Supporting Information

Yang et al. 10.1073/pnas.1416864111

SI Materials and Methods

Peptide Binding Measurements. For peptide binding assays, increasing concentrations of each nonbiotinylated test peptide were incubated in competition with 0.04 μ M biotinylated GAD65 253–265^{R255F} peptide (IAFFKMFPEVKEK) in wells coated with HLA-DQ8 protein, as previously described (1, 2). Europium-conjugated streptavidin (PerkinElmer) was used to label biotinylated peptide bound to the HLA-DQ protein and was quantified using a Victor2 multilabel time-resolved fluorometer (PerkinElmer). Binding curves were fitted by nonlinear regression with a sigmoidal dose–response curve model using Prism software (v5.0, GraphPad Software).

CD4 T-Cell Isolation, in Vitro Stimulation, and Tetramer Staining. Peripheral blood mononuclear cells (PBMC) and negatively enriched CD4 cells were isolated and expanded in vitro as described previously (1, 3). Briefly, 2.5×10^6 CD4 cells in a 48-well plate were stimulated with 6 µM of either B:11-23 or modified B:11-23^{R22E} peptide, in separate, duplicate wells. After about 14 d of in vitro stimulation, tetramer staining was performed, and positivity was defined as the presence of a distinct population of CD4 bright cells at a percentage more than twofold above background (staining of cells from the unstimulated well, set to 0.1% for most experiments). Insulin-Specific CD4⁺ T-Cell Cloning and Proliferation Assays. Single tetramer-positive T cells were cloned and expanded as previously described (1). Their antigen specificity was confirmed by tetramer staining. To assess the proliferative response of T-cell clones to peptide and denatured insulin, 5×10^4 quiescent T cells of a desired clone and 1.0×10^5 irradiated HLA-DQ8+PBMC in 200 µL of T-cell culture medium [RPMI 1640 with 10% (vol/vol) pooled human serum] were stimulated in duplicate wells with 10-fold of serial dilutions or peptide or protein. After 48-h stimulation, each well was pulsed with 1 µCi of ³H-thymidine (Amersham Biosciences) for 16 h. Peptide stimulatory activity was determined as the absolute radioactive ³H cpm, or stimulation index (the ratio of ³H cpm in the presence of peptide verses no-peptide).

Western Blot Analysis of DQ8/Ins Complexes. Intact B6K10 cells (3 × 10^6) were incubated with anti HLA-DQ8 monoclonal antibody SPVL3 for 1 h on ice. After washing to remove unbound antibody, cells were lysed in buffer containing 1% Triton X-100, protease inhibitors and 10 mM iodoacetamide, and immune complexes recovered using protein G Sepharose. The bound complexes were eluted from the beads using SDS/PAGE sample buffer with or without 10 mM DTT, and separated by SDS/PAGE. After transfer to nitrocellulose membranes DQ8 β -chains were detected using an anti-FLAG monoclonal antibody M2 (Sigma), followed by goat anti-mouse IgG1-HRP (Jackson Immunoresearch), and ECL-Plus (Pierce).

- Yang J, et al. (2008) CD4+ T cells from type 1 diabetic and healthy subjects exhibit different thresholds of activation to a naturally processed proinsulin epitope. J Autoimmun 31(1):30–41.
- Ettinger RA, Papadopoulos GK, Moustakas AK, Nepom GT, Kwok WW (2006) Allelic variation in key peptide-binding pockets discriminates between closely related diabetesprotective and diabetes-susceptible HLA-DQB1*06 alleles. J Immunol 176(3):1988–1998.
- Yang J, James EA, Sanda S, Greenbaum C, Kwok WW (2013) CD4+ T cells recognize diverse epitopes within GAD65: Implications for repertoire development and diabetes monitoring. *Immunology* 138(3):269–279.

Fig. S1. Intracellular cytokine analysis for a representative insulin specific T-cell clone. A representative T-cell clone T1D#10 C2 was stimulated with PMA and ionomycin and stained intracellularly with anti–IL-2, IFN-γ, IL-10, TNF-α, IL-10, IL-4, IL-5, and IL-17. Each panel shown is gated on live tetramer-positive cells and depicts staining for one pair of cytokines.

Fig. 52. Characterization of B6K10 cells expressing register fixed DQ8/Ins complexes. (*A*) Diagram of the murine stem cell virus-based retroviral constructs encoding HLA-DQ8 with variants of the B:11-23 peptide covalently attached to the mature N terminus of the DQ8 β -chain. The position of introduced cysteine residues in the α -chain (V65C or 172C) and antigenic peptide (at p6 or p11 of the designed binding register, respectively) are indicated. The β -chain is also tagged at its C terminus with a FLAG epitope for immunoblotting. Internal ribosome entry site-driven expression of GFP indicates the level of integrated viral DNA. (*B*) Expression level of the various HLA-DQ8 molecules with the linked and register-fixed peptides. The DQ8 molecules expressed on the cell surface of B6K10 transductants were stained with a PE-conjugated anti–HLA-DQ monoclonal antibody and analyzed by flow cytometry. (*C*) Analysis of disulfide bond formation. Disulfide bonding of surface-expressed DQ8 molecules was analyzed as described in *SI Materials and Methods*. The register-fixed constructs (R1, R2, R3, and R4) contain a pair of cysteines that form a disulfide bond linking the DQ8 α -chain to the DQ8 β -chain through the antigenic peptide, and therefore are detected as an $\alpha\beta$ dimer under nonreducing conditions by the epitope tag in the β -chain. This resolves into the individual monomers upon reduction. The wild-type construct contains only a single native cysteine in the peptide and provides a negative control for the nonreduced samples.

Table S1. Subject information

PNAS PNAS

Subject	Sex	Age at draw	Days after dx	Insulin Ab	HLA-DQB1 (1)	HLA-DQB1 (2)	Insulin VNTR
Controls							
Healthy#1	F	28	NA	Negative	*03:02	*05:01	
Healthy#2	F	32	NA	Negative	*03:02	*05:02	
Healthy#3	М	39	NA	Negative	*03:02	*05:01	
Healthy#4	Μ	27	NA	Negative	*03:02	*06:02	
Healthy#5	F	27	NA	Negative	*03:02	*03:01	
Healthy#6	М	27	NA	Negative	*03:02	*02:01	
Healthy#7	F	31	NA	Negative	*03:02	*02	
Healthy#8	М	22	NA	Negative	*03:02	*05:01	
Healthy#9	М	27	NA	Negative	*03:02	*06:04	
Healthy#10	F	22	NA	Negative	*03:02	NA	
T2D#11	М	60	25 y	Negative	*03:02	*03:02	
T2D#12	М	68	23 y	Negative	*03:02	*06:02	
Patients							
T1D#1	М	14	1,156	Negative	*03:02	*02:01	1/1
T1D#2	F	14	367	Positive	*03:02	*05:01	1/3
T1D#3*	М	13	497	Positive	*03:02	*05:01	1/1
T1D#4*	М	21	212	Positive	*03:02	*05:01	1/1
T1D#5	F	11	1,116	Positive	*03:02	*03:03	1/1
T1D#6	М	16	937	NT	*03:02	*05:01	1/1
T1D#7	F	15	970	Positive	*03:02	*03:03	1/1
T1D#8*	М	16	468	Negative	*03:02	*03	1/1
T1D#9	F	9	859	NT	*03:02	*03:01	1/3
T1D#10*	М	13	1,531	Positive	*03:02	*05:01	1/1
T1D#11	М	24	568	Positive	*03:02	*05:01	1/3
T1D#12	М	11	897	Positive	*03:02	*02:01	1/1
T1D#13	М	38	539	Positive	*03:02	*02:01	3/3
T1D#14	М	30	977	Negative	*03:02	*03	1/1
T1D#15*	М	28	637	Negative	*03:02	*03	1/3
T1D#16*	М	14	953	Positive	*03:02	*02	1/1

Subjects marked with an asterisk have DQ8-restricted insulin responses. F, female; M, male; NT, not tested; T1D and T2D, type 1 and 2 diabetes, respectively.

Clone	IFN-γ	IL-2	TNF-α	IL-10	IL-13	IL-4	IL-5	IL-17A
T1D#15 C1	89.9	80.9	95.2	12.6	57.9	12.9	0.8	0.0
T1D#15 C2	76.1	95.2	98.5	19.0	93.7	29.0	0.2	0.1
T1D#10 C1	90.0	96.7	93.9	2.4	95.5	70.9	5.3	0.0
T1D#10 C2	97.3	94.7	97.9	0.3	89.4	35.6	2.7	0.0
T1D#10 C3	71.3	97.6	96.0	0.3	91.5	60.0	0.6	0.0
T1D#10 C4	91.4	96.9	90.6	1.6	91.9	78.4	0.4	0.0
T1D#10 C5	10.0	94.0	80.9	0.0	99.1	73.2	12.6	0.0
T1D#3 C1	96.1	93.4	99.1	17.8	52.0	3.4	0.3	0.0
T1D#3 C2	99.5	60.3	85.2	68.8	26.0	2.6	0.0	0.0
T1D#3 C3	100.0	91.2	99.8	3.6	88.4	41.5	4.0	0.0

Table S2. Cytokine secretion profiles of insulin-specific T-cell clones

T cells clones were isolated from T1D patients, expanded, and stimulated with PMA and ionomycin in the presence of Brefeldin A to induce cytokine production. The value listed in each column is the percentage of cells that stained positive for each respective cytokine.

Table S3. Sequences from microbial antigens that share homology with Ins B:11-23

Source organism	Accession no. of protein	Sequence*	Source
Human Bacteroides salanitronis	AEG19452 YP 004259638	LVEALYLVCGEEG	(1)
Clostridium acetobutylicum	NP_348681.1	IKELYLICGEDKW	(2)
Treponema phagedenis Microscilla marina	ZP_08037042.1 ZP_01690034.1	SEAD <u>ALYLVSSEE</u> VLY VN <u>ALYLVSGDE</u> VQI	(3) (4)

*The shared homologous region is underlined in each sequence.

DNAS

DNAS

1. Gronow S, et al. (2011) Complete genome sequence of Bacteroides salanitronis type strain (BL78). Stand Genomic Sci 4(2):191-199.

2. Nölling J, et al. (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183(16):4823-4838.

Trott DJ, et al. (2003) Characterization of Treponema phagedenis-like spirochetes isolated from papillomatous digital dermatitis lesions in dairy cattle. J Clin Microbiol 41(6):2522–2529.
Hopkinson BM, Roe KL, Barbeau KA (2008) Heme uptake by Microscilla marina and evidence for heme uptake systems in the genomes of diverse marine bacteria. Appl Environ Microbiol 74(20):6263–6270.