

Figure S1. Fossils paravians (Xu et al., 2011) used for comparative study. (a) *Anchiornis* (Hu et al., 2009); (b) *Microraptor* (Xu et al., 2003; Li et al., 2012); (c) *Archaeopteryx* (Benton, 2005; Longrich, 2006), (d) *Jeholornis* (Zhou et al., 2002; Zhou and Zhang, 2003b; O'Connor et al., 2012; O'Connor et al., 2013), (e) *Sapeornis* (Zhou and Zhang, 2003b; Zheng et al., 2013), (f) *Zhongjianornis* (Zhou and Li, 2000) and (g) *Confuciusornis* (Gao et al., 2008; Hou et al., 1995; Chiappe et al., 1999). Subsequent specimens suggest *Sapeornis* has a long tail and a more basal phylogenetic placement than *Jeholornis* (Zheng et al., 2013; Turner et al., 2012).

Table S1. (a) Pitch static stability and equilibrium point, (b) control effectiveness in pitch using tail dorsiflexion (Figure 3b), (c) control effectiveness in pitch using symmetric wing protraction/retraction (wing sweep, Figure 3a). Results give mean \pm s.d., n = 15 for stability, n = 5 for control effectiveness; units for stability and control effectiveness are rad^{-1} .

	а						
	pite	th stability, dC_m/dc	α	eq	uilibrium	point	
	$lpha=0^\circ$	$\alpha = 15^{\circ}$	$lpha=75^\circ$	$lpha^\circ$	equilibr	ium $dC_m/d\alpha$	
Anchiornis	-0.005 ±0.013	-0.067 ±0.012	-0.13 ±0.03	29 ± 2	-0.17	70 ± 0.028	
Archaeopteryx	-0.134 ± 0.013	-0.221 ± 0.020	-0.18 ± 0.03	9 ± 2	-0.19	90 ± 0.012	
Confuciusornis	0.142 ± 0.009	0.039 ± 0.020	-0.06 ± 0.02	0 ± 2	0.14	2 ± 0.009	
Jeholornis	0.011 ± 0.018	-0.108 ± 0.010	-0.10 ± 0.02	25 ± 1	-0.12	20 ± 0.044	
Microraptor	-0.039 ± 0.006	-0.071 ± 0.009	-0.17 ± 0.02	20 ± 2	-0.07	70 ± 0.029	
Sapeornis	0.109 ± 0.010	0.007 ± 0.011	-0.11 ± 0.02	5 ± 2	0.10	0 ± 0.052	
Zhongjianornis	0.305 ± 0.036	0.195 ± 0.027	-0.15 ± 0.16	5 ± 1	0.18	0 ± 0.078	
Alectoris	0.206 ± 0.006	0.090 ± 0.020	-0.37 ±0.16	0 ± 1	0.12	0 ± 0.013	
Buteo	0.187 ± 0.010	-0.042 ± 0.009	-0.13 ± 0.02	0 ± 3	0.14	0 ± 0.030	
Columba	0.046 ± 0.014	-0.047 ± 0.017	-0.18 ± 0.16	0 ± 6	0.05	0 ± 0.088	
Larus	0.352 ± 0.028	0.092 ± 0.015	-0.10 ± 0.02	0 ± 1	0.15	0 ± 0.049	
Onychonycteris	-0.011 ± 0.011	0.112 ± 0.005	-0.12 ± 0.02	10 ± 2	-0.0	11±0.033	
Pteropus	-0.118 ± 0.014	0.055 ± 0.008	-0.10 ± 0.02	0 ± 2	-0.08	30 ± 0.015	
Pteranodon	0.054 ± 0.023	0.004 ± 0.018	-0.07 ±0.04	5 ± 3	-0.0	50 ± 0.029	
Pterodactylus	0.200 ± 0.020	-0.050 ± 0.009	-0.05 ± 0.03	0 ± 4	-0.04	40 ± 0.009	
Rhamphorhynchus	-0.062 ± 0.013	-0.192 ± 0.024	-0.05 ± 0.01	15 ± 1	-0.0	18 ± 0.044	
Sphere	-0.037 ±0.023	-0.020 ± 0.022	-0.03 ±0.01		-0.0	50 ± 0.006	
Weathervane	-0.333 ± 0.040	-0.347 ± 0.020	-0.03 ± 0.04	0 ± 2	-0.2	10 ± 0.055	
	b			с			
	dC_n	$d\delta$, tail dorsiflexi	on ¹	dC	$C_m/d\delta$, sv	m protraction / w	ving sweep ²
	$lpha=0^{\circ}$	$\alpha = 15^{\circ}$	$\alpha = 75^{\circ}$	$\alpha =$	0°	$\alpha = 15^{\circ}$	$\alpha = 75^{\circ}$
Anchiornis	0.168 ±0.002	0.191 ±0.006	0.047 ±0.012	$0.00\pm$	0.020	0.050 ± 0.020	0.070 ± 0.004
Archaeopteryx	0.219 ± 0.007	0.190 ± 0.010	0.065 ± 0.024	-0.003 =	±0.016	0.060 ± 0.018	0.128 ± 0.004
Confuciusornis	0.011 ± 0.003	0.013 ± 0.003	0.018 ± 0.005	0.006 ±	-0.034	0.117 ± 0.023	0.229 ± 0.002
Jeholornis	0.268 ± 0.019	0.223 ± 0.001	0.068 ± 0.005	0.042 ±	-0.009	0.072 ± 0.006	0.088 ± 0.002
Microraptor	0.174 ± 0.023	0.125 ± 0.002	0.089 ± 0.014	0.018 ±	-0.008	0.037 ± 0.003	0.051 ± 0.004
Sapeornis	0.054 ± 0.001	0.064 ± 0.005	0.082 ± 0.006	0.022 ±	-0.038	0.173 ± 0.039	0.329 ± 0.001
Zhongjianornis	0.023 ± 0.004	0.019 ± 0.004	0.012 ± 0.026	0.025 ±	-0.027	0.119 ± 0.023	0.221 ± 0.001
Alectoris	0.011 ± 0.004	0.012 ± 0.005	0.044 ± 0.007	-0.001 :	±0.017	0.124 ± 0.020	0.119 ±0.002
Buteo	0.018 ± 0.003	0.033 ± 0.012	0.049 ± 0.006	0.043 ±	-0.034	0.142 ± 0.021	0.213 ± 0.001
Columba	0.044 ± 0.004	0.050 ± 0.003	0.009 ± 0.002	0.076 ±	0.027	0.151 ± 0.013	0.168 ± 0.002
Larus	0.014 ± 0.008	0.016 ± 0.003	0.014 ± 0.008	-0.007 =	±0.030	0.110 ± 0.032	0.231 ± 0.001
Onychonycteris	0.029 ± 0.004	0.032 ± 0.002	0.004 ± 0.004	0.031 ±	-0.030	0.152 ± 0.031	0.235 ±0.003
Pteropus	0.053 ± 0.009	0.026 ± 0.003	0.026 ± 0.002	-0.005 =	±0.041	0.131 ± 0.030	0.230 ± 0.002
Pteranodon	0.016 ± 0.005	0.015 ± 0.002	0.016 ±0.003	0.167 ±	0.050	0.315 ±0.033	0.480 ± 0.001
Pterodactylus	0.015 ± 0.002	0.025 ± 0.004	0.039 ± 0.005	0.005 ±	-0.026	0.088 ± 0.018	0.141 ± 0.002
Rhamphorhynchus	0.347 ±0.016	0.245 ± 0.032	0.029 ± 0.010	0.012 ±	-0.025	0.045 ± 0.020	0.175 ± 0.001
1 1 1 1	-						

¹movement depicted in Figure 3b ²movement depicted in Figure 3a

Table S2. (a) Roll static stability and (b) control effectiveness in roll for asymmetric wing tucking (Figure 3c). Results give mean \pm s.d. for n = 15; units for stability and control effectiveness are rad⁻¹. Equilibrium point in roll is at $\phi = 0^{\circ}$.

	а		b	
	roll stabil	ity, $dC_r/d\phi$	$dC_r/d\delta$, asymm	netric wing tuck1
	$\alpha = 15^{\circ}$	$lpha=75^{\circ}$	$\alpha = 15^{\circ}$	$lpha=75^{\circ}$
Anchiornis				
Archaeopteryx	0.009 ± 0.06	-0.200 ± 0.019	0.090 ± 0.005	0.200 ± 0.018
Confuciusornis	$\textbf{-0.020}\pm0.02$	-0.200 ± 0.009	0.050 ± 0.002	0.100 ± 0.012
Jeholornis	0.073 ± 0.03	-0.400 ± 0.025	0.080 ± 0.004	0.120 ± 0.024
Microraptor	0.132 ± 0.03	-0.300 ± 0.019	0.050 ± 0.007	0.170 ± 0.021
Sapeornis	0.043 ± 0.04	-0.300 ± 0.026	0.080 ± 0.002	0.130 ± 0.016
Zhongjianornis	0.030 ± 0.02	$\textbf{-0.200}\pm0.012$	0.050 ± 0.001	0.140 ± 0.015
Alectoris	0.009 ± 0.06	-0.100 ± 0.016	0.060 ± 0.002	0.080 ± 0.007
Buteo	0.028 ± 0.05	-0.400 ± 0.022	0.170 ± 0.012	0.240 ± 0.055
Columba	$\textbf{-0.030}\pm0.05$	-0.300 ± 0.014	0.180 ± 0.007	0.180 ± 0.027
Larus	$\textbf{-0.009} \pm 0.02$	$\textbf{-0.400} \pm 0.028$	0.150 ± 0.004	0.200 ± 0.038
Onychonycteris		-1.000 ± 0.044	0.810 ± 0.036	0.880 ± 0.100
Pteropus	$\textbf{-0.027}\pm0.05$	-0.700 ± 0.064	0.680 ± 0.020	0.830 ± 0.088
Pteranodon	0.011 ± 0.02	-0.200 ± 0.014	0.070 ± 0.002	0.100 ± 0.010
Pterodactylus	$\textbf{-0.002}\pm0.06$	-0.300 ± 0.016	0.100 ± 0.003	0.110 ± 0.027
Rhamphorhynchus	$\textbf{-0.069} \pm 0.03$	$\textbf{-0.400} \pm 0.021$	0.160 ± 0.007	0.210 ± 0.030

¹movement depicted in Figure 3c

Table S3. (a) Yaw static stability, (b) control effectiveness in yaw using tail lateral flexion (Figure 3d), (c) control effectiveness in yaw using wing pronation/supination (Figure 3e), (d) control effectiveness in yaw using lateral head flexion for pterosaurs only. Results give mean \pm s.d., n = 15 for stability, n = 5 for control effectiveness; units for stability and control effectiveness are rad⁻¹. Equilibrium point in yaw is at $\psi = 0^{\circ}$.

	0		
	a voru stabili	to JC / Jay	
	yaw stabin	ty, $aC_y/a\psi$	
	$\alpha = 15^{\circ}$	$\alpha = /5^{\circ}$	_
Anchiornis	-0.097 ± 0.003	0.006 ± 0.006	
Archaeopteryx	-0.070 ± 0.004	0.010 ± 0.004	
Confuciusornis	-0.026 ± 0.002	0.004 ± 0.002	
Jeholornis	-0.091 ± 0.003	0.002 ± 0.001	
Microraptor	-0.100 ± 0.016	0.039 ± 0.010	
Sapeornis	0.002 ± 0.003	0.005 ± 0.001	
Zhongjianornis	0.021 ± 0.003	0.008 ± 0.002	
Alectoris	0.022 ± 0.001	0.001 ± 0.002	-
Buteo	0.027 ± 0.006	$\textbf{-0.002}\pm0.004$	
Columba	0.048 ± 0.002	0.003 ± 0.002	
Larus	0.017 ± 0.004	0.002 ± 0.002	
Onychonycteris	0.025 ± 0.008	-0.004 ± 0.007	-
Pteropus	0.040 ± 0.025	-0.016 ± 0.005	
Pteranodon	0.026 ± 0.002	0.002 ± 0.001	-
Pterodactylus	-0.002 ± 0.001	0.002 ± 0.001	
Rhamphorhynchus	-0.052 ± 0.004	-0.034 ± 0.004	
	b		c
	$dC_{\rm v}/d\delta$, later	al tail flexion1	$dC_v/d\delta$, wing pro/sup ²
	$\alpha = 15^{\circ}$	$lpha=75^{\circ}$	$\alpha = 15^{\circ}$ $\alpha = 7$
		0.0.00 1.0.010	0 100 1 0 0 0 0 0 0 0 0 0 0

	$dC_y/d\delta$, lateral tail flexion ¹		$dC_y/d\delta$, wing pro/sup ²		$dC_y/d\delta$, latera	I head flexion
	$\alpha = 15^{\circ}$	$\alpha = 75^{\circ}$	$\alpha = 15^{\circ}$	$lpha=75^{\circ}$	$\alpha = 15^{\circ}$	$lpha=75^{\circ}$
Anchiornis	0.239 ± 0.070	0.069 ± 0.013	0.199 ± 0.020	0.330 ± 0.004		
Archaeopteryx	0.220 ± 0.071	0.066 ± 0.004	0.420 ± 0.015	0.383 ± 0.016		
Confuciusornis	0.002 ± 0.008	-0.004 ± 0.001	0.206 ± 0.025	0.184 ± 0.007		
Jeholornis		-0.027 ± 0.007				
Microraptor	0.520 ± 0.083	-0.076 ± 0.010	0.259 ± 0.013	0.373 ± 0.008		
Sapeornis						
Zhongjianornis	-0.001 ± 0.002	-0.007 ± 0.001	0.296 ± 0.015	0.262 ± 0.015		
Alectoris	0.019 ± 0.012	-0.050 ± 0.001	0.081 ± 0.013	0.093 ± 0.004		
Buteo	-0.007 ± 0.003	-0.029 ± 0.003	0.565 ± 0.060	0.431 ± 0.025		
Columba	0.005 ± 0.002	-0.022 ± 0.001	0.455 ± 0.042	0.204 ± 0.003		
Larus		-0.012 ± 0.002				
Onychonycteris	-0.011 ± 0.005	-0.012 ± 0.003	0.870 ± 0.093	0.627 ± 0.049		
Pteropus						
Pteranodon			0.271 ± 0.013	0.234 ± 0.004	0.120 ± 0.002	-0.003 ± 0.001
Pterodactylus			0.196 ± 0.014	0.139 ± 0.013	0.190 ± 0.003	$0.002 {\pm} 0.001$
Rhamphorhynchus	0.170 ± 0.008	0.128 ± 0.002	0.279 ± 0.027	0.319 ± 0.024	-0.033 ± 0.009	

d

¹movement depicted in Figure 3d ²movement depicted in Figure 3e

Table S4. Fossil paravians (Xu et al., 2011) sampled for aerodynamic testing and references used during model construction.

	specimen and reference	$\substack{\text{approx length}\\ \times 10^{-2} \text{ m}}$
Anchiornis	LPM B00169 (Hu et al., 2009)	42
Archaeopteryx	Berlin (Benton, 2005; Longrich, 2006)	40
Confuciusornis	multiple (Hou et al., 1995; Chiappe et al., 1999)	30
Jeholornis	IVPP V13274, 13553 (Zhou et al., 2002; Zhou and Zhang, 2003b; O'Connor et al., 2013) ¹	65
Microraptor	IVPP V13352 (Xu et al., 2003; Li et al., 2012)	85
Sapeornis	IVPP V13275 (Zhou and Zhang, 2003a; Zheng et al., 2013)	27
Zhongjianornis	IVPP V15900 (Zhou and Li, 2010)	22

¹ feathers only in 13553

	area, S $\times 10^{-4} \text{ m}^2$	$SVL \times 10^{-2} m$	$TL \times 10^{-2} m$	span, s $\times 10^{-2}$ m	AR
Anchiornis	87.11	7.1	18.0	19.6	4.4
Archaeopteryx	94.57	8.0	10.5	17.7	3.4
Confuciusornis	50.53	6.8	9.2	19.9	7.8
Jeholornis	77.03	7.7	19.0	22.7	6.8
Microraptor	114.6	9.3	22.5	19.2	3.2
Sapeornis	54.44	6.6	7.6	20.7	7.8
Zhongjianornis	61.87	8.3	10.1	21.3	7.4
Alectoris	57.89	7.1	9.8	15.0	4.0
Buteo	98.55	8.3	9.9	23.8	5.8
Columba	80.71	7.3	9.8	19.3	4.6
Larus	72.62	7.9	10.5	24.0	8.0
Onychonycteris	194.7	9.6	13.4	29.5	4.4
Pteropus	201.2	8.4	12.4	35.1	6.2
Pteranodon	42.13	6.4	6.5	22.1	11.6
Pterodactylus	51.15	8.4	8.9	19.0	7.0
Rhamphorhynchus	78.56	8.0	18.4	29.7	11.2
Sphere	11.34		3.8	3.8	1.3
Weathervane	39.30		24.0	5.0	0.6

Table S5. Geometry data for physical models of eight fossil paravians, four extant birds, two bats, three pterosaurs, and two shapes for checking calibration. Aspect ratio (*AR*) calculated as s^2/S .