{max} (b), emission area (c) values obtained from dioxane–methanol mixtures 90%:10% \rightarrow 50%:50%.

S6. Absorption and steady-state emission spectroscopy for 1a-f in water

The water steady state fluorescence studies were performed using an excitation wavelength (λ_{ex}) of:

Sample	λ_{ex} (nm)
1a	355
1b	365
1c	360
1d	370
1e	370
1f	390

The same samples were used to obtain excitation spectra probing at:

Sample	λ _{em} (nm)
1a	450
1b	450
1c	475
1d	490
1e	475
1f	475

All experiments were performed in triplicate with negligible differences; hence only one series is shown.

Figure S6.1. Excitation (dotted line) and emission (solid line) spectra for **1a** (purple), **1b** (blue), **1c** (green), **1d** (dark green), **1e** (orange), **1f** (red) in dioxane (a) and water (b).. Emission was recorded after excitation at $\lambda_{abs max}$ for each derivatives (values in Table above). Slits width 1.00mm.

S7. Sensitivity to pH

S7.1. Absorption and steady-state emission spectroscopy for 1c

Figure S7.1. Assessing the effect of pH in aqueous buffers of pH 1.99 (red line), pH 6.39 (orange line) and pH 12.2 (blue line) and intermediate pH values (black lines) on (a) absorption (dotted line) and emission (solid line) (emission spectra were recorded after excitation at 370nm) and on (b) excitation (solid line) (spectra were recorded probing at 500nm).

Figure S7.2. A plot of the normalized emission intensity as function of sample pH values (solid circles), with a sigmoidal fit (orange line) using OriginPro. The dashed lines illustrate a graphical determination of the pKa value (R²: 0.99).

S8. Enlarged Figure 3c and Figure 3d.

Figure 8.1. Correlating $E_T(30)$ vs. Stokes shift (slope:0.36 and R²=0.95) values obtained from dioxane-methanol mixtures 90%:10% \rightarrow 90%:10%.

Figure 8.2. Correlating $E_T(30)$ vs. Stokes shift (slope:0.35 and R²=0.98) values obtained from dioxane-methanol mixtures 90%:10% \rightarrow 40%:60%.

S9. References

- (1) (2)
- Sinkeldam, R. W.; Hopkins, P. A.; Tor, Y. *ChemPhysChem* **2012**, *13*, 3350. Lakowicz, J. R. *Principles of fluorescence spectroscopy*, 3rd ed.; Springer: New York,

2006.