Supporting Information

Synthesis of A Library of Propargylated and PEGylated α-Hydroxy Acids Towards 'Clickable' Polylactides via Hydrolysis of Cyanohydrin Derivatives

Quanxuan Zhang,*,[†] Hong Ren,^{‡,§} and Gregory L. Baker^{†,††}

[†]Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.

[‡]Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

[§]Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.

E-mail: zhangqua@msu.edu

Tab	e of contentsS	1
1.	General information for NMR and HRMS measurement)
2.	NMR and HRMS Spectra of Compounds	1

⁺⁺ Prof. Gregory L. Baker passed away on October 18, 2012 unexpectedly.

1. General information for NMR measurement

¹H NMR and ¹³C NMR were recorded on a 300 MHz, 500 MHz or 600 MHz instrument in CDCl₃ unless otherwise noted. CDCl₃ was used as the internal standard for both ¹H NMR (δ = 7.24) and ¹³C NMR (δ = 77.0). Data for ¹H NMR and ¹³C NMR are reported in terms of chemical shift (δ ppm). High-resolution mass spectra (HRMS) were taken on an ESI-TOF mass spectrometer.

2. NMR Spectra of Compounds

7.24

Figure S29. HRMS of 1g.

	Formula			
n	М	[M-H] ⁻		Found for [M-H]
14	$C_{34}H_{64}O_{18}$	$C_{34}H_{63}O_{18}$	759.4013	759.4003
15	$C_{36}H_{68}O_{19}$	$C_{36}H_{67}O_{19}$	803.4275	803.4266
16	$C_{38}H_{72}O_{20}$	$C_{38}H_{71}O_{20}$	847.4537	847.4526
17	$C_{40}H_{76}O_{21}$	$C_{40}H_{75}O_{21}$	891.4799	891.4786
18	$C_{42}H_{80}O_{22}$	$C_{42}H_{79}O_{22}$	935.5061	935.5046
19	$C_{44}H_{84}O_{23}$	$C_{44}H_{83}O_{23}$	979.5323	979.5309
20	$C_{46}H_{88}O_{24}$	$C_{46}H_{87}O_{24}$	1023.5585	1023.5571
21	$C_{48}H_{92}O_{25}$	$C_{48}H_{91}O_{25}$	1067.5847	^b
22	$C_{50}H_{96}O_{26}$	$C_{50}H_{95}O_{26}$	1111.6109	1111.6097
23	$C_{52}H_{100}O_{27}$	$C_{52}H_{99}O_{27}$	1155.6371	1155.6362
24	$C_{54}H_{104}O_{28}$	$C_{54}H_{103}O_{28}$	1199.6633	1199.6627
25	$C_{56}H_{108}O_{29}$	$C_{56}H_{107}O_{29}$	1243.6895	1243.6892
26	$C_{58}H_{112}O_{30}$	$C_{58}H_{111}O_{30}$	1287.7157	1287.7156
27	$C_{60}H_{116}O_{31}$	$C_{60}H_{115}O_{31}$	1331.7419	1331.7418
28	$C_{62}H_{120}O_{32}$	$C_{62}H_{129}O_{32}$	1375.7681	1375.7679

Table S1. Exact Mass of 1g from HRMS Peaks^a

^a Mass data of **1g** are calculated or extracted from HRMS (**Figure S29**). ^b Exact mass was not reported by HRMS of **1g** possibly due to the overcrowded printing .

