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A Auxiliary results for the proof of Theorem 1

Throughout we assume that f is a symmetric function on (0,1)? that is also
a-Holder continuous for some 0 < < 1, with f € Holder™(M) meaning that

[f(z,y) = f(=',y)]

sup = < M < o0,
(z,y)#(z',y')€(0,1)2 |(l’,y) - (I/7y/)|

where || is the Euclidean metric on R?.
We also define a set of summation indices R, which is the range of values
of 4 < j over which one must aggregate A;; to retrieve A7,. We write

he :=hl(a < k)+ (h+7)I(a = k);

h? if 1<a<b<k,
h .
32 — Ry = (2) if 1<a=0b<k,
ab ¢ h-(h+r) if 1<a<b=k,
Gy if a=b=k.

Proposition 1 (Moments of A%,). Let f € Hélder™(M) be symmetric on (0,1)2,
and let the labeling Z; be determined from the latent vector & by

z = min{((i)—l/m,k},

where (i)~1 is the rank of & from smallest to largest. Thus (i) is defined as the
index chosen so that §1y < &) < -+ < &), and (i)~ is its inverse function.

Assign i, = i/(n+1) fori =1,...,n, and define the oracle estimator of
f(z,y) based on knowledge of & in terms of the quantities

e _ 2icg A1 = a)1(z; = b)
Y 1GE =)z =0b)

1<a,b<ek.



With these definitions, the means and variances of each oracle estimator com-
ponent A*, satisfy the following:

IE A%y — pofus| < paM(20) {1+ o(1)},

pnf:zb - p%ﬁab

Var A%, —
M

{1+0(1)} + ppM?(2n) ™%

M
S Pnys 5 a7
h2y(2n)/2
where fu and Fab are defined by
- 1 -5 1 9
fab =7 flxy)dedy,  f2o =1 [ (@,y) de dy;
|wab| Wab ‘Wab‘ Wab

and the region wqp s given by

[(a — 1)h/n,ah/n] x [(b—1)h/n,bh/n] ifa <k and b <k,
[(k—1h/n,1] x [(b—1)h/n,bh/n] ifa=k and b <k,

¥ =N 16 — 1)h/n, bh/n] x [(k — Dh/n, 1] ifa<kandb—k O
[(k—=1)h/n,1] x [(k—1)h/n,1] ifa=k andb=k.

Proof. Note that the oracle sample proportion estimator takes the form
e Zl<j A ]I(Zi = a)H(Zj = b)
ab Zi<j I(z; = a) ]I('gj =1b)
hal(a7b)+(j—1) I(a=b)

Z h(b—1)+1 Ez h(a 1)+1J A ) (4)

— hal( a;éb)Jr(g 1) I(a= b)A o

Z] h(k—1)+1 Zz h(;ll2 1)+1 (1) (4) ifa<kandb=Fk,

AZk ifa=kandb<Ek;

ifa<kandbd<k,

2R AG)G)
— L ,
ab

where Ry, is defined implicitly to make the summation valid, and is non-random.
Thus we may conclude that

1
EA, =7 ), Edug) (2
ab (i)j)eRab
We define fop, for i, =i/(n + 1) and j, =j/(n+1), as
fab Z f Zna]n (3)

b (i,5)€Ras

We then use (6) from Lemma 2 to obtain that

E‘le;b - pnfab < pnM{Z(n + 2)}-@/2. (4)




We note from Lemma 4 that as f € Holder® (M) on (0,1)2,
|fab — fan| < M 2°/2n7{1 + 2% I(a = b)}. (5)
We then apply the triangle inequality to (2)—(5) to derive
B Az, — pufus| < pnM{{Q(n +2)}7% 199/ 4 29 (g = b)}}
< paM(2n)7%2{1 4 o(1)}.
This establishes the form of E A*,. We next calculate

i) e Ry 2 (mityeRras COVIA@G) Awmy) }
hd, '

Var A%, =
Referring to (7) of Lemma 2,

. 1
VarAiy=- > D Cov{Awmp), Aman}
@ (i j)€Rap (m,1)ERab

1 o o o
<o > pufins ) {1 = puf(in, jn)} + pEM>2(n + 2)]
ab (; s
(Zvj)ERab

+ %M{Q(n +2))? [1 + paM{2(n +2)} 2]

We may likewise determine the lower bound of
_ 1 . o —a
Var Ay, > A § ot Gy Ju)A1 = puf(in, jn)} — piMz[Q(n +2)]
ab (; s
(4,5)€Rap

— Pnopro(n + 2)) 0 [1 + puM{2(n +2)} /2|

From Lemmas 4 and 5 below, writing Fab for the normalized integral of f2(z,vy)
over the block wgp, we have respectively that

a/2
<

fab - fab

{1+29I(a = b)}

na

and

21| Fll o M 22/2
< M{l +2°T(a = b)}.

n

h% Z fz(inmjn) _F(Lb

% (i,)€Ray
Together these results yield the claimed expression for the variance of A%,. [

Lemma 1. Let f € Hélder™(M), with fap = |wap| " Il , fx,y) dedy defined
as its local average over wqp. Then

ﬁ // (@) = fa| ddy < M?2%(h/n)**{1+ 22 I(a =k or b= k) }.



Proof. Recall that wgp is given by (1), as before. Note from the definition of the
set Holder® (M) that if (z,y) € wap and a,b < k, then

s — f(avy)]| = \ [ swayaas - s

|Wa |

= |fa — fl2,y)| < // (@) = flz,y)| dz’ dy'
|wa| Wab
M|(2',y") = (z,y)|" da’ dy’

|wab| Wab

// [2(h/n)?] a/ da' dy' = M2°/2(h/n)®.
Wab

= Toud
Thus
| fon = (@, p)|* < M22%(h/m)>
o [ 1 = ful dedy < 3r22e oy
If a = k or b = k then we replace h by 2h to obtain a bound. O

Lemma 1 has been adapted from Wolfe and Olhede [16].

Lemma 2 (Moments of A;y(;y). Let i, =i/(n+1) fori=1,...,n, and let (i)
be defined as the index chosen so that {1y < {2y < -+ < §(,). Then the means
and variances of each Ay for i < j satisfy the following:

|E Ay gy = pnf (ins Gn)| < pnMA{2(n+2)} /2, (6)
[Var Ay gy = pnf (ins Gn) (1= puf(ins )| < po - M{2m +2)}7%2 ()
: [1 + puM{2(n + 2)}‘0‘/2].
Fori#morj#l, Cov{Au) i), Amyay } < P2 M*{2(n+2)}

Proof. Equation (6) follows directly from the law of iterated expectation, with
the first calculation following from conditioning on &:

EAw ) = Ee[Eag{Awy ) 1€}] = Bedpnf (Ea),€0) ) (8)

and the second calculation following by approximation of the latter expectation,
as we now show. As |-| is convex, Jensen’s inequality permits us to deduce that

|Ee onf (§):€)) — Pnf (insdn)| < o Be{| £ (£ €6y) = flinsdin)|}- (9)

We note that from Lemma 3, we have

Ee|f(€0y5€07)) — Flinsdin)| < M{2(n+2)} %2, (10)

and so we can deduce (6) by combining (8)—(10).



Equation (7) is derived from the law of total variance by

Var Ag)(j) = Ee[Varae { A ] + Vare [Eaje { Ay ) ]
=Ee{pnf(&w)€m)) (L= pnf (€@ €)) } (11)
+Ee{pi 2 (€6 €0)) b — BE{onf (i)}, 1< i< <.

The second and third terms in (11) cancel, and thus we obtain that

Var A () = pn{Be £ (6 €)) H{T = pnBe [ (€:€)) }-
We now need to calculate expectations with respect to the latent vector &.
Owing to (10), we can upper bound E; f(f(i), f(j)) by the quantity p,, f(in, jn)+
pnM{2(n + 2)}_a/2, and likewise the negative term — E¢ f(£(;),&(;)) by the
quantity _pnf(lna]n) + pnM{2(TL + 2)}7042' Similarly, 1- Pn EE f(g(z)vf(]))
and its negative can be lower bounded. Thus we may deduce the two inequalities
. . —a/2
Var Ay g) < pu | Flins jn) + M{2(n +2)} %]
1= P s Gn) + pu {200 + 20},
Var Ay 2 pu [ flin,gn) = M{2(n -+ 2)}~/?]
1= puflinsdn) = puM{2(n +2)} ).

Combining these two relationships, we obtain (7).

From the law of total covariance, we have that since ¢ < j and m < [, when
at least either ¢ # m or j # [, the conditional independence of the Bernoulli
trials comprising A yields

Cov{Ax) i) Amyn } = Be[Covae{Au), Amy }] (12)
+ Cove [Eae{ A5} Eae{Am ) }]
= 0 Cove{f (§1)>8(7) f (Eamy €y) }-
We now simplify this expression further, working directly with the form in (12).

We define j,, = j/(n+ 1), as well as m,, = m/(n+1) and l,, =1/(n+1). We
then use the shift-invariance of the covariance operator to write

|Cove{ f (&) €i)) s | (Eemy-E)) }]
< [Be [{ £ (s €6y) — £ lims dn) H{F Emys €)= F(mns 1)},

where we have a bound, rather than equality, because we do not claim that
E{f(f(,»), §(j))} = f(in,Jn). We may use Jensen’s inequality to deduce that

Ee{f (€ €i)) = Finsdn) H S Emys ) = F(mns 1) }|
< Eel{f (&), €0)) = findn) }H{F (Eamy> &) — f(mn, 1n) }-



Now, because f € Holder®(M) by hypothesis, there exists M < oo such that
|f($7y) - f(x/a y/)| < M‘(‘T7y) - (x/ay/)|a7

and so we obtain that

Ee|f (&6y-€)) — F iy )| | £ (Eamy> Ey) — f(mn, 1)
< M2E¢ (€ €)= (s d)|” [ (Emys ) — (min, 1)

From the Cauchy—Schwarz inequality, it therefore follows that
Ee| (€0 €5)) = (ins )] " (Emy» E@) — (s 1)[*
< VB (601+ €)= (e i) PV Ee (S0 €0) — (ms 1)

We then calculate

Ee|(Eomy- €0y) — (mnaln)’Qa = ]Ef{(f(m) - mn)2 + (&u) — ln)2}a-

Applying Jensen’s inequality, we find that for o <1,

Ee{ (60w —mn)” + (€0 — 1)} < [Var{g} + Var{g}]” < {200 +2)} .
Thus we may deduce that

|Cove{f (&) 6)) s £ (Emyr ) }] < M? {{2(” +2)} {20 + 2)}%? -

Combining this expression with (12) then yields the stated result. O

Lemma 3. Let f € Holder™ (M), and let {{;)}7—, be an ordered sample of
independent Uniform(0,1) random variables. Then for 1 <i,j <n we have

Ee | f (&) €03)) — Flinsdin)| < M{2(n +2)} 2.
Proof. We note that as f € Holder™ (M),
£ (€ i) — Flimdn)| < M|(Ey €0)) — Gimdn)|*, 1< irj <n.

Since Var§(;y = i, (1 —in)/(n +2) < (1/4)/(n + 2), by Jensen’s inequality we
have for any 0 < o < 1 that

. . 2 a/2 —a
Ee{ (€6 —in)® + (€() — )} < (Vareg, + Var§;y) 2 < {2(n +2)) 2
This completes the proof. O

Lemma 3 has been adapted from Wolfe and Olhede [16].



Lemma 4 (Linear quadrature bounds). Let f € Holder™ (M) be a symmetric
function on (0,1)%, and define i, =i/(n+1), j, = j/(n+1). Then with

fab Z fznvjn 1§a§b§k7
i (i,5)€Rab

we have that

fab = fan| < M 2920 {1 + 2%T(a = b)}.

Proof. We start from the definition of

fab—i Z f Zny]n

a (Z ])eRab

Thus we may by simple expansion determine

- n2 w w
fo-1r > / ) + Flimsdn) — Fa,9)) dedy

ab (;,j)€Ra, T

= l/ / fxydwder/ / {f(ins jin) = f(2,y)} do dy.

hay (4,)€ Rab

We now use the fact that f(x,y) € Holder®(M). Thus we may write

{f Zna]n _f(x7y)}dxdy
w L

i

n n a/2
s,% S5 i etz < 222 )

Jj—1
(7' J)ERap " "

with the last inequality following from the fact that f is a a-Hoélder function on
the domain of integration. Furthermore, we note directly if a < b then, with
wap as defined in (1),

/ / f(z,y) dxdy—th/ flz,y) dzdy. (14)
a Wab

If on the other hand a = b then

(Zf)( > [ / £(av) dody

b
i,J)ERpp © n

ab (i,7) € Rab

5 hbI(b<k)+nI(b=

:(7;) 3 N jzi //fxyda:dy. (15)

2 j=(b—1)h+1  i=(b—1)h+1




This equation acknowledges that group a has size h,, which is equal to h for
a=1,....,k—1, and hy = h+r for a = k. We shall start by simplifying this
expression. We note that the latter becomes:

9 hb]l(b<k +nI(b=Fk)

n
(hb) / /(b L (z,y)dxdy
2 (b 1)h+1

hbH(b<k)+n]I(b k) 2 y e
= foo + {l D 2] T/ }f(m,y)dmdy
= (b Dht1 2b) h Lo () Szt

o2 hbH(b<k +nI(b=Fk)
n

B L Y 1 y
= + —
ot 5, b S / hb—l hy /wnw hb—l/jnl

flz,y)dzdy

g o2 hb]l(b<k +nI(b= k) 1 /y
IR (b o ho(hy — 1) hb—l <b n hy—1 Jizs
_7 n

flz,y)dzdy

RbI(b<k)+nI(b=Kk)

_ 1 o2n2 oz v
—fbb+m - Z / { 2 /(b_nl)h e T}f(x,y)d:cdy

j=({b—1)h+1
1 o2 hb]I(b<k)+nH (b=F)
= Fort ———1 for — / / f(x,y) dz dy
(hy — 1) hy
=(b— 1)h+1
1 o2 hbH(b<k)+nH(b k)
:fbb"‘m W / / fbb— $y))dxdy
b b j= (b 1)h+1
(16)
We note that
o2 hb]I(b<k)+n]I(b k)
- /_1 / fbb — f(z y)) dx dy
b (b Dt YR
on? RbI(b<k)+nI(b=F)
ST Z / / |fbb— xy|dxdy<M<\[hb/n) .
b —(b—1)h+1
(17)

Thus, combining (17) with (13), (15), and (16), we have

’f_bb*fbb‘ < a2/ (\[hb/n) h —7



From the off-diagonal entries a < b we may conclude from (13) and (14) that

M2a/2

fab - fab

<

Thus it follows that

M22/2 a#b,

_ ~ 0
fab_fab < —+ a q

Since ﬁ < 2%if hy > 2, the expression follows. This concludes the proof. [J

Lemma 4 has been adapted from Wolfe and Olhede [16].

Lemma 5 (Square quadrature bounds). Let f € Holder™(M) be a symmetric
function on (0,1)?, and deﬁne in=1/(n+1), jo =7/(n+1). Then with

= Y, lindn), 1<a<b<F,
(7])€Rab

we have that
‘fzab - Pa

Proof. We start from

a/2
< 2||f||oo7aM2{1 +29T(a = b))}
n

2 i i

Py =2 T P @y) ¢ Plina) — Pay)] dedy
b P (@ J)zejRab /]7_11 ‘/171

{// F2(.) / / P2 —f2(x,y)}dxdy.

We now use that f(z,y) € Holder™(M). We write

> / / [F2imsdn) = F(ay)} dody

ab(lj JERw ©

TL
2
a

(2,7)ERab

i

,? S 1P - el dedy

ab ji—1 Jiz=1
(1,J)ERap ” ™

’ ' nsyJn nyJn) — 5 drd
ab D / / (ins gn) + L@ f (Gns Gn) — [ (2, y)| dz dy

’L]ERb

IN

2 oo
L / 7'm.7n _f(,ryy)|d$dy

2
hab (1,9) ERab
2| flloc M 22/

n()l

; (18)



with the final inequality following from (13) of the previous lemma. We note
directly if @ < b then

2
f (@, y) dody = f(x,y) dz dy. (19)
,jXE:R / / hib/wab

From the off-diagonal entries, for which a < b, we may conclude directly
from (18) and (19) that

] 2| flloo M2/2
‘f2ab _fzab‘ < - e

If on the other hand @ = b then

n2 % % ,
(hb) Z /Q i1 f (‘r7y) dxdy

2/ (i,j)€Rw "’ 7
y WBIG<K) (b=

:(Zb) 3 ! jz /ﬂﬁfxydmdy

j=(b—1)h+1  i=(b—1)h+1

We shall start by simplifying this expression. We note that the latter becomes:

9 hbI(b<k)+nl(b=Fk)

R oo remea
/71[ y)) dx dy.

hI(b < k) +nl(b=k) @H(b <k)+1(b=k),

1 on? hb]l(b<k )+nI(b=k)

=f2, 4+ - ~"
fbb (hbf].) hb

j:b 1)h+1

We may note directly that

(b—1)h
- <a<y<
n n

and so it follows that

Bh T(b<k)+I(b=k) 2L I(b<k)+I(b=k)
_ ) h?bf(m S ) (- 1§h ) f2( I) da’ dy' ,
‘beb _f (:E,y)’ < = n{hb} _f (.’I/‘,y)

2 pRUG<HIG=E) B IG<k)+I(b=k)

n , )
B ﬁ ICaD L @-nh |f (x/’ y/) —f (x,y)\ dx’ dy/
bh bh
2||f||oon BLI(b<k)+I(b=k) BET(b<k)+I(b=k)
= @ bo1n lf(',y) = f(z,y)| da’ dy’

< 2||f||ooM(*Cf”>

10



Thus

2 hbI(b<k)+nl(b=k)
n

% r2
> /[ L Padedy =7y,

(th) =(b—1)h+1

o2 hbH(b<k)+n]1(b k)

g(hbl_l) i / / 2|l M (””)

=(b— 1)h+1

1 ﬁhb

For the on-diagonal entries having a = b, it therefore follows that

ﬁ%)a

— ~ 2||f||ooM2a/2 1
2 2 < + 2 M
‘f w— bb‘ > na (hy — 1) [l £l oo

Note that ( ) < 2% if hy > 2, and so the expression follows.
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