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Supplementary Figure Legends 

Figure S1. (A): Log2 gene expression differences between NE-NSCLC cell lines and 

typical NSCLC cell lines. (B): Delta-like 1 (DLL1) expression measured by qRT-PCR in 

a cohort of lung cancer cell lines. DLL1 is expressed in neuroendocrine lines including 

SCLC and NE-NSCLC, but not typical NSCLC.  

Figure S2. (A): Stable knockdown of achaete-scute homolog 1 (ASCL1) in HCC1833 

cells with shRNA reduces cell count following one week of antibiotic selection compared 

to non-targeting (shNTC) control. (B): Colony forming ability of NCI-H1755 and 

HCC1833-shASCL1 cells is inhibited compared to NCI-H1755 and HCC1833-shNTC 

cells. NCI-H1993 shows no difference in colony forming ability between shNTC and 

shASCL1 cells. (C): ASCL1 knockdown reduces growth of NE-NSCLC cell lines 

measured by MTS assay five days post-transfection. H1993 shows no growth difference 

following siASCL1-3 transfection (n = 3, t-test performed between parental and 

siASCL1-3-transfected cells. n.s.: not significant, * p < 0.05, *** p < 0.005). 

Figure S3. (A): ChIP for ASCL1 performed on ASCL1(+) cell lines shows amplification 

of sequences known to bind ASCL1 such as DLL1 and DLL3. Sequences known not to 

bind ASCL1 do not amplify in ASCL1(+) cell lines. ChIP efficiency is graphed. (B): Left 

– Analysis using GREAT (18) shows that 713 of the consensus ASCL1 peaks are 

associated with more than one gene. Right – The majority of peak-gene interactions 

occur at a distance of greater than 5 kb to 1 Mb from the transcriptional start site. (C): 

ASCL1-bound peaks in the known ASCL1 target genes DLL1 and DLL3. (D): 
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Conserved ASCL1-bound peaks appear in classic neuroendocrine genes. CDH2 

(NCAM), GRP, INSM1, and SYT1 are shown.  

Figure S4: Supervised clustering analysis of 1330 putative ASCL1 target genes results 

in a grouping of neuroendocrine lung cancer cell lines (SCLC and NE-NSCLC) 

separately from NSCLC and HBEC/HSAEC cell lines. 1006 genes remained for 

clustering after filtering using Pearson Average Linkage clustering analysis. 

Figure S5: 72 gene ASCL1-associated gene signature predicts for poor prognosis in 

multiple data sets. (A) – Five year survival differences in Tomida dataset trained on NCI 

dataset (Left, Gehan-Breslow-Wilcoxon p < 0.0048) and five year survival differences in 

NCI dataset trained on Tomida dataset (Right, Gehan-Breslow-Wilcoxon p < 0.0199). 

(B) – Five year survival differences in Tomida dataset trained on SPORE dataset (Left, 

Gehan-Breslow-Wilcoxon p < 0.0224) and five year survival differences in SPORE 

dataset trained on Tomida dataset (Right, Gehan-Breslow-Wilcoxon p < 0.0402). (C) – 

Overall survival differences in SPORE dataset trained on NCI dataset (Left, Gehan-

Breslow-Wilcoxon p < 0.0396) and overall survival differences in NCI dataset trained on 

SPORE dataset (Right, Gehan-Breslow-Wilcoxon p < 0.0002). (D) – Overall survival 

differences in Tomida dataset trained on NCI dataset (Left, Gehan-Breslow-Wilcoxon p 

< 0.0030) and overall survival differences in NCI dataset trained on Tomida dataset 

(Right, Gehan-Breslow-Wilcoxon p < 0.0133). (E) – Overall survival differences in 

Tomida dataset trained on SPORE dataset (Left, Gehan-Breslow-Wilcoxon p < 0.0500) 

and overall survival differences in SPORE dataset trained on Tomida dataset (Right, 

Gehan-Breslow-Wilcoxon p < 0.0345). 
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Figure S6. Left – Log10 relative B-cell CLL/lymphoma 2 (BCL2) mRNA levels as 

measured by qRT-PCR demonstrate high expression in pulmonary neuroendocrine 

cancers including SCLC and NE-NSCLC, but low or absent expression in typical 

NSCLC cell lines. Right – Representative cell cycle differences in NCI-H1755 cells 

following knockdown of BCL2 via siRNA.  

Figure S7. Aldehyde dehydrogenase 1A1 (ALDH1A1) is not a conserved transcriptional 

target of ASCL1. ALDH1A1 gene does not contain conserved ASCL1-bound peaks as 

determined by ChIP-Seq analysis. Knockdown of ASCL1 in NCI-H1755 does not result 

in reduced ALDH1A1 mRNA or protein expression. 

Figure S8. Prominin 1 (CD133/PROM1)ChIP-Seq data demonstrates ASCL1-bound 

peaks only in SCLC cell lines, but not NE-NSCLC lines. 

Figure S9. Ret proto-oncogene (RET) is a putative transcriptional target of ASCL1 in 

ASCL1(+) cell lines. (A): ChIP-Seq binding site in ASCL1(+) cell lines. (B): RET is 

expressed in most neuroendocrine lung cancer cell lines. (C): Knockdown of ASCL1 

reduces RET mRNA and RET protein expression in NCI-H1755 and HCC1833 NE-

NSCLC cell lines. (D): RET knockdown induces apoptosis in NE-NSCLC. (E): 

Treatment of ASCL1(+) NE-NSCLC lines and ASCL1(-) typical NSCLC lines with the 

RET inhibitor Cabozantinib. 

 

 

 



Supplementary Table S1A. Gene mutations that correlate with ASCL1(+) NSCLC cell 

lines (number of NSCLC and NE-NSCLC  lines with and without mutations listed) 

Gene NSCLC mut NSCLC-
NE mut 

NSCLC wt NE wt p-value p-val adj 

REG3A 3 2 87 4 0.0091 0.51 
PRRC2B 6 3 82 4 0.0190 0.51 

SRPX 0 1 89 5 0.0190 0.51 
ZMYM2 0 1 89 5 0.0190 0.51 
FSHR 5 2 84 4 0.0270 0.51 
CLIP1 3 2 86 5 0.0320 0.51 
OR4E2 1 1 88 5 0.0340 0.51 
TACR3 1 1 88 5 0.0340 0.51 
TROAP 1 1 86 5 0.0440 0.51 

 

Supplementary Table S1B. Gene mutations that correlate with ASCL1(+) NSCLC 

tumors from the The Cancer Genome Atlas (TCGA) (number of NSCLC and NE-NSCLC  

tumors with and without mutations listed) 

Gene NSCLC mut NSCLC-
NE mut 

NSCLC wt NE wt p-value p-val adj 

REG3A 17 4 250 13 0.0280 1.0 
PRRC2B 3 3 264 14 0.0032 1.0 

SRPX 3 2 264 15 0.0300 1.0 
ZMYM2 1 2 266 15 0.0098 1.0 
FSHR 20 4 247 13 0.0440 1.0 
CLIP1 6 3 261 14 0.0120 1.0 
OR4E2 2 2 265 15 0.0190 1.0 
TACR3 4 2 263 15 0.0440 1.0 
TROAP 6 3 261 14 0.0120 1.0 

 

Table S1. Mutation analysis of ASCL1(+) NE-NSCLC cell lines and ASCL1(+) NSCLC 

tumors from the TCGA. (A): 9 genes were identified to have significantly different 

mutation rates in ASCL1(+) NE-NSCLC cell lines and (B) ASCL1(+) TCGA tumors 

compared to non-ASCL1-expressing control cell lines and tumors. Significance 

determined by Fisher’s exact test. 



Supplementary Table S2. Sensitivity of NE-NSCLC cell lines to chemotherapy 

compared to NSCLC 

Therapy Log Ratio 
NE/NSCLC 

T-test Significance 

Docetaxel -0.44 0.2603 N.S. 

Doxorubicin -0.16 0.7485 N.S. 

Etoposide -0.49 0.4129 N.S. 

Gemcitabine -0.19 0.6823 N.S. 

Gemcitabine/Cisplatin 0.49 0.3908 N.S. 

Paclitaxel -0.10 0.7352 N.S. 

Paclitaxel/Carboplatin -0.18 0.4968 N.S. 

Pemetrexed -1.10 0.1420 N.S. 

Pemetrexed/Cisplatin -0.42 0.4621 N.S. 

Vinorelbine -1.38 0.4037 N.S. 

 
Table S2. NE-NSCLC cell line response to chemotherapy was compared to NSCLC. No 

significant differences were found between NE-NSCLC and NSCLC cell lines for 

standard chemotherapy regimens. Approximately 100 NSCLC cell lines were assayed 

for proliferation via MTS assay following addition of various chemotherapeutics, either 

alone or in combination. IC50 values were tabulated and utilized in this chart to 

separate NE-NSCLC and NSCLC sensitivities.  

 



Supplementary Table S3. Immunohistochemical analysis of ASCL1, SRY-determining 

region 2 (SOX2), thyroid transcription factor 1 (TTF1) in resected adenocarcinoma and 

squamous cell lung cancer patient samples 

IHC staining for Lineage Oncogenes Tumor Histology Total 

ASCL1 TTF1 SOX2 Adenocarcinoma Squamous  

+ + + 2 0 2 

+ - + 3 1 4 

+ + - 1 0 1 

+ - - 1 0 1 

- + + 4 0 4 

- - + 7 27 34 

- + - 22 0 22 

- - - 28 5 33 

    Total ASCL1(+) 8/101 

 

Table S3. ASCL1, SOX2, and TTF1 IHC analysis of resected lung adenocarcinomas 

and squamous cell cancers.  

 

 



Supplementary Table S4. ASCL1 ChIP-Seq data overview

Sample Reads Peaks % of Peaks 
with Primary 

Motif

P-Value for 
Motif

Shared -- 912 87.70% 1e-509

NCI-H128 19 x 106 8,363 70.43% 1e-3768

NCI-H1184 30 x 106 10,269 81.09% 1e-4825

NCI-H2107 67 x 106 8,914 94.94% 1e-4461

NCI-H1755 34 x 106 8,395 77.08% 1e-12512

HCC4018 73 x 106 4,329 84.71% 1e-2072

Table S4. Data overview of ASCL1 ChIP-Seq experiments. “Shared” represents 

consensus binding peaks between NCI-H128, NCI-H1184, NCI-H2107, NCI-H1755, and 

HCC4018 cell lines. 



Supplementary Table S5. Notch pathway representation in ASCL1 ChIP-Seq analysis

Gene Peak Region (Distance to TSS)
DLL1 Peak 703 (-1,435)

DLL3 Peak 300 (-880)

DLL4 Peak 152 (-790)

DTX1 Peak 93 (+58,658)

DTX2 Peak 770 (-87)

HES1 Peak 623 (+196,535)

HES5 Peak 412 (-4,668)

LFNG Peak 755 (+4,542)

NCOR2 Peak 82 (-152,878), Peak 74 (-19,415)

NOTCH1 Peak 859 (+18,932), Peak 874 (+56,923)

PSENEN Peak 333 (-4,550)

RBPJ Peak 658 (+131,938)

Table S5. Gene ontology analysis identifies significant enrichment of terms from the 

Notch pathway following ASCL1 ChIP-Seq analysis. Gene names with the location of 

consensus ASCL1-bound peaks are indicated.



Supplementary Table S6. Overexpressed ASCL1 ChIP-Seq target genes  

72 ASCL1 Target Genes 

ASCL1 FBP1 NKAIN2 SH3BP4 

BCL2 FOS NPTX1 SLC36A4 

CACNA1A FOXA2 NR0B2 SLC6A17 

CAMK1D FOXC1 NUAK2 SMOC2 

CAPS GCA PCNXL2 SPPL2B 

CNGB1 GRP PFKFB2 ST18 

CRIP2 ID2 PLXNA2 SVIL 

DGCR2 ID4 PTPRN2 TMEM61 

DGKB INA RAB3B TOX 

DIRAS2 IRF2BP2 RGS12 TOX3 

DMPK ISG20 RNF11 TSGA10 

DOCK10 KDM4B RNF183 TTC13 

DOK6 KIAA0182 RPS6KC1 WASF2 

DUSP6 KRT7 SCN2A ZBTB20 

ECE1 KSR2 SCN3A ZBTB40 

ERO1LB LYPD1 SEC11C ZFHX3 

ETS2 MAP6 SEPW1 ZNF516 

FAM70B NAV1 SETBP1 ZNF532 

 

Table S6. 1330 target genes identified from ChIP-Seq analysis were compared to 

microarray expression data between ASCL1(+) NCI-H128, NCI-H1184, NCI-H2107, 

NCI-H1755 and HCC4018 cell lines and control ASCL1(-) NCI-H524 and NCI-H526 cell 

lines. 72 significantly overexpressed genes (log2 NE-NSCLC/NSCLC > 2.00, p < 0.01) 

remained and likely constitute ASCL1 transcriptional targets. 

 



Supplementary Table S7. Potential druggable ASCL1 target genes overexpressed in 

neuroendocrine lung cancer cell lines.

24 Druggable and Overexpressed 
ASCL1 Target Genes
BCL2 ISG20

CACNA1A KRT7
CAMK1D KSR2

DGKB NR0B2
DIRAS2 NUAK2
DMPK PFKB2
DUSP6 PTPRN2
ECE1 RPS6KC1

ERO1LB SCN2A
ETS2 SCN3A
FOS SLC36A4
GRP SLC6A17

Table S7. 24 overexpressed genes from the ASCL1 ChIP-Seq analysis that are 

potentially druggable were culled using a database that identifies drug-gene interactions 

(24).



Generate the peak lists and common peak list for

submission to GEO.

Tao Wang

August 13, 2013

Peak list for each sample

> setwd("~/projects/ASCL1/data/ASCL1/chipseq/macs14/final_runs/by_cluster")

> library(limma)

> h1184 = read.table("H1184.csv", sep = ",")

> h128 = read.table("H128.csv", sep = ",")

> h2107c = read.table("H2107c.csv", sep = ",")

> h4018 = read.table("H4018c.csv", sep = ",")

> h1755 = read.table("H1755.csv", sep = ",")

> labels = c("chr", "start", "end", "length", "summit", "name",

+ "p", "fold", "FDR")

> colnames(h1184) = labels

> colnames(h128) = labels

> colnames(h2107c) = labels

> colnames(h4018) = labels

> colnames(h1755) = labels

> h1184[, "name"] = "H1184"

> h128[, "name"] = "H128"

> h2107c[, "name"] = "H2107c"

> h4018[, "name"] = "H4018"

> h1755[, "name"] = "H1755"

> rownames(h1184) = paste("H1184_", rownames(h1184), sep = "")

> rownames(h128) = paste("H128_", rownames(h128), sep = "")

> rownames(h2107c) = paste("H2107_", rownames(h2107c), sep = "")

> rownames(h4018) = paste("HCC4018_", rownames(h4018), sep = "")

> rownames(h1755) = paste("H1755_", rownames(h1755), sep = "")

> h1184 = h1184[h1184[, "fold"] >= 19 & h1184[, "p"] >= 50, ]

> h128 = h128[h128[, "fold"] >= 13 & h128[, "p"] >= 50, ]

> h2107c = h2107c[h2107c[, "fold"] >= 11 & h2107c[, "p"] >= 50,

+ ]

> h4018 = h4018[h4018[, "fold"] >= 13 & h4018[, "p"] >= 50, ]

> h1755 = h1755[h1755[, "fold"] >= 12 & h1755[, "p"] >= 50, ]

> setwd("~/projects/ASCL1/data/ASCL1/submission/peaks")

1



> cols = c("chr", "start", "end", "summit", "p", "fold", "FDR")

> write.table(h1184[, cols], file = "peaks_H1184.txt", sep = "\t",

+ row.names = F, quote = F)

> write.table(h128[, cols], file = "peaks_H128.txt", sep = "\t",

+ row.names = F, quote = F)

> write.table(h1755[, cols], file = "peaks_H1755.txt", sep = "\t",

+ row.names = F, quote = F)

> write.table(h2107c[, cols], file = "peaks_H2107.txt", sep = "\t",

+ row.names = F, quote = F)

> write.table(h4018[, cols], file = "peaks_HCC4018.txt", sep = "\t",

+ row.names = F, quote = F)

Generate common peak file

> setwd("~/projects/ASCL1/data/ASCL1/chipseq/macs14/final_runs/by_cluster")

> common = read.table("peaks_A")

> common = common[, -c(2, 3)]

> colnames(common) = c("chr", "new_summit", "H1184", "H128", "H1755",

+ "H2107", "HCC4018")

> setwd("~/projects/ASCL1/data/ASCL1/submission/peaks")

> write.table(common, file = "peaks_common.txt", sep = "\t", row.names = F,

+ quote = F)
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Draw the density plot of common peaks

Tao Wang

August 13, 2013

Write peak summits table

> setwd("~/projects/ASCL1/data/ASCL1/chipseq/macs14/final_runs/by_cluster")

> peaks = read.table("peaks_console")

> peaks = peaks[peaks[, 5] & peaks[, 6] & peaks[, 7] & peaks[,

+ 8] & peaks[, 9], ]

> peaks = peaks[, c(1, 4)]

> peaks[, 2] = round(peaks[, 2]/10) * 10 + 1

> setwd("~/projects/ASCL1/data/ASCL1/figures/density")

> write.table(peaks, file = "peaks", quote = F, row.names = F,

+ col.names = F)

Get intensity count

> data = matrix(data = 0, ncol = 6, nrow = 101)

> colnames(data) = c("H1184", "H128", "H1755", "H2107", "HCC4018",

+ "Control")

> failed = 0

> for (j in 1:dim(peaks)[1]) {

+ peak = peaks[j, ]

+ for (sample in colnames(data)) {

+ cat(paste(j, sample, "\n"))

+ command = paste("grep -m 1 -P -A 50 -B 50 \"", peak[,

+ 1], "\t", peak[, 2], "\t\" ~/projects/ASCL1/data/ASCL1/figures/density/",

+ sample, "_treat.txt", sep = "")

+ output = system(command, intern = T)

+ if (length(output) == 0) {

+ command = paste("grep -m 1 -P -A 70 -B 30 \"", peak[,

+ 1], "\t", peak[, 2] - 200, "\t\" ~/projects/ASCL1/data/ASCL1/figures/density/",

+ sample, "_treat.txt", sep = "")

+ output = system(command, intern = T)

+ if (length(output) == 0) {

+ command = paste("grep -m 1 -P -A 30 -B 70 \"",

+ peak[, 1], "\t", peak[, 2] + 200, "\t\" ~/projects/ASCL1/data/ASCL1/figures/density/",

+ sample, "_treat.txt", sep = "")

+ output = system(command, intern = T)
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+ if (length(output) == 0) {

+ failed = failed + 1

+ print(paste("failed", failed))

+ next

+ }

+ }

+ }

+ output = strsplit(output, split = "\t")

+ for (i in 1:101) {

+ index = (as.numeric(output[[i]][2]) - peak[, 2])/10 +

+ 51

+ if (index >= 1 && index <= 101) {

+ data[index, sample] = data[index, sample] + as.numeric(output[[i]][3])

+ }

+ }

+ }

+ }

> print(failed)

> setwd("~/projects/ASCL1/data/ASCL1/figures/density")

> save(data, file = "density.RData")

Plot the average density

> data = as.data.frame(data)

> data$H1184 = data$H1184/0.217

> data$H128 = data$H128/0.321

> data$H1755 = data$H1755/0.191

> data$H2107 = data$H2107/1.22

> data$HCC4018 = data$HCC4018/0.308

> data = data/max(data)

> par(mar = c(6, 6, 6, 6))

> plot((-50:50) * 10, data$H1184, type = "l", col = "coral", ylim = c(0,

+ 1.1), cex.lab = 1.5, lwd = 3, ylab = "Relative Peak Height",

+ xlab = "Relative Distance to Summit (bp)", cex.axis = 1.2)

> lines((-50:50) * 10, data$H128, col = "aquamarine", cex.lab = 1.5,

+ lwd = 3)

> lines((-50:50) * 10, data$H1755, col = "darkblue", cex.lab = 1.5,

+ lwd = 3)

> lines((-50:50) * 10, data$H2107, col = "darkgoldenrod1", cex.lab = 1.5,

+ lwd = 3)

> lines((-50:50) * 10, data$HCC4018, col = "darkmagenta", cex.lab = 1.5,

+ lwd = 3)

> lines((-50:50) * 10, data$Control, col = "azure4", cex.lab = 1.5,

+ lwd = 3)

> abline(v = 0, col = "green1", lwd = 4)

> lines(c(200, 260), c(0.98, 0.98), lwd = 3, col = "coral")
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> text(250, 0.98, labels = "H1184", pos = 4, font = 2)

> lines(c(200, 260), c(0.91, 0.91), lwd = 3, col = "darkblue")

> text(250, 0.91, labels = "H1755", pos = 4, font = 2)

> lines(c(200, 260), c(0.84, 0.84), lwd = 3, col = "aquamarine")

> text(250, 0.84, labels = "H128", pos = 4, font = 2)

> lines(c(200, 260), c(0.77, 0.77), lwd = 3, col = "darkmagenta")

> text(250, 0.77, labels = "HCC4018", pos = 4, font = 2)

> lines(c(200, 260), c(0.7, 0.7), lwd = 3, col = "darkgoldenrod1")

> text(250, 0.7, labels = "H2107", pos = 4, font = 2)

> lines(c(200, 260), c(0.63, 0.63), lwd = 3, col = "azure4")

> text(250, 0.63, labels = "Control", pos = 4, font = 2)
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Generating venn diagram of the overlap of

ChIP-Seq peaks

Tao Wang

August 13, 2013

Set working directory and load libraries.

> path = "~/projects/ASCL1/data/ASCL1/chipseq/macs14/final_runs/by_cluster"

> library(limma)

> library(gplots)

Read and prepare data matrix.

> h1184 = read.table(paste(path, "H1184.csv", sep = "/"), sep = ",")

> h128 = read.table(paste(path, "H128.csv", sep = "/"), sep = ",")

> h2107c = read.table(paste(path, "H2107c.csv", sep = "/"), sep = ",")

> h4018 = read.table(paste(path, "H4018c.csv", sep = "/"), sep = ",")

> h1755 = read.table(paste(path, "H1755.csv", sep = "/"), sep = ",")

> labels = c("chr", "start", "end", "length", "summit", "name",

+ "p", "fold", "FDR")

> colnames(h1184) = labels

> colnames(h128) = labels

> colnames(h2107c) = labels

> colnames(h4018) = labels

> colnames(h1755) = labels

> h1184[, "name"] = paste("H1184_", rownames(h1184), sep = "")

> h128[, "name"] = paste("H128_", rownames(h128), sep = "")

> h2107c[, "name"] = paste("H2107c_", rownames(h2107c), sep = "")

> h4018[, "name"] = paste("H4018_", rownames(h4018), sep = "")

> h1755[, "name"] = paste("h1755_", rownames(h1755), sep = "")

> h1184 = h1184[h1184[, "fold"] >= 19 & h1184[, "p"] >= 50, ]

> h128 = h128[h128[, "fold"] >= 13 & h128[, "p"] >= 50, ]

> h2107c = h2107c[h2107c[, "fold"] >= 11 & h2107c[, "p"] >= 60,

+ ]

> h4018 = h4018[h4018[, "fold"] >= 13 & h4018[, "p"] >= 50, ]

> h1755 = h1755[h1755[, "fold"] >= 12 & h1755[, "p"] >= 50, ]

These commands prepare files that can be submitted to GREAT.
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> write.table(file = "~/iproject/test/H1184.bed", h1184[, c("chr",

+ "start", "end", "name")], quote = F, row.names = F, col.names = F,

+ sep = "\t")

> write.table(file = "~/iproject/test/H128.bed", h128[, c("chr",

+ "start", "end", "name")], quote = F, row.names = F, col.names = F,

+ sep = "\t")

> write.table(file = "~/iproject/test/H2107.bed", h2107c[, c("chr",

+ "start", "end", "name")], quote = F, row.names = F, col.names = F,

+ sep = "\t")

> write.table(file = "~/iproject/test/H4018.bed", h4018[, c("chr",

+ "start", "end", "name")], quote = F, row.names = F, col.names = F,

+ sep = "\t")

> write.table(file = "~/iproject/test/H1755.bed", h1755[, c("chr",

+ "start", "end", "name")], quote = F, row.names = F, col.names = F,

+ sep = "\t")

Submit these BED files to GREAT (great.standford.edu). Read the files that
are produced by GREAT

> h1184 = read.table("H1184.txt", skip = 1, sep = "\t")

> h128 = read.table("H128.txt", skip = 1, sep = "\t")

> h2107c = read.table("H2107c.txt", skip = 1, sep = "\t")

> h1755 = read.table("H1755.txt", skip = 1, sep = "\t")

> h4018 = read.table("H4018.txt", skip = 1, sep = "\t")

> h1184 = as.vector(unique(h1184[, 1]))

> h128 = as.vector(unique(h128[, 1]))

> h2107c = as.vector(unique(h2107c[, 1]))

> h1755 = as.vector(unique(h1755[, 1]))

> h4018 = as.vector(unique(h4018[, 1]))

Using the output of the GREAT webserver, we can get the 5-set venn at
gene level

> genes = unique(c(h1184, h128, h1755, h2107c, h4018))

> venn = matrix(data = FALSE, ncol = 5, nrow = length(genes))

> rownames(venn) = genes

> colnames(venn) = c("H1184", "H128", "H1755", "H2107", "HCC4018")

> venn[h1184, "H1184"] = TRUE

> venn[h128, "H128"] = TRUE

> venn[h1755, "H1755"] = TRUE

> venn[h2107c, "H2107"] = TRUE

> venn[h4018, "HCC4018"] = TRUE

> par(mar = c(2, 2, 2, 2))

> venn = as.data.frame(venn)

> venn(venn, small = 0.6)

> write.table(venn, file = "~/iproject/test/venn_gene_level", quote = F,

+ sep = "\t")
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And also we can get the 5 set venn at peak level

> setwd("/home/twang6/projects/ASCL1/data/ASCL1/chipseq/macs14/final_runs/by_cluster")

> venn = read.table("peaks_console")

> venn = venn[, c(5:9)]

> colnames(venn) = c("H1184", "H128", "H1755", "H2107", "H4018")

> venn = venn == 1

> venn = as.data.frame(venn)

> venn(venn)
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Generate the bedGraph files for Genome Browser

visualization

Tao Wang

August 13, 2013

Read data matrix

> setwd("~/projects/ASCL1/data/ASCL1/chipseq/macs14/final_runs/by_cluster")

> h1184 = read.table("H1184.csv", sep = ",")

> h128 = read.table("H128.csv", sep = ",")

> h2107c = read.table("H2107c.csv", sep = ",")

> h4018 = read.table("H4018c.csv", sep = ",")

> h1755 = read.table("H1755.csv", sep = ",")

> labels = c("chr", "start", "end", "length", "summit", "name",

+ "p", "fold", "FDR")

> colnames(h1184) = labels

> colnames(h128) = labels

> colnames(h2107c) = labels

> colnames(h4018) = labels

> colnames(h1755) = labels

> h1184[, "name"] = "H1184"

> h128[, "name"] = "H128"

> h2107c[, "name"] = "H2107c"

> h4018[, "name"] = "H4018c"

> h1755[, "name"] = "H1755"

> h1184 = h1184[h1184[, "fold"] >= 19 & h1184[, "p"] >= 50, ]

> h128 = h128[h128[, "fold"] >= 13 & h128[, "p"] >= 50, ]

> h2107c = h2107c[h2107c[, "fold"] >= 11 & h2107c[, "p"] >= 50,

+ ]

> h4018 = h4018[h4018[, "fold"] >= 13 & h4018[, "p"] >= 50, ]

> h1755 = h1755[h1755[, "fold"] >= 12 & h1755[, "p"] >= 50, ]

The normalizing constant is calculated from total tag count in each condition

> h1184[, "p"] = 0.217

> h128[, "p"] = 0.321

> h1755[, "p"] = 0.191

> h2107c[, "p"] = 1.22

> h4018[, "p"] = 0.308
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> control = h4018[1, ]

> control[, c("name", "p")] = c("Control", 1)

Get the regions where the bedGraph file should be generated

> setwd("~/projects/ASCL1/data/ASCL1/figures/genomebrowser")

> regions = read.table("regions.txt")

> regions = as.data.frame(regions)

> colnames(regions) = c("gene", "chr", "start", "end", "pos0")

Construct wiggle files

> samples = list(control, h1184, h128, h1755, h2107c, h4018)

> for (j in 1:6) {

+ print(j)

+ sample = samples[j]

+ sample = as.data.frame(sample)

+ name = unique(sample$name)

+ scale = as.numeric(unique(sample$p))

+ temp = c()

+ for (i in 1:5) {

+ print(paste(">", i))

+ region = regions[i, ]

+ chr = as.vector(region$chr)

+ start = as.vector(region$start)

+ start = round(start/10) * 10 - 9

+ end = as.vector(region$end)

+ end = round(end/10) * 10 + 1

+ pos0 = as.vector(region$pos0)

+ pos0 = round(pos0/10) * 10 + 1

+ command = paste("grep -m 1 -P -A ", (end - pos0)/10,

+ " -B ", (pos0 - start)/10, " \"", chr, "\t", pos0,

+ "\t\" ~/projects/ASCL1/data/ASCL1/figures/density/",

+ name, "_treat.txt", sep = "")

+ output = system(command, intern = T)

+ output = strsplit(output, split = "\t")

+ for (k in 1:(1 + (end - start)/10)) {

+ line = output[[k]]

+ start_l = as.numeric(line[2])

+ num_l = as.numeric(line[3])/scale

+ if (start_l >= start && start_l <= end) {

+ temp = rbind(temp, paste(chr, start_l, start_l +

+ 10, num_l, sep = "\t"))

+ }

+ }

+ }

+ write.table(temp, file = paste(name, ".bedGraph", sep = ""),
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+ quote = F, row.names = F, col.names = F)

+ }

These are the headers for the bedGraph files

track type=bedGraph name="Control" description="Control" color=160,160,160 priority=6
track type=bedGraph name="H1184" description="H1184" color=153,50,204 priority=1
track type=bedGraph name="H128" description="H128" color=255,69,0 priority=2
track type=bedGraph name="H1755" description="H1755" color=34,139,34 priority=3
track type=bedGraph name="H2107" description="H2107" color=0,0,205 priority=4
track type=bedGraph name="HCC4018" description="HCC4018" color=102,0,51 priority=5
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Find common peaks by hierachical clustering

Tao Wang

August 13, 2013

This R script is used to identify the common peaks in different ChIP-Seq
samples by the hierachical clustering method. It only processes one chromosome
at a time. A Perl script will be run to recognize this prototype R script and
rewrites it to be submitted as a qsub job.

Read and prepare data matrix

> setwd("~/projects/ASCL1/data/ASCL1/chipseq/macs14/final_runs/by_cluster")

> library(limma)

> h1184 = read.table("H1184.csv", sep = ",")

> h128 = read.table("H128.csv", sep = ",")

> h2107c = read.table("H2107c.csv", sep = ",")

> h4018 = read.table("H4018c.csv", sep = ",")

> h1755 = read.table("H1755.csv", sep = ",")

> labels = c("chr", "start", "end", "length", "summit", "name",

+ "p", "fold", "FDR")

> colnames(h1184) = labels

> colnames(h128) = labels

> colnames(h2107c) = labels

> colnames(h4018) = labels

> colnames(h1755) = labels

> h1184[, "name"] = "H1184"

> h128[, "name"] = "H128"

> h2107c[, "name"] = "H2107c"

> h4018[, "name"] = "H4018"

> h1755[, "name"] = "H1755"

> rownames(h1184) = paste("H1184_", rownames(h1184), sep = "")

> rownames(h128) = paste("H128_", rownames(h128), sep = "")

> rownames(h2107c) = paste("H2107c_", rownames(h2107c), sep = "")

> rownames(h4018) = paste("H4018_", rownames(h4018), sep = "")

> rownames(h1755) = paste("h1755_", rownames(h1755), sep = "")

The ”chr=0” line here will be recognized and replaced by a chromosome
name, for example ”chrX”

> chr = 0

1



Prepare dist matrix

> h1184_chr = h1184[h1184[, "chr"] == chr & h1184[, "fold"] >=

+ 19 & h1184[, "p"] >= 50, ]

> h128_chr = h128[h128[, "chr"] == chr & h128[, "fold"] >= 13 &

+ h128[, "p"] >= 50, ]

> h2107c_chr = h2107c[h2107c[, "chr"] == chr & h2107c[, "fold"] >=

+ 11 & h2107c[, "p"] >= 50, ]

> h4018_chr = h4018[h4018[, "chr"] == chr & h4018[, "fold"] >=

+ 13 & h4018[, "p"] >= 50, ]

> h1755_chr = h1755[h1755[, "chr"] == chr & h1755[, "fold"] >=

+ 12 & h1755[, "p"] >= 50, ]

> data_chr = rbind(h1184_chr, h128_chr, h2107c_chr, h4018_chr,

+ h1755_chr)

> n = dim(data_chr)[1]

> data_chr[, "summit"] = data_chr[, "summit"] + data_chr[, "start"]

> data_chr = data_chr[order(data_chr[, "summit"]), ]

> cluster = hclust(dist(data_chr[, "summit"], method = "manhattan"))

Cluster analysis

> steps = cluster$merge

> data_chr = data.frame(data_chr, matrix(data = 0, ncol = 2, nrow = n))

> colnames(data_chr)[10:11] = c("color", "con_summit")

> data_chr[, "color"] = c(-1:-n)

> for (i in 1:(n - 1)) {

+ operations = c()

+ for (j in 1:2) {

+ if (steps[i, j] < 0) {

+ operations = c(operations, -steps[i, j])

+ }

+ if (steps[i, j] > 0) {

+ if (dim(data_chr[data_chr[, "color"] == steps[i,

+ j], ])[1] > 0) {

+ operations = c(operations, which(data_chr[, "color"] ==

+ steps[i, j]))

+ }

+ else {

+ operations = -1

+ }

+ }

+ }

+ if (operations > 0 && sum(table(data_chr[operations, "name"]))/length(table(data_chr[operations,

+ "name"])) == 1 && max(data_chr[operations, "summit"]) -

+ min(data_chr[operations, "summit"]) < 300) {

+ data_chr[operations, "color"] = i

+ }
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+ }

> colors = names(table(data_chr[, "color"]))

Assign summits

> for (color in colors) {

+ temp = data_chr[data_chr[, "color"] == color, ]

+ summit = (temp[, "summit"] %*% sqrt(temp[, "fold"]))/sum(sqrt(temp[,

+ "fold"]))

+ data_chr[data_chr[, "color"] == color, "con_summit"] = as.numeric(round(summit))

+ }

Get a venn count of number of peaks falling into each region

> con_data = as.data.frame(matrix(data = 0, nrow = length(colors),

+ ncol = 9))

> rownames(con_data) = colors

> colnames(con_data) = c("chr", "new_start", "new_end", "summit",

+ "H1184", "H128", "H1755", "H2107c", "H4018")

> con_data[, "chr"] = chr

> for (color in colors) {

+ temp = data_chr[data_chr[, "color"] == color, ]

+ con_data[color, "summit"] = unique(temp[, "con_summit"])

+ con_data[color, temp[, "name"]] = temp[, "summit"]

+ }

> con_data[, "new_start"] = con_data[, "summit"] - 39

> con_data[, "new_end"] = con_data[, "summit"] + 40

> venn = vennCounts(con_data[, c("H1184", "H128", "H1755", "H2107c",

+ "H4018")])

Write result into flat files

> setwd("~/projects/ASCL1/data/ASCL1/chipseq/macs14/final_runs/by_cluster")

> keep_H1184 = con_data[, "H1184"] > 0

> keep_H128 = con_data[, "H128"] > 0

> keep_H1755 = con_data[, "H1755"] > 0

> keep_H2107c = con_data[, "H2107c"] > 0

> keep_H4018 = con_data[, "H4018"] > 0

> write.table(con_data, file = paste(chr, "peaks", "console", sep = "_"),

+ quote = FALSE, row.names = FALSE, col.names = FALSE, sep = "\t")

> write.table(con_data[keep_H1184 & keep_H128 & keep_H1755 & keep_H2107c &

+ keep_H4018, ], file = paste(chr, "peaks", "A", sep = "_"),

+ quote = FALSE, row.names = FALSE, col.names = FALSE, sep = "\t")

> write.table(con_data[keep_H1184 & keep_H128 & (!keep_H1755) &

+ keep_H2107c & (!keep_H4018), ], file = paste(chr, "peaks",

+ "B", sep = "_"), quote = FALSE, row.names = FALSE, col.names = FALSE,

+ sep = "\t")
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> write.table(con_data[(!keep_H1184) & (!keep_H128) & keep_H1755 &

+ (!keep_H2107c) & keep_H4018, ], file = paste(chr, "peaks",

+ "C", sep = "_"), quote = FALSE, row.names = FALSE, col.names = FALSE,

+ sep = "\t")

> write.table(con_data[keep_H1184 & keep_H128 & keep_H2107c, ],

+ file = paste(chr, "peaks", "AB+", sep = "_"), quote = FALSE,

+ row.names = FALSE, col.names = FALSE, sep = "\t")

> write.table(con_data[keep_H1755 & keep_H4018, ], file = paste(chr,

+ "peaks", "AC+", sep = "_"), quote = FALSE, row.names = FALSE,

+ col.names = FALSE, sep = "\t")

> write.table(con_data[keep_H1184 & (!keep_H128) & (!keep_H1755) &

+ (!keep_H2107c) & (!keep_H4018), ], file = paste(chr, "peaks",

+ "D", sep = "_"), quote = FALSE, row.names = FALSE, col.names = FALSE,

+ sep = "\t")

> write.table(con_data[(!keep_H1184) & keep_H128 & (!keep_H1755) &

+ (!keep_H2107c) & (!keep_H4018), ], file = paste(chr, "peaks",

+ "E", sep = "_"), quote = FALSE, row.names = FALSE, col.names = FALSE,

+ sep = "\t")

> write.table(con_data[(!keep_H1184) & (!keep_H128) & keep_H1755 &

+ (!keep_H2107c) & (!keep_H4018), ], file = paste(chr, "peaks",

+ "F", sep = "_"), quote = FALSE, row.names = FALSE, col.names = FALSE,

+ sep = "\t")

> write.table(con_data[(!keep_H1184) & (!keep_H128) & (!keep_H1755) &

+ keep_H2107c & (!keep_H4018), ], file = paste(chr, "peaks",

+ "G", sep = "_"), quote = FALSE, row.names = FALSE, col.names = FALSE,

+ sep = "\t")

> write.table(con_data[(!keep_H1184) & (!keep_H128) & (!keep_H1755) &

+ (!keep_H2107c) & keep_H4018, ], file = paste(chr, "peaks",

+ "H", sep = "_"), quote = FALSE, row.names = FALSE, col.names = FALSE,

+ sep = "\t")

4



Cluster patients into different groups based on

expression data

Tao Wang

August 13, 2013

Read datasets. Choose one at a time

> dataset = "mda"

> setwd("~/projects/ASCL1/code/ASCL1/expression/survival")

> source("survival_plot.R")

> exp = read.datasets(dataset)$exp

> setwd("~/projects/ASCL1/data/ASCL1/expression/survival")

> gene_names = read.table("Alex_72.txt", stringsAsFactors = F)[,

+ 1]

> eset = exp[exp$S %in% gene_names, ]

> eset = aggregate(eset[, -1], by = list(eset[, 1]), mean)

Cluster patients

> par(mar = c(3, 3, 3, 3))

> clust = hclust(dist(t(as.matrix(eset[, -1]))))

> plot(clust, cex = 0.5, main = dataset, xlab = "patients")

Write expression data into a table. Rows and columns should be ordered as
in the heatmap

> rownames(eset) = eset[, 1]

> eset = as.matrix(eset[, -1])

> for (i in 1:dim(eset)[1]) {

+ eset[i, ] = eset[i, ] - mean(eset[i, ])

+ }

> setwd("~/projects/ASCL1/data/ASCL1/expression/microarray/cluster")

> pdf(file = paste(dataset, ".pdf", sep = ""))

> hm = heatmap(eset, cexCol = 0.2)

> dev.off()

RStudioGD
2

> eset = eset[, colnames(eset)[hm$col]]

> eset = eset[rownames(eset)[hm$row], ]

> write.csv(eset, file = paste(dataset, ".csv", sep = ""), quote = F)

1



KM-plot of the survival of adenocarcinoma

patients

Tao Wang

August 13, 2013

Define the function to read patient/expression datasets

> read.datasets = function(dataset) {

+ setwd("~/iproject/survival")

+ if (dataset == "mda") {

+ pat = read.csv("MDA209_patient.csv", as.is = T)

+ pat$stage = NA

+ pat$stage[grep("I", pat$stage.title)] = 1

+ pat$stage[grep("II|III|IV", pat$stage.title)] = 2

+ pat = pat[pat$Diag == "Adenocarcinoma", ]

+ pat = pat[, c("patientID", "death", "overall_survival_months")]

+ colnames(pat) = c("patient", "death", "OAST")

+ md = read.csv("md_expr.csv", as.is = TRUE)

+ colnames(md) <- gsub("X", "", colnames(md))

+ m2 = read.csv("MDACC_272_Lung_Tumors.csv", as.is = T)[,

+ 1:4]

+ mex = merge(m2, md[, -1], by.x = "Probe.Name", by.y = "Illumina.ID")

+ gsig = subset(mex, Symbol %in% gene_names)

+ exp = gsig[, c("Symbol", pat$patient)]

+ }

+ if (dataset == "Consortium") {

+ clin = read.csv("clinical_data12092011Kevin.csv", as.is = T)

+ sur5 = subset(clin, DataSet == "Dataset_5")

+ sur5 = sur5[, -c(2:4, 6)]

+ sur5$stage <- NA

+ sur5$stage[grep("T1", sur5$StageTNM)] <- 1

+ sur5$stage[grep("T2|T3|T4", sur5$StageTNM)] <- 2

+ missing <- sur5[which(is.na(sur5$OS.death) | is.na(sur5$OAST)),

+ c("PatientID")]

+ pat <- subset(sur5, !PatientID %in% missing)

+ pat = pat[, c("PatientID", "OS.death", "OAST")]

+ colnames(pat) = c("patient", "death", "OAST")

+ d5 = read.csv("data5expr.csv", as.is = T)

1



+ u133 = read.csv("Affymetrix_U133_from_Luc.csv", as.is = T)

+ d5a = merge(u133, d5, by.x = "Affy.ID", by.y = "X")

+ d5sub = subset(d5a, Symbol %in% gene_names)

+ col.names = colnames(d5sub)

+ col.names = col.names[4:length(col.names)]

+ col.names = col.names[order(col.names)]

+ d5sub = d5sub[, c(colnames(d5sub)[1:3], col.names)]

+ exp = d5sub[, !colnames(d5sub) %in% missing]

+ exp = exp[, 3:dim(exp)[2]]

+ }

+ if (dataset == "Tomida") {

+ load("TomidaGSE13213expr_os.RData")

+ tomida_expr = data$expr

+ tomida_expr = tomida_expr[tomida_expr$Gene.Symbol %in%

+ gene_names, ]

+ retain = c()

+ for (i in 1:dim(tomida_expr)[1]) {

+ if (all(!is.nan(as.matrix(tomida_expr[i, -1])))) {

+ retain = c(retain, i)

+ }

+ }

+ exp = tomida_expr[retain, ]

+ colnames(exp)[1] = "Symbol"

+ pat = data$clin

+ pat = pat[, c("UniqueID", "death", "overall_survival_months")]

+ colnames(pat) = c("patient", "death", "OAST")

+ pat$patient = as.vector(pat$patient)

+ }

+ result = list(pat, exp)

+ names(result) = c("pat", "exp")

+ result

+ }

Define the function to draw KM-plot. The p value calculation is slightly
differnt from the one used in the manuscript.

> survival_plot = function(gene_names, datasets, censor) {

+ library(superpc)

+ library(affy)

+ library(preprocessCore)

+ x = read.datasets(datasets[1])

+ y = read.datasets(datasets[2])

+ xmean = aggregate(x$exp[, -1], by = list(x$exp$Symbol), mean)

+ ymean = aggregate(y$exp[, -1], by = list(y$exp$Symbol), mean)

+ xymean = merge(xmean, ymean, by = "Group.1")

+ newd = xymean[, ]

2



+ newd[, -1] <- normalize.quantiles(as.matrix(newd[, -1]))

+ x$exp <- newd[, x$pat$patient]

+ y$exp <- newd[, y$pat$patient]

+ pv.expr <- function(x, digits = 1) {

+ if (!x)

+ return(0)

+ exponent <- floor(log10(x))

+ base <- round(x/10^exponent, digits)

+ ifelse(x > 1e-06, paste("p = ", base * (10^exponent),

+ sep = ""), paste("p = ", base, "E", exponent, sep = ""))

+ }

+ x$pat$OAST_censored = x$pat$OAST

+ x$pat$death_censored = x$pat$death

+ x$pat[x$pat$OAST > censor, "death_censored"] = 0

+ x$pat[x$pat$OAST > censor, "OAST_censored"] = censor

+ y$pat$OAST_censored = y$pat$OAST

+ y$pat$death_censored = y$pat$death

+ y$pat[y$pat$OAST > censor, "death_censored"] = 0

+ y$pat[y$pat$OAST > censor, "OAST_censored"] = censor

+ data.train <- NULL

+ data.train <- list(x = x$exp, y = x$pat$OAST, censoring.status = x$pat$death,

+ featurenames = newd$Group.1)

+ train.obj <- NULL

+ train.obj <- superpc.train(data.train, type = "survival")

+ data.test <- NULL

+ data.test <- list(x = y$exp, y = y$pat$OAST_censored, censoring.status = y$pat$death_censored,

+ featurenames = NULL)

+ risk <- NULL

+ risk <- superpc.predict(train.obj, data.train, data.test,

+ threshold = 1, prediction.type = "continuous")$v.pred.1df

+ write.table(file = paste("~/iproject/test/", datasets[1],

+ "_to_", datasets[2], ".txt", sep = ""), matrix(data = risk,

+ ncol = 1, dimnames = list(names(risk), "risk")))

+ surv.fit <- survfit(Surv(y$pat$OAST_censored, y$pat$death_censored) ~

+ risk > median(risk))

+ logrank <- survdiff(Surv(y$pat$OAST_censored, y$pat$death_censored) ~

+ risk > median(risk))

+ pv <- pchisq(logrank$chisq, 1, lower.tail = F)

+ par(mar = c(4, 4, 4, 4), mfrow = c(1, 1))

+ plot(surv.fit, col = 1:2, lty = c(2, 1), xlab = "Month",

+ ylab = "Survival", mark = 20, cex.lab = 1.5, lwd = 2,

+ main = paste(datasets[1], "to", datasets[2]))

+ text(40, 0.2, pv.expr(pv), cex = 1.5)

+ data.train <- NULL

+ data.train <- list(x = y$exp, y = y$pat$OAST, censoring.status = y$pat$death,

+ featurenames = newd$Group.1)
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+ train.obj <- NULL

+ train.obj <- superpc.train(data.train, type = "survival")

+ data.test <- NULL

+ data.test <- list(x = x$exp, y = x$pat$OAST_censored, censoring.status = x$pat$death_censored,

+ featurenames = NULL)

+ risk <- NULL

+ risk <- superpc.predict(train.obj, data.train, data.test,

+ threshold = 1, prediction.type = "continuous")$v.pred.1df

+ write.table(file = paste("~/iproject/test/", datasets[2],

+ "_to_", datasets[1], ".txt", sep = ""), matrix(data = risk,

+ ncol = 1, dimnames = list(names(risk), "risk")))

+ surv.fit <- survfit(Surv(x$pat$OAST_censored, x$pat$death_censored) ~

+ risk > median(risk))

+ logrank <- survdiff(Surv(x$pat$OAST_censored, x$pat$death_censored) ~

+ risk > median(risk))

+ pv <- pchisq(logrank$chisq, 1, lower.tail = F)

+ par(mar = c(4, 4, 4, 4))

+ plot(surv.fit, col = 1:2, lty = c(2, 1), xlab = "Month",

+ ylab = "Survival", mark = 20, cex.lab = 1.5, lwd = 2,

+ main = paste(datasets[2], "to", datasets[1]))

+ text(40, 0.2, pv.expr(pv), cex = 1.5)

+ }

Some example commands to run the survival analysis on Alex’s gene signa-
ture.

> setwd("~/projects/ASCL1/data/ASCL1/expression/survival")

> gene_names = read.table("Alex_72.txt", stringsAsFactors = F)[,

+ 1]

> censor = 60

> survival_plot(gene_names, c("Tomida", "mda"), censor)

> survival_plot(gene_names, c("Consortium", "mda"), censor)

> survival_plot(gene_names, c("Consortium", "Tomida"), censor)
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Supplementary Materials and Methods 

Cell Lines 

All lung cancer cell lines used in this study were obtained from the Hamon Cancer 

Center Collection (University of Texas Southwestern Medical Center). Cancer cells 

were maintained in RPMI-1640 (Life Technologies Inc.) supplemented with 5% or 10% 

fetal calf serum (FCS) without antibiotics at 37°C in a humidified atmosphere containing 

5% CO2 and 95% air. All cell lines have been DNA fingerprinted using the PowerPlex 

1.2 kit (Promega) and mycoplasma tested by e-Myco kit (Boca Scientific). Cells were 

treated with ABT-263 (Selleck) or DMSO control for up to 72 hours. 

Quantitative RT-PCR 

cDNA was generated with an iScript cDNA synthesis kit (BioRad). Gene specific Taq-

Man probes (Applied Biosystems) were utilized for quantitative analyses of mRNA 

transcript levels. The GAPDH gene was employed as an internal reference to normalize 

input cDNA. PCR reactions were run using the ABI 7300 Real-time PCR System and 

analyzed with the included software (Applied Biosystems). The comparative CT method 

was used to calculate relative mRNA expression levels. 

Western Blot Analysis 

Cellular proteins were separated by 10% SDS/polyacrylamide gel electrophoresis and 

electrotransferred to nitrocellulose membranes (Millipore). The membrane was blocked 

for 1 hour at room temperature (RT) then incubated with a primary antibody overnight at 

4°C, followed by incubation with a horseradish peroxidase-conjugated secondary 



antibody (Cell Signaling) for 2 hours at RT. Proteins were detected by enhanced 

chemiluminescence (Thermo Scientific). Primary antibodies against ASCL1 (BD 

Biosciences), BCL2 (Cell Signaling), PARP and Cleaved PARP (Cell Signaling), 

Cleaved Caspase 3 (Cell Signaling), RET (Cell Signaling), ALDH1A1 (Cell Signaling), 

and Hsp90 (Cell Signaling) were used in the study. 

Microarray Analysis 

Total RNA from cell lines was isolated using RNEasy kit (Qiagen). Gene expression 

profiling on each sample was performed using Illumina HumanWG-6 V3 BeadArrays 

(for the 206 lung cell lines GSE32036). Bead-level data were obtained and pre-

processed using the R package mbcb for background correction and probe 

summarization. Pre-processed data were then quartile-normalized and log-transformed 

for class comparison and unsupervised clustering analysis. 

Transient siRNA Transfections 

Lung cancer cell lines were optimized for transfection conditions in 6-well and 96-well 

plates by monitoring lipid content and cell number, and measuring the proliferative 

differences between scramble oligo control (Qiagen) and toxic control (Qiagen). For 6-

well experiments, 3-5 µL RNAiMAX (Invitrogen) was added to 500 uL serum-free RPMI-

1640 and incubated at room temperature for 5 minutes. 20 nM siRNA was mixed, plated 

dropwise in 6-well plates, and complexed for 20 minutes. 200x105 cells were added on 

top of the mixture, and incubated at 37°C for 72 hours prior to analysis. For 96-well 

experiments, 0.2-0.4 uL RNAiMAX was added to 10 uL RNAiMAX and incubated for 5 

minutes at RT. 20 nM siRNA was added to the lipid mixture and then added to each 



well. 2x103 cells were added in 90 uL RPMI supplemented with 5% or 10% FBS and 

incubated at 37°C for 5 days prior to proliferation analysis by MTS. siRNAs were 

purchased from Qiagen, including siASCL1-1,-2,-3 (SI00062573, SI00062580, 

SI00062587) , siBCL2 (SI00299397), siRET (SI02224985), siSOX2, siTTF1, siLUC, and 

siSCR.  

Cell Cycle Analysis 

1 x 106 cells suspended in 1 mL PBS were added drop wise into 2.5 mL of cold ethanol. 

After overnight incubation at -20°C, cells were resuspended and incubated in 500 μl 

staining solution (0.05% Triton X-100 in PBS supplemented with 50 μg RNase A 

(Sigma) and 50 μg/mL PI) for 40 min at 37°C. Cell cycle analysis was performed on a 

FACSCalibur flow cytometer. 

MTS Proliferation Assay 

Relative cell growth was analyzed by MTS assay. Briefly, 100 uL of cells grown in 96-

well plates were mixed with 20 uL MTS assay reagent consisting of tetrazolium 

compound and phenazine ethosulfate, an electron coupling reagent (Promega). Cells 

were incubated with MTS mixture until formation of soluble formazan product was 

observed. Relative absorbance was analyzed by plate reader.  

shRNA Stable Expression in Lung Cancer Lines 

pGIPZ lentiviral shRNA constructs targeting ASCL1 were purchased from Thermo 

Scientific. pGIPZ-shNTC served as a negative control. Lentiviruses were packaged in 

293T cells. Briefly, 293T cells were cultured in DMEM containing 10% FBS and 



transiently transfected with shRNA vector together with pMDG-VSVG and pCMV-

ΔR8.91 plasmids using Fugene6 (Roche). After overnight incubation, the viral 

supernatant was collected, filtered, and used for the transduction of lung cancer cells in 

the presence of 8 μg/mL polybrene (Sigma-Aldrich). Stable shRNA expressing lung 

cancer cells were generated after a one-week selection in 1.5 μg/mL puromycin.  

Liquid Colony Formation Assays 

For anchorage-dependent colony formation, 1x103 cells were plated in 6-well plates. 

Two weeks later, colonies were stained with 0.5% crystal violet and counted using 

Image J software (NIH). 

Immunohistochemistry 

Immunohistochemical (IHC) staining for ASCL1 was performed on tissue microarray 

and whole section samples as follows: 5 μm-thick formalin-fixed, paraffin-embedded 

tissue sections were deparaffined, hydrated, and processed in Leica BOND-MAX (Leica 

Microsystems Inc.). Slides were incubated with the primary antibody (ASCL1 1:25). 

Staining was developed with chromogen substrate (Leica Microsystems Inc.) and then 

counterstained with hematoxylin, dehydrated, and mounted. Immunostaining intensity 

and reactivity were examined by experienced pathologists (J.F. and I.W.) using a light 

microscope under a 20x magnification objective. ASCL1 nuclear expression was 

quantified using a 4-value intensity score (0, none; 1, weak; 2, moderate; and 3, strong) 

and the percentage (0%–100%) of the extent of reactivity. A final expression score was 

obtained by multiplying the intensity and reactivity extension values (range, 0–300). 

In Vivo Tumor Xenograft Experiments 



In vivo efficacy of ABT-263 was evaluated through xenografts established from 

subcutaneous injection of NCI-H1993 and NCI-H1755 cells to the flank of female 5- to 

6-week-old NOD/SCID mice.  Each mouse was injected with 1x106 viable cells in 0.2 

mL of PBS and monitored every 2–3 days for tumor formation. Tumor size was 

assessed with digital calipers; tumor volume was taken to be equal to the width × 

length2 × π/6. Once subcutaneous tumor reached approximately 250 mm3 mice were 

administered 100 mg/kg ABT-263 or vehicle control (i.p., daily for 14 days) at which 

point mice were sacrificed and subcutaneous tumors were harvested for analysis.  ABT-

263 was dissolved in propylene glycol, Tween-80, and D5W (pH 1.0). The mixture was 

sonicated and pH adjusted to ~4.  All animal care was in accord with institutional 

guidelines and approved IACUC protocols. 

Chromatin Immunoprecipitation, Sequence Library Preparation, and Alignment 

10 million lung cancer cells were prepared for chromatin immunoprecipitation (ChIP) by 

washing twice with cold PBS followed by trypsinization. The cell lines utilized for ChIP 

were the following: H1755, HCC4018 (NE-NSCLC), H128, H1184, H2107 (SCLC), and 

control cell lines H524 and H526 (ASCL1(-) SCLC). Nuclei were liberated from cells by 

dounce homogenization and then fixed in 1% formaldehyde for 10 minutes at room 

temperature. Fixation was terminated by adding glycine to a final concentration of 

0.125M. Chromatin was sheared by using a Diagenode Bioruptor for 30 minutes on high 

power with 30s:30s on:off cycles. 100 μg chromatin was immunoprecipitated with 5 μg 

affinity-purified mouse anti-ASCL1 antibody (BD Biosciences) followed by anti-mouse 

Dyna beads (Invitrogen). The immunoprecipitated chromatin was then purified with the 

Qiagen PCR Clean-up kit.  



Prior to sequencing, ChIP quality was determined by qRT-PCR for known targets DLL1 

and DLL3 as well as negative control regions. ChIP-Seq libraries were prepared using 

the NEBNext ChIP-Seq Library kit. Indexing primers and adapters were obtained from 

Illumina. Single-end sequencing of 50 bp was conducted for all samples on the Illumina 

High-Seq 2000 sequencer. The DNA sequencing data produced following ChIP and 

library preparation were aligned using Bowtie (35). The parameters for running Bowtie 

are "-S -n 2 -e 70 -l 20 -m 3 --time -p 12 --chunkmbs 512.” The reference genome is 

HG19. Replicates were mapped individually and pooled together. 

Peak Calling Using Model-Based Analysis for ChIP-Seq and DNA Motif Analysis 

ChIP-Seq peaks were called using Model-Based Analysis for ChIP-Seq (MACS) 

software, version 1.4.0rc (36). All reads that were mapped to more than one genomic 

region were removed in order to reduce ambiguity. Additionally, only one unique copy of 

each read was retained to prevent against PCR bias. Reads from control ASCL1(-) cell 

lines H524 and H526 were pooled prior to comparison with ASCL1(+) cell line reads. 

Peak calling was performed using default parameters in MACS. The cutoff for tag reads 

needed to retain a peak in each cell line varied from 11 to 19. Cutoff values were 

manually chosen based on visual inspection of ChIP-Seq peaks in the UCSC Genome 

Browser. Peaks appearing in ASCL1(-) control samples were subtracted from ASCL1(+) 

samples. 

 

After peak calling was performed in MACS on each cell line, a hierarchical clustering 

algorithm with complete linkage is used to identify consensus peaks in the ASCL1(+) 

cell lines. A maximum distance of 300 bp between peak summits appearing in different 



samples is allowed for consideration of consensus peaks. For clusters of consensus 

peaks, a new summit is calculated from summits of member peaks weighted by fold 

change. DNA motif analysis was performed using Heterogeometric Optimization of Motif 

EnRichment (HOMER) (37). The parameters used for HOMER are “-S 15 -bits -size -

50,50 -len 5,6,7,8,9,10 –keepFiles.” The”-50,50” parameter informs HOMER to search 

for motifs within a 100 bp window centered around the summit of consensus peaks.  

 

Gene Associations using Genomic Region Enrichment Annotation Tool 

Consensus peaks identified using MACS were tabulated as 70 bp reads in a .BED file 

and uploaded to the Genomic Region Enrichment Annotation Tool (GREAT) server in 

order to correlate genomic peak location with genes (18). Default parameters for gene 

association were used. GREAT defines a basal regulatory region for a gene within 5 kb 

upstream of the transcriptional start site (TSS) or 1 kb downstream and defines an 

extended regulatory region that exists within 1000 kb both up and downstream of the 

TSS. These rules were utilized to assign gene associations to the consensus peaks 

obtained from hierarchical clustering of peaks identified via MACS analysis.  

 

Correlation of Associated Genes with Microarray Expression Data 

Microarray expression data from the Minna lab in conjunction with ChIP-Seq gene-

association data was utilized to find likely transcriptional targets of ASCL1. Only those 

cell lines utilized for ChIP-Seq (H1755, HCC4018, H128, H1184, and H2107 and 

controls H524 and H526) were used to compare gene expression of ASCL1 targets.  

Microarray expression analysis was used to determine log2 ratio differences in 



transcripts between ASCL1(+) samples and the ASCL1(-) control lines. Comparison of 

gene expression differences of the 1330 ASCL1-associated genes between H1755, 

HCC4018, H128, H1184, H2107 versus H524 and H526 resulted in a list of 72 ChIP-

Seq target genes specifically up-regulated in ASCL1(+) samples.  

 

Survival analysis 

The prognostic performance of the 72 gene set was tested on three independent mRNA 

expression datasets: 442 primary lung adenocarcinomas comprising the National 

Cancer Institute Director’s Challenge Consortium study (Consortium dataset (19)). the 

Tomida dataset consisting of 119 lung adenocarcinomas (GSE13213) (20), and 209 

primary lung adenocarcinomas and squamous cell carcinomas from the SPORE dataset 

(GSE41271) (21). Overall survival time was defined as the time from the date of surgery 

to death or last follow-up contact. The prediction model was built from the training set by 

Supervised Principal Component analysis and then validated in the testing set. The 

Supervised Principal Component analysis was implemented using superPC R package 

with all default parameters. The testing set samples were then divided into two equal-

sized risk groups by the median of the predicted risk scores. Survival curves were 

estimated by the Kaplan-Meier method and compared according to log-rank test.  


