Supporting Information

Analysis of a Malondialdehyde-Deoxyguanosine Adduct in Human Leukocyte DNA by Liquid Chromatography Nanoelectrospray-High Resolution Tandem Mass Spectrometry

Bin Ma,[†] Peter W. Villalta,[†] Silvia Balbo,[†] and Irina Stepanov^{*, †, ‡}

[†]Masonic Cancer Center and [‡]Division of Environmental Health Sciences, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, United States

Corresponding Author:

*Phone: (612) 624-4998. Fax: (612) 626-5135. E-mail: stepa011@umn.edu.

Table of Contents

Figure S1	Chromatogram of a standard mixture of benzamide and	3
	5,6-dihydro- M_1 dG during column chromatography purification	
Figure S2	Chromatograms obtained upon analysis of possible artifactual	4
	M ₁ dG production during the sample preparation	
Figure S3	Product ion spectra of $5,6$ -dihydro- M_1 dG, and	5
	5,6-dihydro-[$^{13}C_3$]M ₁ dG	
Figure S4	The extracted ion chromatograms for 5,6-dihydro-M ₁ dG at mass	6
	tolerances of 10 ppm, 5 ppm, and 2 ppm using the Orbitrap mass	
	analyzer.	

Figure S1. Chromatogram of a standard mixture of benzamide and 5,6-dihydro- M_1 dG during column chromatography purification, which was used to further purify human leukocyte DNA samples after SPE extraction. Benzamide was used as a UV marker, and fraction containing 5,6-dihydro- M_1 dG and its internal standard at 15~17 min was collected.

Figure S2. Chromatograms obtained upon analysis of possible artifactual M_1dG production during sample preparation. The internal standards 5,6 dihydro-[¹³C₃] M_1dG and 5,6 dihydro-[¹⁵N₅] M_1dG are monitored by the MS transition m/z 309.1 \rightarrow 193.0824 and m/z 311.1 \rightarrow 195.0575, respectively. No peak of 5,6 dihydro-[¹⁵N₅] M_1dG was detected, indicating no artifactual M_1dG adduct was formed during the sample preparation.

Figure S3. Product ion spectra of (A) 5,6-dihydro- M_1dG , and (B) 5,6-dihydro- $[^{13}C_3]M_1dG$.

Figure S4. The extracted ion chromatograms for 5,6-dihydro- M_1 dG at mass tolerances of (A) 10 ppm, (B) 5 ppm, and (C) 2 ppm using the Orbitrap detector. The MS transition for 5,6-dihydro- M_1 dG was m/z 306.1 \rightarrow 190.0723. No obvious difference was observed when the mass tolerance was set at different values.