Functional Evaluation of Key Interactions Evident in the Structure of the Eukaryotic Cys-loop Receptor GluCl

Kristina N.-M. Daeffler, Henry A. Lester, Dennis A. Dougherty*

Mutation	EC ₅₀ (mM)	Hill	n	I _{max} (µA)	Fold Shift
WT	0.35 +/- 0.01	2.5 +/- 0.2	20	0.4-3.9	-
T6'S	0.0080 +/- 0.0005	2.4 +/- 0.3	27	0.06-8	-
Y206F	4.3 +/- 0.1	2.4 +/- 0.1	13	0.2-8	12.3
T6'S/Y206F	0.10 +/- 0.01	2.6 +/- 0.3	14	0.14-7	12.5

 Table S1.
 Multiplicative effect of the T6'S mutation

Table S2: Effects of receptor mutagenesis on functional expression. All mutations have the T6'S mutation unless otherwise noted.

Mutation	EC ₅₀ (μΜ)	Hill	n	I _{max} (µA)	Median (µA)	Average (µA)	Fold Change Median	Fold Change Average
WT	11 +/- 1	3.0 +/- 0.1	19	0.1-4	1.1	1.1	-	-
RRR_AAA	14 +/- 1	2.8 +/- 0.1	15	0.1-4	1.0	1.4	1	1
RSR_AAA	14 +/- 1	2.6 +/- 0.1	15	0.1-3	0.6	0.6	-2	-2
RRR/RSR_AAA	15 +/- 1	2.8 +/- 0.1	20	0.8-10	4.5	4.1	4	4
LXXLE	14 +/- 1	3.2 +/- 0.1	12	0.02-0.23	0.1	0.15	-11	-8
M3-M4 loop α signal peptide				No re	esponse			
(no T6'S) α signal peptide	980 +/- 20	1.9 +/- 0.1	16	3-14	8.9	8.7	9	8
$+ \alpha 1$ (no T6'S)	110 +/- 10	2.6 +/- 0.2	14	0.2-6	1.0	1.4	1	1
M4-C term β/α				No re	esponse			

Table S3. Unnatural amino acid mutagenesis of Y206 with the α signal sequence for enhanced expression. All mutants have the T6'S background mutation.

	EC ₅₀ (mM)	Hill	n	I _{max} (µA)	Fold Shift
WT	0.93 +/- 0.02	1.8 +/- 0.1	26	2-13	-
T6'S	0.013 +/- 0.001	2.7 +/- 0.2	17	2-13	-
T6'S/Y206F	0.25 +/- 0.01	2.7 +/- 0.1	17	0.6-17	-
Phe	0.25 +/- 0.01	2.5 +/- 0.1	20	0.06-12	-
F ₁ -Phe	1.4 +/- 0.1	2.8 +/- 0.5	15	0.4-6	6
F ₂ -Phe	>100		20	0.1-1	
OMe-Phe	0.64 +/- 0.01	2.9 +/- 0.1	11	0.3-6	3
Br-Phe	1.5 +/- 0.1	3.1 +/- 0.1	11	1-13	6
CN-Phe	43 +/- 1	2.7 +/- 0.1	19	0.8-7	172

Figure S1. The M2 pore lining helix of GluCl β . Helices from two adjacent subunits are shown. View from (A) the top of the receptor and (B) from "inside the pore" (roughly from where the word "Pore" is in part A). Residues in the ion-conducting pore are highlighted in blue and the location of the 0' arginine, 6' threonine, 9' leucine, and 20' alanine are indicated. Side chains of the GluCl α crystal structure were mutated to the corresponding GluCl β side chains in PyMol.

GluCla	MATWIVGKLIIASLILGIQAQQARTKSQDIFEDDNDNGTTTLESLARLTSPIHIPI
GIUCIP	MTTP55F51LLLLLMPVVTNG ** * * * *
GluCla GluClß	α140EQPOTSDSKILAHLFTSGYDFRVRPPTDNGGPVVVSVNMLLRTISKIDVVNMEYSAQEYSMQSEQEI-LNALLKNYDMRVRPPPANSSTEGAVNVRVNIMIRMLSKIDVVNMEYSIQ******
GluClα GluClβ	59 LTLRESWIDKRLSYGVKGDGQPDFVILTVGHQIWMPDTFFPNEKQAYKHTIDKPNVLI LTFREQWIDPRLAYENLGFYNPPAFLTVPHVKKSLWIPDTFFPTEKAAHRHLIDMENMFL ** ** *** * * * * * * * * * * * * * *
GluClα GluClβ	126Cys loop156174RIHNDGTVLYSVRISLVLSCPMYLQYYPMDVQQCSIDLASYAYTTKDIEYLWKEHSPLQLRIYPDGKILYSSRISLTSSCPMRLQLYPLDYQSCNFDLVSYAHTMNDIMYEWDPSTPVQL**********
GluClα GluClβ	202 203M1176 KVGLSSSLPSFQLTNTS-TTYCTSVTNTGIYSCLRTTIQLKREFSFYLLQLYIPSCMLVI KPGVGSDLPNFILKNYTTNADCTSHTNTGSYGCLRMQLLFKRQFSYYLVQLYAPTTMIVI * * * *** *** ***********************
GluClα GluClβ	M2M30'6'9'VSWVSFWFDRTAIPARVTLGVTTLLTMTAQSAGINSQLPPVSYIKAIDVWIGACMTFIFCVSWVSFWIDLHSTAGRVALGVTTLLTMTTMQSAINAKLPPVSYVKVVDVWLGACQTFVFG******************
GluClα GluClβ	ALLEFALVNHIANKQGVERKARTEREKAEIPLLQNLHNDVPTKVFNQEEKVRT ALLEYAFVSYQDSVRQNDRSREKAARKAQRRREKLEMVDAEVYQPPCTCHTFEARETFRD **** * * * * * * * * * * * * *
GluClα GluClβ	M4 VPLNRRQMNSFLNLLEFKTEWNDISKRVDLISRALFPVLFFVFNILYWSRFGQQNVLF KVRRYFTKPDYLPAKIDFYARFVVPLAFLAFNVIYWVSCLIMSANAST * *
GluCl α GluClβ	PESLV
ACH4_HUMAN ACH2_HUMAN ACHD_HUMAN ACHB_HUMAN 5HT3_HUMAN GAA4_HUMAN GAB1_HUMAN GRA1_HUMAN GluCl-alph GluCl-beta	: KITLCISVLLSLTVFLLLITEI : KITLCISVLLSLTVFLLLITEI : KTSVAISVLLAQSVFLLLISKR : KMGLSIFALLTLTVFLLLLADK : RVSFKITLLLGYSVFLIIVSDT : RTVFGITTVLTMTTLSISARHS : RVALGITTVLTMTTISTHLRET : RVGLGITTVLTMTTQSSGSRAS : RVTLGVTTLLTMTTQSAINAK

Figure S2. Sequence alignment of GluCl α and GluCl β . Sites for chimera synthesis and receptor mutagenesis are indicated: α signaling peptide chimera spliced at red line, α signaling peptide + α 1 helix spliced at orange line, M3-M4 loop spliced between green lines, C terminus spliced at purple line, and putative ER retention RxR motifs and ER export LxxLE motif are highlighted in black boxes. Residues targeted for mutagenesis are highlighted in red. Sequence alignment was made using Clustal Omega. Also shown are alignments of the M2 regions of several Cys-loop receptor subunits: nicotinic acetylcholine receptor α 4, α 2, δ , and β 1; GABA_A receptor α 4 and β 1; glycine receptor α 1.

Figure S3. Effects of mutations and chimeras on GluCl β functional expression. (A) Schematic of chimeras examined and (B) average and median currents from *X. laevis* oocytes expressing the specified mutant receptor.

Figure S4. EC₅₀ plots of mutant receptors that demonstrate a large loss-of-function. (A) Y206CNPhe with the α signal sequence (B) Y206CNPhe with the WT β signal sequence (C) Y156F₂Phe (D) Y206F₂Phe with the α signal sequence (E) Y206F₂Phe with the WT β signal sequence (F)Y156F₃Phe with the α signal sequence (G) Y156F3Phe the WT β signal sequence