Supplemental Material to:

Wu Zhong, Haichuan Zhu, Fugeng Sheng, Yonglu Tian, Jun Zhou, Yingyu Chen, Song Li, and Jian Lin

Activation of the MAPK11/12/13/14 (p38 MAPK) pathway regulates the transcription of autophagy genes in response to oxidative stress induced by a novel copper complex in HeLa cells

> Autophagy 2014; 10(7) http://dx.doi.org/10.4161/auto.28789

www.landesbioscience.com/journals/autophagy/article/28789

Table S1. Overview of RNA-Seq results in HeLa cells treated with HYF127c/Cu.RNA-Seq reports

	•		
ż	1		
•	-	•	

Up-Down-Regulation	Table.S4 (Fold>1, p-value<0.05)	Table.S3 (Fold>1 or Fold<-1, p-value<0.01 and FDR<0.01)
Up	1096	105
Down	4611	547
Total	5707	652

b

0		
Log ₂ (HYF127c/Cu/	Table S4	Table.S3
Control)	(p-value<0.05)	(p-value<0.01and FDR<0.01)
Fold≥10	25	2
5≤Fold≤10	367	31
1≤Fold≤5	704	72
-5≤Fold≤-1	4532	446
-10≤Fold≤-5	79	1

Table S2. The primers used for real-time PCR.

Primes used for Real-Time PCR

primer designation	primer sequence	
<i>HSPA1A_</i> fw	5'-gtgctgaccaagatgaaggag-3'	
<i>HSPA1A_</i> re	5'-gctgcgagtcgttgaagtag-3'	
<i>BAG3_</i> fw	5'-ctccattccggtgatacacga-3'	
<i>BAG3_</i> re	5'-tggtgggtctggtactccc-3'	
<i>MAPLC3B</i> _fw	5'-agcagcatccaaccaaaatc-3'	
<i>MAPLC3B</i> _re	5'-ctgtgtccgttcaccaacag-3'	
ACTIN_fw	5'-ggaacggtgaaggtgacagc-3'	
ACTIN_re	5'-aatcaaagtcctcggccaca-3'	
<i>BECN1_</i> fw	5'-caagatcctggaccgtgtca-3'	
<i>BECN1_</i> re	5'-tggcactttctgtggacatca-3'	
<i>MTOR</i> _fw	5'-ggaggctgatggacacaaat-3'	
<i>MTOR</i> _re	5'-ctgtggtccccgttttctta-3'	
<i>SQSTM1_</i> fw	5'-agctgccttgtacccacatc-3'	
<i>SQSTM1_</i> re	5'-ggggatgctttgaatactgg-3'	

<i>MCL1_</i> fw	5'-cggtaatcggactcaacctc-3'	
<i>MCL1_</i> re	5'-cctccttctccgtagccaa-3'	
<i>ATG7_</i> fw	5'-gatccggggatttctttcacg-3'	
<i>ATG7_</i> re	5'-cagcaatgtaagaccagtcaagt-3'	
<i>ATG16L1_</i> fw	5'-tgccctgcagatcacttttac-3'	
<i>ATG16L1_</i> re	5'-gagtcgcttagtggctgctc-3'	
<i>BCL2L1_</i> fw	5'-atcaatggcaacccatcctg-3'	
<i>BCL2L1_</i> re	5'-ttgtctacgctttccacgca-3'	
<i>BCL2_</i> fw	5'-tgtggatgactgagtacctgaacc-3'	
<i>BCL2_</i> re	5'-cagccaggagaaatcaaacagagg-3'	
ATG5_fw	5'-tggatttcgttatatcccctttag-3'	
ATG5_re	5'-cctagtgtgtgcaactgtcca-3'	

HYF127c

Figure S3

Figure S5

Figure S1. The histological results from kidney, myocardium, and liver in nude mice treated with HYF127c/Cu or HYF127c.

Figure S2. The effect of the combination of necrostatin-1 and HYF127c/Cu on cellular viability in HeLa cells, (n=3).

Figure S3. Electron microscopy images showing extensive cytoplasm vacuolization enclosed in a double membrane in HYF127c/Cu-treated tumors. Electron microscopy image of an untreated tumor is also shown for comparison. The double membrane of the autophagic vacuoles is indicated by a black arrow. N, nucleus; M, mitochondrion. Bar: 0.5 µm.

Figure S4. The effect of the combination of 3-MA and HYF127c/Cu on cellular viability of HeLa cells (n=3, *: *P*<0.05).

Figure S5. The effect of SP600125 on HYF127c/Cu-treated cells. (**A**) The effect of SP600125 on the viability of HYF127c/Cu-treated cells (n=3, *:P<0.05). (**B**) The effect of SP600125 on autophagy in HYF127c/Cu-treated cells. (i) Western blotting showed that SP600125 had no effect on LC3-I conversion. SP600125 had no effect on the percentage of cells with EGFP-LC3 dots (ii) and the average number of EGFP-LC3 dots in cells (iii) (n=3, *:P<0.05).