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S1 Static coiling: interplay of natural curvature and twist

In the main manuscript, we studied the scenario of static coiling when an elastic rod is deployed onto a
rigid substrate (when the belt is static, vb = 0), giving particular emphasis to the interplay between natural
curvature and twist. This was motivated by the finding that, for nearly straight rods, the coiling is smooth
(see Movie S1) and the rod prescribes a circle on the substrate with a coiling radius that is set by the gravito-
bending length, R̄C ∼ 2, i.e. RC ∼ 2Lgb (Fig. 2C in main manuscript). By contrast, for a sufficiently curved
rod, the coiling radius is set but its natural radius R̄n = 1/κ̄n and the coiling direction exhibits periodic
reversals (see Movie S2). Recall from the manuscript that barred quantities represent normalization of length
by the gravito-bending length, Lgb, and time by Lgb/v. In what follows, we extend the analysis of the data
obtained from the DER simulations that was presented in Fig. 2D and Fig. 2E of the main manuscript.

In Fig. S1A, we plot simulated results for a representative time-series of the total twist, Φ(t̄) =
∫ sc

0
θ′(s, t̄)ds,

accumulated on the suspended heel (between the injector, at s = 0, and the point of contact with the sub-
strate, s = sc) for a rod with κ̄n = 0.69, Lgb = 3.3 cm, deployed from H̄ = 15. The maxima and minima
of Φ(t̄) are associated with events of inversion of the coiling direction, which are marked in the plot by the
vertical solid lines. The reversal events were identified independently and automatically by examining the
signed turning angle in the conveyor belt’s plane between successive edges in spatial discretization of the
simulations. The corresponding rate of accumulation of total twist, dΦ/dt̄, is plotted in Fig. S1B. Prior to
each reversal event, dΦ/dt̄ is approximately constant, which is consistent with the radial symmetry of the ge-
ometry of deposition onto the belt. Immediately after each reversal, however, there is an abrupt step-change
in stored twist, which is consistent with and provides further evidence for the torsional buckling instability
mentioned in the main text.
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Figure S1: Static coiling. Time series of (A) the total twist, Φ(t̄), and (B) its time derivative, dΦ/dt̄,
accumulated on the suspended heel, between the injector and the contact point with the substrate. The
data was obtained from the DER simulations for a naturally curved rod with Lgb = 3.3cm and κ̄n = 0.69,
that was deployed from a height of H̄ = 15. The vertical solid lines correspond to events of reversal of the
coiling direction.
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S1 STATIC COILING: INTERPLAY OF NATURAL CURVATURE AND TWIST

We now further address the relation between storage of twist and the inversion of the coiling direction by
quantifying the average twist at inversion, θ′c = Φc/sc, where Φc corresponds to the maxima in the time series
of Fig. S1. Under the approximation that sc ≈ H, the dimensionless average twist at inversion becomes,

θ̄′c =
Φc
H̄
. (S1)

In Fig. S2A, we plot Φc/(2π) as a function of the number of coils between each inversion, N = L̄inv/(2πR̄C),
where L̄inv is the dimensionless length of the segment of the rod consumed between each reversal. We find
that Φc/(2π) depends linearly on N , with approximately the same slope of ∼ 0.5 for different values of
κ̄n. Recalling that the total twist oscillates between −Φc and Φc (Fig. S1A), we conclude that each coil
accumulates an amount of 2π of total twist, which was a result needed in the main manuscript. Moreover,
the dependence of the total twist at inversion on the deployment height is plotted in Fig. S2B, where we
find that Φc ∼ H̄. This points to the existence of a critical dimensionless twist, θ̄′c (defined in Eq. S1), that
is independent of H̄ and, therefore, further corroborates the scenario of torsional buckling.
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Figure S2: Static coiling. (A) Total twist at inversion, Φc/(2π), as a function of the number of coils between
each inversion, N (Lgb = 3.3cm and H̄ = 15), for rods with different values of the natural curvature κ̄n
(provided in the legend). (B) Total twist at inversion, Φc/(2π), as a function of normalized deployment
height, H̄. The data was obtained from the DER simulations.

Thus far, we have focused on the accumulation of twist on the suspended heel of the rod during coiling.
In the manuscript, however, we claimed that natural curvature of the rod determines whether the twist
in the suspended heel can reach the level necessary for torsional buckling, or is held constant by storing
additional twist in the loops of rod deposited on the substrate. In Fig. S3 to distinguish between the two
regimes, we plot the normalized average twist 〈θ̄′〉 in the deposited loops (in contrast to the suspended heel,
addressed above) as a function of the dimensionless natural curvature, κ̄n. This twist is averaged over 60Lgb

of deposited rod, beyond the point of contact with the substrate. Two markedly different regimes emerge.
For rods with low natural curvature, κ̄n < 0.3, all of the average twist accumulates in the deposited loops.
On the other hand, for values of the natural curvature above, κ̄n > 0.3, no twist accumulates in the deposited
loops requiring that, instead, it is stored in the suspended heel. Above a critical value, this build up of twist
then leads to torsional buckling and subsequently to inversion of the coiling direction.
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S2 DERIVATION OF GEOMETRIC RELATION BETWEEN λ̄, Ā0 AND ε
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Figure S3: Normalized average twist, 〈θ̄′〉 = 〈θ′〉Lgb, in the deposited loops (averaged over 60Lgb of rod
beyond the point of contact, sc, with the substrate) as a function of natural curvature. The data was
obtained from the DER simulations for a naturally curved rod with Lgb = 3.3cm that was deployed from a
height of H̄ = 15.

S2 Derivation of geometric relation between λ̄, Ā0 and ε

In Eq. 5 of the manuscript, we stated that the relation between the dimensionless wavelength, λ̄, of the
sinusoidal meandering patterns and the dimensionless characteristic amplitude, Ā0, (set by the physical
properties of the rod) is given by

λ̄ = Ā0(C1ε+ C2), (S2)

where ε = (v − vb)/v is the dimensionless speed mismatch between the injector and the belt, Ā = Ā0
√
ε is

the observed amplitude of the patterns and C1 = −2.48 and C2 = 3.20 are numerical coefficients. In the
following, we provide a detailed geometry-based derivation of this result.

We start by assuming that the periodic pattern in the meandering regime can be represented by the
curve

y = A sin

(
2πx

λ

)
, (S3)

where (x, y) is the Cartesian coordinate system on the plane of the belt, and x points along the direction of
motion of the belt. The arc length of this curve for a single period of oscillation is given by

l =

∫ λ

0

√
1 +

(
dy

dx

)2

dx, (S4)

which can be expressed in terms of the complete elliptical integral of second kind, E(k) =
∫ π/2

0

√
1− k2 sin2 θdθ,

as

l =
2
√
λ2 + 4π2A2

π
E

(
2πA√

λ2 + 4π2A2

)
. (S5)

Expressing E(k) by the power series

E(k) =
π

2

∞∑
n=0

{ (2n)!

22n(n!)2
}2 k2n

1− 2n
, (S6)

S3 Jawed et al., Supplementary Information



S2 DERIVATION OF GEOMETRIC RELATION BETWEEN λ̄, Ā0 AND ε

observing that k = 2πA/
√
λ2 + 4π2A2 < 1, and ignoring terms of O(k4), we obtain

l =
√
λ2 + 4π2A2

(
1− 1

4

4π2A2

λ2 + 4π2A2

)
. (S7)

Under the above assumption of a sinusoidal pattern, the dimensionless speed mismatch (which is treated
as the primary control parameter of the dynamic coiling regime) can be written in the alternative form

ε =
l − λ
l

. (S8)

Combining Eq. S7 and Eq. S8, l can now be eliminated to arrive at

λ

1− ε =
√
λ2 + 4π2A2

(
1− 1

4

4π2A2

λ2 + 4π2A2

)
, (S9)

which, upon rearrangement, yields an expression for the meandering wavelength as a function of ε,

λ = A
3π(1− ε)√

−1− 3ε2 + 6ε+
√

1− 3ε2 + 6ε
. (S10)

Recalling that we found experimentally (Fig. 4C of the main manuscript) that A = A0
√
ε, where A0, is

a constant set by the physical properties of the rod, Eq. S10 can now be rewritten as

λ = A0f(ε), (S11)

where f(ε) is a dimensionless function given by

f(ε) =
3π(1− ε)√ε√

−1− 3ε2 + 6ε+
√

1− 3ε2 + 6ε
. (S12)

Note that, in the limit of ε → 0, we obtain f(ε) → π. We now seek to find a simpler version of Eq. S12
for small values of ε. In our experiments, we find that the meandering regime is restricted to the range
0 < ε < 0.5 of the control parameter. Within this limited range, we can linearize f(ε) to get

f(ε) = −2.48ε+ 3.2, (S13)

which upon substitution into Eq. S11 yields a simple relation between λ and ε,

λ ≈ A0(−2.48ε+ 3.2). (S14)

Dividing both sides of Eq. S14 by Lgb for the purpose of nondimensionalization leads to

λ̄ ≈ Ā0(−2.48ε+ 3.2). (S15)

Comparing this result with Eq. 5 of the main manuscript (identical to Eq. S2, above), we can finally
determine the values of the originally stated numerical coefficients C1 = −2.48 and C2 = 3.20. Moreover,
the dimensionless onset wavelength, λ̄0, can also be readily obtained from Eq. S15 by taking the limit of
ε→ 0, such that λ̄0 ≈ 3.2Ā0.

We proceed by performing a quantitative comparison of the dimensionless ratio f(ε) = λ/A0 between:
i) the full analytical expression (Eq. S12), ii) its linearized version (Eq. S13) and iii) the numerical results
obtained directly from the Discrete Elastic Rods (DER) simulation tool. In the DER numerics, we have
measured the amplitude, A, and wavelength, λ, of the sinusoidal patterns in the meandering regime, for
different values of ε and the constant A0 was evaluated using the relation A = A0

√
ε. In these simulations

we used a rod with the gravito-bending length Lgb = 3.3cm, deployed from a height of H̄ = 33 (same
parameters were used for the data reported in Fig. 4 of the main text). In Fig. S4, we plot the results
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S3 ADDITIONAL PHASE DIAGRAMS IN THE (κ̄N , ε) AND (H̄,ε) PARAMETER SPACES

for the dependence of f(ε) on the dimensionless excess velocity, ε, for each of the three cases. Excellent
agreement is found between one another, which confirms the validity of the linear approximation in Eq. 5
of the main text, which is an important ingredient throughout the analysis of the meandering regime.
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Figure S4: Dependence of the dimensionless ratio f(ε) = λ/A0 (defined in Eq. S11) on the dimensionless
speed mismatch, ε. A comparison is performed for i) the full analytical expression (Eq. S12), ii) its linearized
version (Eq. S13) and iii) the numerical results obtained from DER (using a rod with Lgb = 3.3cm, deployed
from H̄ = 33).

S3 Additional phase diagrams in the (κ̄n, ε) and (H̄,ε) parameter
spaces

In Fig. 3 of the main text, we presented a phase diagram of the various coiling regimes (I – Meandering; II
– Stretched coiling; III – Alternating loops; and IV – Translated coiling) in the (v, vb) parameter space, for
a naturally straight rod (κ̄n = 0). Recall that v is the speed of deployment and vb is the speed of the belt.
The linearity of the observed phase boundaries (straight lines that pass through the origin) that separate
the various regimes suggested that the primarily control parameter of the patterns was the dimensionless
speed mismatch, ε = (v − vb)/v.

Throughout the manuscript, we have also identified other physical parameters that play an important role
in the coiling process, namely the natural curvature of the rod, κn, and the height of deployment. As such,
and for the sake of completeness, we have constructed phase diagrams in the (κ̄n, ε) and (H̄,ε) parameter
spaces, which we plot in Fig. S5A and S5B, respectively, where we combine experimental and numerical
results.

In Fig. S5A, we find that the natural curvature of the rod can affect the selected mode of the coiling
patterns. As κn is increased, the basin of existence of the meandering regime is expanded, whereas the
translated coiling regime disappears for κ̄n & 0.17. Moreover, for sufficiently curved rods (κ̄n & 0.17) and
at high values of the dimensionless excess speed (ε & 0.7), we obtain patterns that fall outside our 4-modes
classification scheme (an example of which is given in Fig. S5C). A more thorough analysis of these patterns
is beyond the scope of this study. In the limit of ε → 1, however, we do recover the static coiling scenario
that was characterized and quantified in the main text.

In the (H̄,ε) phase diagram presented in Fig. S5B (obtained for a naturally straight rod) we find that the
phase boundaries are approximately perpendicular to the x-axis, which demonstrates that the deployment
height, H̄, has no significant impact on the selection of the pattern. This result is rationalized below where
we find that the various length scales of the meandering patterns vary logarithmically on H̄.
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S4 EFFECT OF THE HEIGHT OF DEPLOYMENT
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Figure S5: Phase diagrams. The rods used to construct the phase diagrams had a gravito-bending length,
Lgb = 3.3 cm, and deployment height, H̄ = 15. The physical properties are listed in detail in Materials
and Methods. (A) Phase diagram of possible patterns in the natural curvature and dimensionless speed mis-
match parameter space. (B) Phase diagram of possible patterns in the deployment height and dimensionless
speed mismatch parameter space. (C) Simulation image of an uncategorized pattern observed when natural
curvature, κ̄n = 1.0, and dimensionless speed mismatch, ε = 0.8.

S4 Effect of the height of deployment

Having found that the height of deployment has a negligible effect on the coiling patterns (Fig. S5B), we
now focus on the meandering regime and seek to determine the dependence on H̄ of the dimensionless onset
wavelength of the pattern, λ̄0, (or equivalently, Ā0), from which all other length scales can be determined
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S4 EFFECT OF THE HEIGHT OF DEPLOYMENT

using Eq. S2. The final goal is to derive Eq. 6 of the main text, reproduced here again for convenience

λ̄ =
1

C2

(
D1 log H̄ + β

)
(C1ε+ C2), (S16)

where λ̄ is the dimensionless meandering wavelength, ε is the dimensionless speed mismatch, Lgb is the
gravito-bending length of the rod, C1 and C2 are numerical constants that were determined above in § S2,
and D1 and β are new numerical constants that need to be determined.
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Figure S6: Suspended heel of the rod (red) under gravity, in the weakly nonlinear shape considered for the
analysis. (A) Three-dimensional view of the setup. The rod (2) is deployed form the injector (1), onto the
rigid belt substrate (3). The injection nozzle is located at s = 0 and the contact point between the rod and
the belt is at s = sc. The point s = s∗ is the location of maximum deflection of the rod. (B) Schematic
diagram of the projection into the x− z plane.

In Fig. S6, we present a schematic diagram of the geometry of our setup: Fig. S6A is a three-dimensional
perspective and Fig. S6B is a schematic of the projection onto the x− z plane (x is the direction of motion
of the belt.). The rod (in red), has radius r0, bending stiffness EI, density, ρ, and area of cross section, a,
and is deployed from the injector onto the rigid belt substrate (in black). Note that the total arc length
of the rod between the injection nozzle (at s = 0) and the point of contact with the substrate (s = sc)
is slightly larger than H, such that the rod assumes a weakly nonlinear shape. We assume the injector is
sufficiently high, i.e. H̄ � 1; this assumption is necessary for the analysis below. The point of maximum
deflection, located at s = s∗, separates the rod into two segments – Segment A for 0 < s < s∗ and Segment
B for 0 < s < sc. These two segments exert an equal and opposite force, with horizontal (in the x direction)
component f , on each other.

The horizontal coordinate, x, has origin at the injection nozzle, and the vertical one, z, originates at the
substrate. The rod, which is assumed to be inextensible, deforms in the x−z plane and its shape can be fully
described by the local orientation parameterized by the angle, ψ(s), that its tangent makes with the vertical.
The vertical and horizontal tangents are represented by ψ = 0 and ψ = π/2, respectively. Therefore, the
boundary condition at the injection point is ψ(0) = 0.

Focusing on Segment A of the rod, its total energy can be written as,

EA = fx(s∗) +

∫ s∗

0

ρgaz(s)ds, (S17)
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S4 EFFECT OF THE HEIGHT OF DEPLOYMENT

where the first term corresponds to the external work done by the horizontal force, f , and the second term is
the contribution to the potential energy due to the weight of the rod. Note that in Eq. S17, we have neglected
the contribution due to bending given that the bending energy is proportional to the square of the local
curvature, (dψ/ds)2, which is assumed to be small along Segment A. This follows from the large deposition

height assumption above. Using the geometric relation, x(s∗) =
∫ s∗

0
sinψds, and the approximation for the

vertical coordinates of the rod, z(s) ∼ (sc − s) cosψ(s), we can rewrite Eq. S17 as,

EA ∼ f
∫ s∗

0

sinψds+

∫ s∗

0

ρga(sc − s) cosψds. (S18)

We now follow a variational approach and search for equilibrium by minimizing the total energy in
Eq. S18. The variation of EA due to a small arbitrary perturbation δψ(s) to ψ(s) is,

δEA ∼ f
∫ s∗

0

cosψdsδψ(s) +

∫ s∗

0

ρga(s− sc) sinψdsδψ(s), (S19)

which under the approximation of small angles, ψ � 1, can be further simplified to,

δEA ∼ f
∫ s∗

0

dsδψ(s) +

∫ s∗

0

ρga(s− sc)ψdsδψ(s). (S20)

Setting δEA = 0 for an arbitrary perturbation, δψ(s), yields the following expression for the equilibrium
shape,

ψ(s) ∼ f

ρga(s∗ − s) . (S21)

Under the approximation that the arc length of the rod in Segment A is approximately equal to the
deployment height, s∗ ∼ H, the x-coordinate of the maximum point of deflection will then scale as,

x(s∗) =

∫ s∗

0

ψ(s)ds ∼ f

ρga
log

(
H

D2Lgb

)
, (S22)

where we have introduced the integration constant, D2Lgb, with units of length recalling that gravito-bending
length, Lgb (defined in Eq. 2 of the main text) is the relevant length scale.

Taking Lgb as the characteristic length scale of the system, we can estimate the order of magnitude of
the force at s = s∗ as f ∼ EI/L2

gb. Eliminating f from Eq. S22 then gives an expression for x(s∗) in terms
of the physical properties of the rod,

x(s∗) ∼
EI/L2

gb

ρga
log

(
H

D2Lgb

)
∼ Lgb log

(
H

D2Lgb

)
. (S23)

We now consider a slightly out-of-plane deformation (with respect to the x− z plane) of the rod to make
a meandering pattern onto the belt with very small amplitude, A, and a finite wavelength, λ0, consistent
with the scenario when the dimensionless speed mismatch, ε, approaches 0. At the instance when the contact
point, sc, between the rod and the belt is at a peak of a sinusoidal pattern described by

y(x) = A cos

(
2π

λ0
(x(s)− x(sc))

)
, (S24)

the curvature at contact, κ (x(sc)), is

κ(x(sc)) =

∣∣∣∣d2y

dx2
(x(sc))

∣∣∣∣ =
4π2A

λ2
0

. (S25)

S8 Jawed et al., Supplementary Information



S4 EFFECT OF THE HEIGHT OF DEPLOYMENT

Approximating Segment B as a circular arc with radius x(s∗), the curvature at contact, κ (x(sc)), is

κ (x(sc)) ∼
1

x(s∗)
∼ 1

Lgb log

(
H

D2Lgb

) . (S26)

Comparing the two expressions for κ (x(sc)) in Eqns. S25 and S26 yields

A

λ2
0

∼ 1

Lgb log

(
H

D2Lgb

) . (S27)

The geometry of the meandering pattern dictates that the ratio between amplitude and wavelength, in
this case A/λ0, depends only on the dimensionless speed mismatch, ε, as derived in Eq. S10. This further
simplifies Eq. S27 to provide a scaling law for the onset wavelength, λ0,

1

λ0
∼ 1

Lgb log

(
H

D2Lgb

) , (S28)

and gives us a closed form expression in terms of the two relevant length scales, Lgb and H,

λ0 = D1Lgb log

(
H

D2Lgb

)
, (S29)

where we have introduced the prefactor, D1, that can not be calculated directly form our scaling analysis
but that we have determined through fitting to the DER data in the main text. Eq. S29 can be rewritten in
dimensionless form as

λ̄0 = D1 log
(
H̄
)

+ β, (S30)

where λ̄0 = λ0/Lgb and H̄ = H/Lgb are normalized onset wavelength and deployment height, respectively,
and β = −D1 log (D2). We can interpret the newly introduced numerical constant β, evaluated through
fitting to data, as the dimensionless onset wavelength obtained when the deployment height is equal to the
gravito-bending length.

Finally, making use of Eq. S15, we arrive at Eq. S16 that we set out to derive. In the process, we can
also identify the characteristic amplitude of the patterns as Ā0 = (D1 log H̄ + β)/C2. This prediction of
a logarithmic dependence of the onset wavelength on deployment height is indeed observed in the DER
simulations, as confirmed by the data in the inset of Fig. 4F of the main text.

Role of twist. In the derivation of the closed-form solution for the wavelength in Eq. S30, we assumed
that there is a balance between bending and gravitational energy in Segment B of the rod and that twist
energy is negligible (along with inertia). We have turned to the DER simulations to assess the validity
of this assumption and performed a quantitative comparison between gravitational, bending, and twisting
energies. As such, we evaluate the various energetic contributions, integrated over the total arclength of
Segment B, to get the bending energy Eb =

∫ sc
s∗
Ebds, twisting energy Et =

∫ sc
s∗
Etds, and gravitational

energy Eg =
∫ sc
s∗
Egds, where Eb, Et, and Eg denote the corresponding energies per unit length, as defined in

the main manuscript.
In Fig. S7, we plot the times-series of the energy ratios for meandering mode, and find the bending and

gravitational energies to be of the same order of magnitude (Eb/Eg ∼ 1), whereas the twisting energies are
negligible compared to both bending and gravity as evident from the plot Et/Eb � 1, Et/Eg � 1; both of
these ratios are at most 10−3.
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S5 APPROXIMATE VALUE OF ONSET WAVELENGTH
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Figure S7: The comparison between twisting Et and bending Eb in the segment B and the gravitational
potential Eg below the maximal deflection, for meandering at ε = 0.9. The relative levels of different energies
are illustrated by the pairwise ratios Eb/Eg, Et/Eb and Et/Eb. A rod with Lgb = 3.3 cm was deployed from
H̄ = 15cm in DER simulations.

S5 Approximate value of onset wavelength

In the previous section we analyzed the non-dimensionalized onset wavelength λ̄0 and derived Eq. S30 which
contains fitting parameters (prefactors) D1 and β that cannot be calculated theoretically. However, over
the range of H̄ values used in most of our experiments (H between 50cm and 110cm), the variation of
log H̄ is relatively small (between 2.7 and 3.5) and can be approximated as a constant. This simplification
means that, if we ignore the change of onset wavelength due to H, then λ̄0 can be treated a constant, or in
other words, the onset wavelength λ0 is proportional to the gravito-bending length scale Lgb. In this section
we attempt to predict this constant value by considering the torque that the suspended heel exerts on the
contact point when it is at a peak of the sinusoidal pattern. Fig. S8 shows the configuration of such an
instance of time. Recall that the sinusoidal pattern is described by

y(x) = A cos
2πx

λ
. (S31)

The rod between s = s∗ and s = sc (i.e. Segment B from the last section) is pulled away from the
vertical position and tilted towards the y direction, because the contact point is at its maximal displacement,
y(0) = A. This slanted configuration increases the gravitational potential of the rod segment, creating a
restoring force f , analogous to a pendulum. However, given the circular shape of the segment (refer to
Fig. S6), this force does not act directly on the contact point. In the belt’s plane, the rod segment can be
approximated by an imaginary beam that is tangentially connected to the rod at the contact point (the red
line in Fig. S8), on whose opposite end the restoring force acts (the green arrow for f in Fig. S8). Assuming
that the segment has radius Lgb, the length of the beam is thus Lgb. Therefore, the moment at the contact
point due to this force is M = −fLgb. Force balance at the contact point requires that the bending moment
EIκ in the rod is equal to M , where κ is the curvature at the contact point. In the limit of small ε (and
thus small A), κ can be approximated by y′′(0), yielding

EIy′′(0) = −fLgb. (S32)
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Figure S8: The configuration when the contact point is at a peak of the sinusoidal pattern. Segment B
(between s = s∗ and s = sc) is displaced in the y direction like a pendulum.

According to Eq. S31, y′′(0) = −4π2A

λ2
. Thus

4π2EIA

λ2
= fLgb (S33)

On the other hand, the horizontal restoring force f can be estimated by approximating segment B with
a pendulum of vertical length Lgb:

f =
ρgπr2

0

2
y(0) =

ρgπr2
0A

2
. (S34)

Combining this with Eq. S33, we obtain

8π2EI = ρgπr2
0Lgbλ

2, (S35)

λ =

√
8πEI

ρgr2
0Lgb

=

√
2π2r2

0E

ρgLgb
=
√

16π2L2
gb = 4πLgb, (S36)

λ̄ = 4π. (S37)

Since the analysis above assumes infinitesimal ε, the wavelength obtained here is in fact the onset wavelength
λ̄0. The value of the prefactor, 4π, agrees roughly with the values of D1 and β from data fitting: substituting
D1 = 1.27, β = 7.00 and H̄ = 15.2 into Eq. S30 yields λ̄0 = 10.5.

S6 Effect of natural curvature

In the manuscript, we found the normalized onset wavelength, λ̄0, for a naturally curved rod to be well
described by

λ̄0(κ̄) =

{
λ̄0(0), for κ̄ < κ̄c

−B̄2
1 κ̄n + B̄2, for κ̄n > κ̄c,

(S38)
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where κ̄c is the normalized critical curvature, and B̄1, and B̄2 are two numerical constants. In Fig. 5C of the
manuscript, we plotted {B̄1, B̄2, κ̄c} as functions of the gravito-bending length, Lgb, at a fixed deployment
height H̄ = 15, and found these parameters to stay constant with Lgb. To demonstrate that this finding holds,
regardless of H̄, in Fig. S9(A-B) we plot {B̄1, B̄2, κ̄c} against Lgb at two higher deployment heights H̄ =
{61, 121}, again finding no variation with Lgb. The values of the parameters fitted in Fig. S9 for H̄ = {61, 121}
are B̄1 = {2.04± 0.01, 2.21± 0.02}, B̄2 = {12.7± 0.02, 13.6± 0.10}, and κ̄c = {0.126± 0.004, 0.118± 0.005}.

In Fig. S9(C-D), we plot B̄1, and B̄2 as a function of H̄ at a fixed gravito-bending length Lgb = 3.3 cm.
Using Eq. 8 of the manuscript, this is used to calculate the critical natural curvature, κ̄c, plotted in Fig.
5D of the main text as a function of H̄. There is a logarithmic dependence of B̄1, and B̄2 on deployment
height, H̄, especially at high H̄; its detailed understanding is beyond the scope of this study.
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Figure S9: Normalized critical curvature, κ̄c, along with the parameters B̄1, B̄2 used to calculate it (Eq. 8
in the manuscript), as a function of the gravito-bending length, Lgb, at the fixed deployment heights of (A)
H̄ = 61, and (B) H̄ = 121. To vary Lgb, we followed a similar procedure to that used to produce Fig. 4F in
the manuscript. (C) B̄1 as a function of H̄ at Lgb = 3.3 cm. (D) B̄2 as a function of H̄ at the same Lgb.

S7 Numerical simulations

S7.1 Method

We used a numerical tool based on DER to perform simulations, side by side with the experiments. The
method derives discrete versions of the equations of motion from scratch, instead of discretizing smooth
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equations, thus capturing important aspects of the underlying physics, which are often lost in the discretiza-
tion process. Our code represents the rod by its centerline along with a material frame. The material frame
is itself represented as the angular deviation from a reference frame, which is maintained across time steps
using parallel transport. Stretching and bending are naturally captured by the deformation of the centerline,
while twisting about the center line is described by the rotation of the material frame.

The contact model is briefly introduced in the Materials and Methods section of the main text. For
clarity we describe our implementation of the boundary condition in more details below.

Classification. Simulation nodes and edges (jointly “degrees of freedom”) are classified as either con-
strained (under the direct influence of boundary conditions) or free (under the influence of the equations
of motion for the dynamics of a Kirchhoff elastic rod, absent of boundary conditions). In the following,
we describe the modifications required to integrate the dynamics of constrained degrees of freedom, and to
transition between the two states.

t = 0 t = ΔL/v

A B

v

x0

x1

x2

x3

e0

e1

e2

x0

x1

x2

x3

x4

e0

e1

e2

e3

Figure S10: The injector boundary condition. (A) The beginning of the simulation. (B) After injecting ∆L
of rod. Blue nodes and edges are constrained; green nodes and edges are free.

Injector Boundary Condition. At any point during the simulation, three nodes and two edges are
constrained to model the boundary condition of the rod near the injector. Consider the initial conditions, in
which constrained nodes x1 through x3 and edges e1 through e2 constitute the injector boundary conditions
(Fig. S10 A). Under these conditions, each nodal position is prescribed to move downward with fixed
downward velocity v; each edge material frame is prescribed to remain fixed, such that the natural curvature
is aligned to the belt velocity, vb.

After a duration ∆L
v elapses (Fig. S10 B), we lift the constraints on node x1 and edge e1, allowing them

to simulate as free degrees of freedom under the equations of motion. Simultaneously, we introduce the new
constrained edge e3 and vertex x4, corresponding to the injection of additional rod. The lifting of constraints
on x1 and e1, combined with the introduction of constrained degrees of freedom e3 and x4, maintain the
invariant that four nodes are constrained to model the injector boundary condition.
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Figure S11: The belt boundary condition. (A) Beginning of the time step. (B) The predictor step, where
the new contact set is detected. (C) The corrector step, where the nodes in the new contact set are vertically
constrained. (D) The vertically constrained nodes become fully constrained as its horizontal velocity becomes
small.

Belt Contact Boundary Condition. Once the free end of the rod contacts the belt (the plane of
z = 0), a new constraint must be introduced to model the contact. We must first detect the contact, and
then respond. Correspondingly, each simulation step begins with a predictor step, optionally followed by a
corrector step.

The predictor step is performed by ignoring the direct effect of the belt on free degrees of freedom. At
the end of the predictor step, we determine whether any free nodes have made contact with belt (see Fig.
S11 B). Such nodes form the new contact set, Ξ. Contact is defined as zi ≤ zbelt + r0 where zi is the z
coordinate of the node, zbelt is the z coordinate of the belt, and r0 is the rod radius.

If new contacts have been identified, a corrector step is required (Fig. S11 C). We rewind the simulation
to the start of the time step. The vertical coordinate z of each node in the new contact set, Ξ, is transitioned
from the free state to the constrained state, with vertical position prescribed to lie in contact with the belt,
i.e., z = zbelt+ r0. For these vertically-constrained nodes, the horizontal coordinate degrees of freedom (x, y)
continue to be governed by the equations of motion. After introducing the vertical constraints, we integrate
forward in time again, now assured that the nodes previously in the new contact set cannot penetrate through
the belt. At the end of the corrector step, each vertically-constrained node is transitioned either to the free or
the (fully) constrained state: if the relative velocity between the node and the belt is below a threshold (we
use 10−6 cm/s), we permanently constrain the node to follow the belt, i.e., to maintain the belt velocity (Fig.
S11 D). Otherwise, we free the node. Because we focus on the small Froude number regime, where inertial
effects are negligible, we observe that, typically, vertically-constrained nodes are fully belt-constrained after
the corrector step.

The first of the constrained node, counting from the suspended heel, is called the contact point node. As
explained in the main text, all the edges that are more than αLgb away from the contact point vertex into
the fixed portion are prevented from rotating by a constraint on the material frame angle.

S7.2 Source code

The source code of our numerical simulation tools has been made available at http://www.cs.columbia.

edu/cg/elastic_coiling/. Instructions on how to use the program are also provided on the webpage.
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