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Appendix S1. Supplementary figures2
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Figure S1. Age distributions among bird surveyor gender cohorts. Panel A shows a beanplot

(Kampstra 2008) of the distribution of age ranges among a small sample of BBS observers,

based upon demographic information collected by an unrelated internet-based survey of

birdwatcher observer effects (Farmer et al. 2012). Tick mark lengths correspond to observer

abundance at each age range; the dotted line is the overall mean, solid lines are group

means. Panel B shows a barplot of the genders and estimated ages of those OBBA observers

determined for the current study.
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Figure S2. Measures of BBS observer age by (A) unique observer and (B) unique survey

(unique combinations of observer, survey route and year), Canada and USA, 1966–2007.

The distribution in Panel B is much less skewed towards short lengths of service than in

Panel A.
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Blackpoll Warbler (Monotone; peak = 8.27 kHz; SD = 0.26)
Tennessee Warbler (Heterogeneous; peak = 8.96 kHz; SD = 1.22)

Figure S3. Examples of audiological power spectra corresponding to monotone (Blackpoll

Warbler, Dendroica striata) and heterogeneous (Tennessee Warbler, Oreothlypis peregrina)

vocalizations. The modified version displayed here presents the power as a linear-scale version

of decibel values for each of a continuous range of frequency bins. Monotone vocalizations

tend to feature a single or narrow range of frequencies, whereas heterogeneous vocalizations

feature a wide range of sounds. Peak frequency values (kHz) and SD values (as a measure of

heterogeneity) are listed for each species.
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Appendix S2. Table of species used in the various hearing-loss analyses. ‘OBBA’ and ‘BBS’ refer to the analysis of

raw data from the Atlas of the Breeding Birds of Ontario and the North American Breeding Bird Survey, respectively. ‘USGS’

and ‘CWS’ refer to analyses of population trends produced by the United States Geological Service and the Canadian Wildlife

Service, respectively. Standard species abbreviations are taken from Klimkiewicz and Robbins (1978). Data describing a given

species that were used for a given analysis are indicated by an asterisk in the corresponding row and column. Vocalization

frequency information for each species, including peak vocalization frequency (Hz) and power spectrum standard deviation

(‘SD’, as an index of call heterogeneity) are also provided. Frequency range and heterogeneity classifications are also provided,

where low frequencies are less than 3 kHz, ‘notch’ frequencies (corresponding to the audiometric notch related to noise-induced

hearing loss) are between 3 kHz and less than 6 kHz, medium frequencies are between 6 and less than 7 kHz, and high frequency

calls exceed 7 kHz. Heterogeneous vocalizations are in the upper 50% quantile of standard deviation values for a group of species

that includes 19 additional, unmodeled species (not shown).

Species Abbrev. OBBA BBS USGS CWS Peak Freq. (Hz) SD Class

Red-breasted Nuthatch RBNU * * * * 2670 514.22 Low Monotone

White-breasted Nuthatch WBNU * * * * 2756 329.45 Low Monotone

Brown-crested Flycatcher BCFL * 2412 717.27 Low Heterogeneous

Great Crested Flycatcher GCFL * * * * 2584 821.43 Low Heterogeneous

Ash-throated Flycatcher ATFL * 3101 319.57 Notch Monotone

Cassin’s Kingbird CAKI * 3273 606.45 Notch Monotone

Continued on next page
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Appendix S2, continued

Species Abbrev. OBBA BBS USGS CWS Peak Freq. (Hz) SD Class

Olive-sided Flycatcher OSFL * * * * 3273 523.34 Notch Monotone

Western Wood-Pewee WEWP * * * 3445 405.60 Notch Monotone

Say’s Phoebe SAPH * * * 3531 453.42 Notch Monotone

Scissor-tailed Flycatcher STFL * 3704 623.82 Notch Monotone

Gray Flycatcher GRFL * 3790 678.03 Notch Monotone

Pygmy Nuthatch PYNU * * 3790 317.78 Notch Monotone

Grace’s Warbler GRWA * 3876 489.64 Notch Monotone

Eastern Wood-Pewee EAWP * * * * 4048 475.55 Notch Monotone

Vermilion Flycatcher VEFL * 4048 620.00 Notch Monotone

Yellow-bellied Flycatcher YBFL * * * 4134 646.14 Notch Monotone

Pine Warbler PIWA * * * * 4221 532.83 Notch Monotone

Alder Flycatcher ALFL * * * 4307 646.83 Notch Monotone

Brown-headed Nuthatch BHNU * 4393 576.00 Notch Monotone

Common Yellowthroat COYE * * * * 4565 593.58 Notch Monotone

Eastern Phoebe EAPH * * * * 4823 432.01 Notch Monotone

Kentucky Warbler KEWA * 4910 684.07 Notch Monotone

Black-throated Gray Warbler BTYW * * 5082 618.78 Notch Monotone

Orange-crowned Warbler OCWA * * * * 5082 562.35 Notch Monotone

Continued on next page
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Appendix S2, continued

Species Abbrev. OBBA BBS USGS CWS Peak Freq. (Hz) SD Class

Lucy’s Warbler LUWA * 5512 630.58 Notch Monotone

Palm Warbler PAWA * * * 3618 840.98 Notch Heterogeneous

Western Kingbird WEKI * * * 3618 1004.12 Notch Heterogeneous

Willow Flycatcher WIFL * * * 3618 693.10 Notch Heterogeneous

Ruby-crowned Kinglet RCKI * * * * 3790 1144.54 Notch Heterogeneous

Yellow-breasted Chat YBCH * * * 3876 1212.40 Notch Heterogeneous

Mourning Warbler MOWA * * * * 3962 891.97 Notch Heterogeneous

Hooded Warbler HOWA * * 4048 761.85 Notch Heterogeneous

Black-throated Blue Warbler BTBW * * * * 4221 713.75 Notch Heterogeneous

Cerulean Warbler CERW * * 4221 879.96 Notch Heterogeneous

Yellow-rumped Warbler YRWA * * * 4307 832.30 Notch Heterogeneous

Black-throated Green Warbler BTNW * * * 4393 905.87 Notch Heterogeneous

Louisiana Waterthrush LOWA * 4565 796.63 Notch Heterogeneous

Northern Waterthrush NOWA * * * * 4565 1111.92 Notch Heterogeneous

Acadian Flycatcher ACFL * 4823 755.32 Notch Heterogeneous

Dusky Flycatcher DUFL * * * 4910 763.74 Notch Heterogeneous

Magnolia Warbler MAWA * * * * 4910 1283.08 Notch Heterogeneous

Connecticut Warbler CONW * * 4996 1100.18 Notch Heterogeneous

Continued on next page
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Appendix S2, continued

Species Abbrev. OBBA BBS USGS CWS Peak Freq. (Hz) SD Class

MacGillivray’s Warbler MGWA * * * 4996 708.54 Notch Heterogeneous

Black Phoebe BLPH * 5082 951.26 Notch Heterogeneous

Virginia’s Warbler VIWA * 5082 696.80 Notch Heterogeneous

Hermit Warbler HEWA * 5168 919.93 Notch Heterogeneous

Chestnut-sided Warbler CSWA * * * * 5340 1101.86 Notch Heterogeneous

Prairie Warbler PRWA * 5340 855.07 Notch Heterogeneous

Yellow Warbler YWAR * * * * 5340 889.48 Notch Heterogeneous

Townsend’s Warbler TOWA * * * 5512 860.07 Notch Heterogeneous

Wilson’s Warbler WIWA * * * 5771 1122.54 Notch Heterogeneous

Canada Warbler CAWA * * * * 5857 830.75 Notch Heterogeneous

Hammond’s Flycatcher HAFL * * * 5857 973.81 Notch Heterogeneous

Yellow-throated Warbler YTWA * 5857 732.75 Notch Heterogeneous

American Redstart AMRE * * * * 5943 915.55 Notch Heterogeneous

Golden-winged Warbler GWWA * * * * 6029 424.40 Medium Monotone

Worm-eating Warbler WEWA * 6546 514.35 Medium Monotone

Blue-winged Warbler BWWA * * * * 6632 591.23 Medium Monotone

Black-and-white Warbler BAWW * * * * 6718 663.48 Medium Monotone

Cedar Waxwing CEDW * * * * 6891 314.65 Medium Monotone

Continued on next page
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Appendix S2, continued

Species Abbrev. OBBA BBS USGS CWS Peak Freq. (Hz) SD Class

Brown Creeper BRCR * * * * 6977 679.02 Medium Monotone

Eastern Kingbird EAKI * * * * 6202 1171.83 Medium Heterogeneous

Nashville Warbler NAWA * * * * 6202 961.56 Medium Heterogeneous

Ovenbird OVEN * * * * 6202 991.24 Medium Heterogeneous

Least Flycatcher LEFL * * * * 6718 1276.71 Medium Heterogeneous

Northern Parula NOPA * * * * 6891 786.68 Medium Heterogeneous

Golden-crowned Kinglet GCKI * * * * 7235 680.00 High Monotone

Bay-breasted Warbler BBWA * * * * 7321 490.08 High Monotone

Cape May Warbler CMWA * * * * 7580 375.51 High Monotone

Blackpoll Warbler BLPW * * * 8269 257.59 High Monotone

Prothonotary Warbler PROW * 7494 1213.31 High Heterogeneous

Blackburnian Warbler BLBW * * * * 7666 828.64 High Heterogeneous

Tennessee Warbler TEWA * * * * 8958 1216.47 High Heterogeneous
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Appendix S3. Vocalization heterogeneity3

For each species, we obtained an audio recording of its typical vocalizations (calls and songs)4

from the Macaulay Library at the Cornell Laboratory of Ornithology (http://macaulaylibrary.5

org) and generated power spectra from each recording using the free software Audacity6

(Beta 1.3; http://audacity.sourceforge.net/). Power spectra display the total energy7

expended during an audio sample (dB) for each of a contiguous range of narrow frequency8

bins (i.e. 2.00–2.08 kHz, 2.081–2.160 kHz; Fig. S3 in Appendix S1). With this approach,9

the length of the recordings and the number of vocalizations featured in each recording were10

unimportant, as the power spectra considered the power and frequencies of all sounds present11

on each recording collectively.12

By convention, sound intensities (power) are scored on the (logarithmic) decibel scale,13

which recognizes that human ears most readily distinguish changes in intensity along such14

an axis (Mayfield 1966). Converting a set of sound intensities to linear scales would tend to15

de-emphasize softer notes and highlight differences only among sounds of higher intensities.16

In our case, this linear-scale approach was appropriate for comparing vocalization variability17

because it tended to downplay any background noises present on a given audio track and18

emphasize only the dominant singing and calling notes of a given species. Accordingly, we19

first rescaled and linearized the log-scale decibel values within each power spectrum using20

the formula:21

RelPoweri = 10(Poweri−Powermax)·0.1 (1)

where (Poweri−Powermax) corresponds to the (negative) linear difference on the decibel scale22

between a given power value and the spectrum’s maximum power value for 1, . . . , i frequency23

bins. This function converts all decibel values to a scale from 0 to 1, where 1 equals the24

maximum power output, and it reflects linear-scale power differences (i.e. non-decibel values)25

between any given value and the maximum value.26

For each set of transformed species vocalization data, we noted the peak acoustic frequency,27
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defined as the upper bound of the frequency bin with the highest power. We then treated the28

power spectra as histograms and determined the standard deviations of these ‘distributions’29

to quantify their acoustic variability. We compared these standard deviation values among all30

species (including standard deviations from 19 additional, unmodeled species), and classified31

the vocalizations into ‘monotone’ and ‘heterogeneous’ groups. Heterogeneous vocalizations32

were in the upper 50% of standard deviation values (i.e. their calls were more variable); the33

remainder were classified as Monotone.34
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Appendix S4. Hierarchical occupancy model structure35

The occupancy component of the models for each species was specified as:36

zi ∼ Bernoulli(ψi) (2)

37

logit(ψi) = A0 + A1 · ζi (3)

for i = 1, . . . , 1212 OBBA (atlas) squares, and where zi corresponds to the unobserved38

true occupancy state of a given (second-atlas) atlas square (i.e. 0 or 1), P (zi = 1) =39

ψi (the occupancy probability for atlas square i), and ζi is a dummy variable indicating40

detection/nondetection (i.e. 0, 1) of a species by any observer in square i in the first atlas41

(1981–1985). A0 and A1 are logit-scale intercept and first-year occupancy parameters. Data42

used to determine ζi were derived from a set of 1,325 total observers from the first OBBA.43

The detection component of the occupancy models for each species was specified as:44

logit(pij) = β1 · θij + bobsj (4)

45

bobsj = β0 + β2 ·Over50j + β3 ·Malej + εj (5)

for i = 1, . . . , 1212 atlas squares and j = 1, . . . , 350 observers (or fewer, depending on the46

species being modeled), and where pij is the detection probability at square i for observer47

j, θij is the natural log of effort, in party-hours, at square i by observer j, β1 is the effort48

effect, and bobsj describes the observer effects. Among these observer effects (equation 5),49

β0 is an intercept term, β2 is the age (over-50 vs. under-40) effect, β3 is the effect of being50

male, and εj is mean-zero, normally-distributed error about the observer effect, with the51

uniformly-distributed prior of the variance of this error having lower and upper bounds of 052

and 10, respectively. Over50j and Malej are dummy variables (0 or 1) indicating whether53

an observer is over age 50 (vs. under age 40), and whether that observer is male (vs. female).54

The occupancy and detection models are combined in the overall hierarchy, which incorporates55
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observed detections Yij:56

µij = zi · pij (6)
57

Yij ∼ Bin(Nij, µij) (7)

where Yij, the observed number of detections in square i for observer j is binomially distributed58

with probability of success µij (the unconditional detection probability) for Nij trials (i.e.59

the number of years during which an atlas square i was visited by observer j, which ranged60

from 2 to 5 detection-years).61

Unless otherwise specified, all parameters in the hierarchical model (A0, A1, β0, β1, β2,62

β3) were assigned minimally-informative priors suitable for logistic regression models, which63

in most cases need not estimate absolute values greater than 5 (Gelman et al. 2008). We64

specifically used normally-distributed priors of standard deviation 3.16 (
√

10 ).65

We used enough iterations in WinBUGS to achieve convergence of 3 Markov chains66

(with a burn-in of one half of the total), requiring that Gelman-Rubin Rhat statistics for67

all parameters be less than or equal to 1.1 to infer convergence. We also ensured that this68

model structure performed as intended by testing it with fake datasets of known observer69

characteristics (see electronic supplement for example code).70
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Appendix S5. Detailed methods for modeling changes in BBS count data with71

increasing observer age72

To keep the more heavily-sampled species, observers or strata from having a disproportionate73

influence in our aggregated analysis, we modeled our BBS dataset over multiple stages using74

GAMMs. First, we modeled mean BBS counts for each species separately as overdispersed75

Poisson functions of both observer age and calendar year, correcting for differences among76

observers and survey routes as mean-zero, normally-distributed random intercepts. We77

used a cubic regression spline smooth term, chosen over thin-plate regression splines for78

computational efficiency reasons (Wood 2006), for each of the observer age and calendar79

year (i.e. population) effects, where the calendar year effects were smoothed separately for80

each stratum. The structure for each species-specific model was as follows:81

log(yi(j)kl) = f1(τkl) + f2(l)j + θk + λi(j)k + σi(j)kl (8)

for i = 1, . . . , I routes within stratum j = 1, . . . , J , k = 1, . . . , K observers, and l =82

1, . . . , L calendar years since 1969, and where yi(j)kl is the number of birds detected on a83

route i in stratum j by observer k during year l, f1() and f2()j are cubic spline smooth84

functions estimating age effects across the whole survey and population-related effects for85

physiographic stratum j, respectively, τkl is the (minimum) age of observer k in year l, θk are86

mean-zero, normally-distributed random intercepts for each observer, λi(j)k are mean-zero,87

normally-distributed random intercepts for each observer at a route-within-stratum, σi(j)kl88

is mean-zero, normally-distributed overdispersion error, and where datapoints collected by a89

given observer were weighted according to the inverse of the number of routes conducted by90

that observer for the modeled species.91

To properly recognize the changes in BBS counts predicted by the smooth function f1()92

in these models (Equation 8), we did not simply extract its values for the modeled range93

of observer ages, since this approach would ignore the uncertainty among the separate94
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population-related smooth terms (estimated for each stratum; f2(l)j). Instead, working95

on the scale of the response variable, we defined species- and observer age-specific count96

predictions as the average of predictions for each relevant physiographic stratum. Calendar97

years were fixed at the midpoint of surveyed dates during predictions. We inferred the98

standard error about these averaged predictions, σ̄kl, as the square root of the mean of their99

variances.100

We then built an ‘aggregating’ GAMM which generalized the predicted changes in BBS101

counts for each species with increasing observer age (produced above) among each of eight102

vocalization frequency groups (e.g. ‘high monotone’, ‘notch heterogeneous’; discussed in103

Methods). In addition to generalizing the patterns of age-related count changes among104

species, this approach also ensured that each species contributed the same number of datapoints105

to the overall model. To convert the data to a common scale among all species, we used106

proportions of each species’ maximum count as the (binomial) dependent variable in this107

model.108

Similar to the single-species models (Equation 8), the aggregating GAMM used thin-plate109

regression spline smooth functions on observer age for each vocalization group, along with110

mean-zero, normally-distributed random intercepts for species. Each datapoint was weighted111

according to the inverse of its predicted coefficient of variation (i.e. µ̂
σ̂
). To provide a112

more useful interpretation of the species-independent changes in BBS counts with increasing113

observer age, final model predictions were then linearly rescaled relative to the values at114

observer-age 1 for each vocalization group. As in the detection probability analysis, we again115

ensured that this model structure performed as intended by testing it with fake datasets of116

known observer characteristics (see electronic supplement for example code).117
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