Supporting Materials

Labeled EF-Tus for rapid kinetic studies of pre-translocation complex formation

Wei Liu[†], Darius Kavaliauskas^{‡,#}, Jared M. Schrader^{§,#}, Kiran Poruri ^{||, #}, Victoria Birkedal[⊥], Emanuel Goldman^{||}, Hieronim Jakubowski^{||}, Wlodek Mandecki^{||}, Olke C. Uhlenbeck[§],

Charlotte R. Knudsen[‡], Yale E. Goldman[¶], and Barry S. Cooperman^{$\dagger,*$}

[†] Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States

[‡] Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark

[§] Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States

Department of Microbiology and Molecular Genetics, Rutgers University – New Jersey Medical School, Newark, NJ 07101, United States

[⊥] Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus C, Denmark

[¶] Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania,

Philadelphia, PA 19104, United States

Calculations of FRET efficiency within TCs. For the calculations below, the simplifying assumptions are made that 1) the fluorescence of Phe-tRNA^{Phe}(Cy3) and tRNA^{Phe}(Cy3) are equal (Supplementary Figure S2a); and 2) that unlabeled EF-Tu^{AV} and EF-Tu^{AV-Cy5} bind equally well to Phe-tRNA^{Phe}(Cy3) (Supplementary Figure S2b).

TC^{QSY9/Cy3} FRET efficiency (Supplementary Figure S2a). The FRET efficiency within TC^{QSY9/Cy3} was calculated from the fluorescence measurements presented in Supplementary Figure S2a, by comparing the Cy3 fluorescence for the same concentration of Phe-tRNA^{Phe}(Cy3) present in the TC and free in solution. The eluted TC fraction contained a total of 0.050 μ M Phe-tRNA^{Phe}(Cy3). Based on the radioactivity found in the fractions immediately before and after the eluted TC, about 22% (0.012 μ M) of Phe-tRNA^{Phe}(Cy3) dissociated and was present in the unbound form, so that the fraction contained 0.038 μ M TC. Because the Phe-tRNA^{Phe}(Cy3) preparation was 61 % charged, the unbound [³H]-Phe-tRNA^{Phe}(Cy3) solution containing 0.050 μ M [³H]-Phe-tRNA^{Phe}(Cy3) also contains 0.032 μ M tRNA^{Phe}(Cy3) fluorescence is 0.46 of the measured value. Similarly, the corrected fluorescence value for the TC sample was obtained by subtracting the contribution of the 0.012 μ M free Phe-tRNA^{Phe}(Cy3) that was present, giving a corrected value that was 0.55 of the measured value. The calculated FRET efficiency is 66%.

TC^{AV-Cy5/Cy3} FRET efficiency (Supplementary Figure S2b). The results obtained show that a 4-fold excess of added EF-Tu.GTP suffices to convert all of Phe-tRNA^{Phe}(Cy3) into a TC. Two corrections to the results obtained were needed to calculate FRET efficiency. First, the contribution of uncharged tRNA^{Phe}(Cy3) fluorescence, which should be unaffected by EF-Tu.GTP addition, is subtracted from each of the traces. As the Phe-tRNA^{Phe}(Cy3) preparation used in this experiment was 46% charged, this amounts to subtraction of 54% of the Cy3 fluorescence measured for the sample in the absence of EF-Tu. Second, the EF-Tu^{AV-Cy5} sample employed had a labeling stoichiometry of 0.85 so that the FRET efficiency resulting from the first correction was increased by 1/0.85, giving a final value of 76%.

Supplementary	v Table	1. Labeling	stoichiometries	of EF-Tu	variants ^{<i>a</i>} .
suppremental.	1	IT Day times	scoremonieuries		

EF-Tu variant	Label/EF-Tu
wt	0.5 QSY9
	0.8 Cy3
E348C	1.5 QSY9
	1.5 Cy3
C137A/C255V	0.2 Cy5
C137A/C255V/E348C	0.9 Cy5

^{*a*}Labeling conditions as described in Experimental.

Supplementary Figure S1. Characterization of ternary complexes (TCs) formed by labeled EF-Tus. (a) Protection against spontaneous deacylation of $[^{14}C]$ -Phe-tRNA^{Phe} by the indicated EF-Tu variants. C_t and C_o denote the concentrations of TC at times t and zero, respectively. (b) Protection of $[^{3}H]$ -Phe-tRNA^{Phe} or $[^{3}H]$ -Phe-tRNA^{Phe} (Cy3) (0.10 - 0.15 μ M) from RNase A hydrolysis by the indicated EF-Tu variants. (c) Quenching of the fluorescence of Phe-tRNA^{Phe} (Cy3), 0.17 μ M, by EF-Tu^{QSY9} or wt-EF-Tu^{QSY9}. The relatively high residual fluorescence at 10 μ M EF-Tu is due to the presence of uncharged tRNA^{Phe} (Cy3).

Supplementary Figure S2. FRET in TCs formed from labeled E348C-EF-Tu variants and Phe-tRNA^{Phe}(Cy3). (a) Quenching of the fluorescence of Phe-tRNA^{Phe} (Cy3) by EF-Tu^{QSY9} in a purified TC. The solid lines are observed traces at the same concentration of [³H]-Phe-tRNA^{Phe}(Cy3), as measured by [³H]-Phe, in the absence of EF-Tu (black) and for purified TC (red). The dotted lines are corrected traces that permit a FRET efficiency calculation of 66% (see Supplementary Material). (b) FRET between Phe-tRNA^{Phe}(Cy3) (0.1 μ M) and EF-Tu^{AV-Cy5}, added at various ratios without purification of TC. A FRET efficiency of 76% was calculated (see Supplementary Material). (c) Kinetics of quenching of Phe-tRNA^{Phe}(Cy3) (0.1 μ M) fluorescence following rapid mixing with various concentrations of EF-Tu^{QSY9}. A plot of k_{app} vs. EF-Tu gives a k_{on} value of 1.3 ± 0.1 μ M⁻¹s⁻¹.

Supplementary Figure S3. Complete loss of fluorescence quenching due to FRET on rapid mixing of $TC^{QSY9/Cy3}$ (0.1 µM) and 70SIC (0.4 µM) in a stopped-flow spectrofluorometer, as shown by an increase in Cy3 fluorescence (black) on EF-Tu release from the ribosome. The red trace is a control showing that rapid mixing of TC^{Cy3} (0.1 µM) and 70SIC (0.4 µM), for which there is no FRET, gives a nearly constant fluorescence equal to the final fluorescence seen in the black trace. The green trace is for rapid mixing of $TC^{QSY9/Cy3}$ (0.1 µM) and 70SIC (0.4 µM) when GDPNP replaces GTP. This substitution blocks EF-Tu release, so the FRET interaction is maintained.

Supplementary Figure S4. Fluorescence spectrum resulting from addition of TC^{AV-Cy5} (0.2 μ M) to 70SIC^{Cy3} (0.1 μ M) in the presence of GDPNP (1 mM), giving a stalled complex with EF-Tu bound in the A/T site.³¹ . Concentrations are final. The labeling stoichiometries were EF-Tu (0.85); L11 (0.80). The FRET efficiency (0.55) corresponds to a Cy3-Cy5 distance of 58 Å, calculated according to the Förster equation {dye:dye distance = R₀ [(1/E)-1]^{1/6}},²⁷ assuming an R₀ of 60 Å and that both dyes rotate freely, i.e., κ^2 is equal to 0.67.

Supplementary Figure S5. Dependence of the apparent rate constants, k_{1app} and k_{2app} (equation 1), measuring changes in 70SIC^{Cy3} (0.1 µM) fluorescence (see Figure 5d, Tu-L11 assay), on rapid mixing with varying concentrations of the TC formed from EF-Tu^{QSY9}·GTP and the Val-tRNA^{Val2B} T1 variant. Values are normalized to those found at 0.4 µM TC. The linear dependence (k_{1app}) and lack of dependence (k_{2app}) on TC concentration are consistent with Scheme 1.