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Text S1: Graphs for modeling physicochemical context

One of the main contributions of this work is the improvement of contact prediction with

physicochemical information by incorporating the local contact context into prediction.

This context is modeled as a graph, centered on the contact under consideration (see

main text section 3.6 for graph definition). Nodes represent residues and edges represent

contacts present in a decoy. The remainder of this section introduces the node and edge

labels (summary in Tables S1 and S2), which are later used to derive features of contact

graphs.

1.1. Node labels

Chemical type: Chemical properties of the residue are classified into four categories:

non-polar, polar, acidic and basic.

Secondary structure: The secondary structure of the residue is classified into helix,

sheet, turn or coil.
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Table S1: Summary of node labels

Node label Possible labels

Chemical type Non-polar, polar, acidic, basic

Secondary structure Helix, sheet, turn, coil

Solvent accessibility Buried, exposed

Free solvation energy Continuous value

Secondary structure length Discrete value

Secondary structure 3D length Continuous value

Secondary structure buried Continuous value

Secondary structure exposed Continuous value

Hydrogen bonding Donor, acceptor, not involved

Distance to the centroid Continuous value

Sequence conservation Continuous value

Sequence neighborhood conservation Continuous value

Solvent accessibility: Solvent accessibility of the residue is computed by POPS [1].

Residues with a relative solvent accessibility > 25% are labeled as exposed, residues

with a relative solvent accessibility below or equal to this threshold are labeled as buried.

Free solvation energy: The free solvation energy of the residue, as computed by POPS.

Secondary structure length: This label represents the length of the secondary struc-

ture element, containing the residue of interest, in number of amino acids.

Secondary structure 3D length: The 3D length of the secondary structure element is

measured by the distance (in Å) between the Cα atoms of the first residue and last residue

belonging to the secondary structure element.

Secondary structure buried: The average number of buried residues in the residue’s

secondary structure element.
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Secondary structure exposed: The average number of exposed residues in the residue’s

secondary structure element.

Hydrogen bonding: Donor, acceptor or not involved in hydrogen bonding.

Distance to the centroid: The distance of the residue to the centroid of the decoy in Å.

Sequence conservation: The conservation of the sequence at the residue position in

the multiple-sequence alignment. The conservation has been computed as in [2, 3].

Sequence neighborhood conservation: The conservation of the sequence neighbor-

hood was characterized for sequence positions i − 3, i − 2 i − 1, i + 3, i + 2 i + 1 as

in [2, 3].

1.2. Edge labels

Table S2: Summary of edge labels

Edge label Possible labels

Contact potential Continuous value

3D distance Continuous value

Sequence separation Discrete value

Mutual information Continuous value

Contact potential: The contact potential, introduced by Li et al. [4] describes the likeli-

hood of observing a contact between particular types of amino acids (for example, ASP-

GLU) in a high-resolution set of crystal structures.

3D distance: Distance between Cβ atoms of the contacting residues (Cα for glycine) in

the decoy.
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Sequence separation: The sequence separation between contacting residues in num-

ber of amino acids.

Mutual information: The mutual information in the multiple-sequence alignment bet-

ween positions i and j.

Text S2: Features used and their generation

In order to learn to distinguish native from non-native contacts, we designed a number

of features to capture different physicochemical context properties of contacting residues.

Each feature maps its corresponding property to a number of binary and/or continuously

valued inputs for an SVM. The resulting input vector is the concatenation of the inputs

generated by the individual features.

We broadly classify our features into eight groups: Pairwise, graph topology, graph

spectrum, single node, node label statistics, edge label statistics and whole protein fea-

tures. An overview of all feature classes can be found in the main document (Table 1). In

this section, we give a detailed description of each feature and how it is calculated.

Distinct types of graph features are discussed in each of the following tables. Addition-

ally, we provide a detailed description for any feature that is not self-explanatory.

2.1. Pairwise residue features

Pairwise features are used to capture any physicochemical or structural properties of the

contacting residue pairs. Categorical features of the contacting residues i and j are en-

coded by a series of binary inputs. For instance, a property could be described by two

states s1 and s2. Then, the bit vector would be [1, 0, 0]T , if both residues are in s1, [0, 1, 0]T

if one residue is in s1 and the other in s2 and [0, 0, 1]T if both residues are in state s2.

Unless otherwise stated, we apply this encoding to all features with discrete states. An

overview over the pairwise features is given in Table S3.

Chemical type: Chemical properties of the residues are classified into four categories:

non-polar, polar, acidic and basic. Thus, 10 combinations of residue types are possible
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Table S3: Pairwise features between contacting residues i and j

Feature Description Number of inputs

Chemical type Chemical type of the contacting amino acids:

non-polar, polar, acidic, basic 10a

Secondary structure Secondary structure of the contacting

amino acids: helix, sheet, turn, coil 10a

Solvent accessibility Solvent accessibility of the contacting

amino acids: exposed, buried 3a

Hydrogen bonding Hydrogen bonding state of the contacting

amino acids: donor, acceptor 2a

Sequence separation Sequence separation encoded in

17 bins 17a

Sequence separation Distance in amino acids

from N/C-terminus between i and N-terminus; j and C-terminus 2

Contact potential Contact potential from Li et al. [4] 1

Distance 3D distance between i and j 1

Mutual information Sequence mutual information 1

Ensemble distance Mean distance and standard deviation

of i and j in ensemble if dij ≤12 Å 2

Total inputs 49

aBinary inputs

for a contact pair [5] (10 inputs).

Secondary structure: The secondary structure of the residues is classified into helix,

sheet, turn or coil. The secondary structure state in the decoys is determined with STRIDE

[6] (10 inputs).

Solvent accessibility: The solvent accessibility of residues is classified into solvent

exposed or buried (see section 1.1) (3 inputs).
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Hydrogen bonding: This feature checks whether the contacting residues are involved

in hydrogen bonding and whether they act as a donor or acceptor (2 inputs).

Sequence separation: The sequence separation between the contacting residues is

encoded by 17 binary inputs (12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-28, 29-32,

33-36, 37-40, 41-44, 45-48, 49-52, 53-57, 58-62, 63-67, <68) (17 inputs).

Sequence separation from N/C-terminus: The sequence separation from the N-terminus

to the more N-terminal residue and the sequence separation from the C-terminus to the

more C-terminal residue, respectively (2 inputs).

Mutual information: The mutual information in the multiple-sequence alignment bet-

ween positions i and j (1 input).

Ensemble distance: For this feature, we compute the average and the standard devi-

ation of the distance between the contacting residues across all decoy structures in the

ensemble, where the distance is ≤12 Å (2 inputs).

2.2. Graph features

We hypothesize that native and non-native contacts differ in their neighborhood to some

degree. Thus, measuring the similarity between graphs that model the neighborhood of

contacting residues should help us to differentiate native and non-native contacts. We

accomplish this by using graph features to describe the characteristics of a graph.

Graph features are topological features and node/edge label statistics extracted from

the graph. This approach was introduced in [7] and has been shown to be competitive with

other state-of-the-art graph kernel approaches in graph classification tasks. In addition to

some of the described features in [7], we design a number of domain-specific features

for contact prediction. The features encode graph properties into vectors which can be

compared by the standard kernel functions such as the radial basis function. This simple

representation of the graph by a feature vector allows for easy integration with existing
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software packages. Many of the graph-based calculations in this work are carried out with

the Python library NetworkX [8].

Graph features are separately extracted for the shared and immediate neighborhood

graphs. Thus, each graph feature is present two times in the final input vector.

2.2.1. Graph topology

Graph topology features describe different topological properties of the underlying contact

graph (Table S4).

Table S4: Graph topology features

Feature Description Number of inputs

Number of nodes Number of nodes in the graph 1

Number of edges Number of edges in the graph 1

Average degree centrality See text 1

Average closeness See text 1

centrality

Average betweenness See text 1

centrality

Average eccentricity See text 1

Graph radius See text 1

Graph diameter See text 1

Number of end points See text 1

Average clustering See text 1

coefficient

Total inputs 10

Average degree centrality: The degree centrality for a node is the fraction of nodes

in the graph connected to the node. We take the average over all nodes to measure

the average degree centrality of the graph. This metric can be viewed as a measure of

packing density in the graph under consideration, with tightly packed regions having large
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average degree centrality values (1 input).

Average closeness centrality: The average closeness centrality for one node is the

reciprocal average path length from the node to all other nodes. The average over the

closeness centralities of all nodes is then used as a feature for the graph. We interpret

this as another measure for packing, in particular as a measure for the packing density of

the residues in the contact graph (1 input).

Average betweenness centrality: The betweenness centrality of a node is the number

of shortest paths from the set of all-pair shortest paths of the graph passing through the

node. The average betweenness centrality of the graph is the average over all nodes. This

measures the number of short-cuts present in the contact graph without the need for walk-

ing over the entire protein chain. In our view, this is related to the loss in conformational

entropy caused by the formation of the contact network (1 input).

Average eccentricity: The eccentricity is the length of the longest of all all-pair shortest

paths that pass through a node. Average eccentricity is the average over all nodes (1 in-

put).

Graph radius: The graph radius is defined as the smallest eccentricity value of all nodes

in the graph (1 input).

Graph diameter: The graph diameter is defined as the largest eccentricity value of all

nodes in the graph (1 input).

Number of end points: Number of nodes with degree one (1 input).

Average clustering coefficient: The clustering coefficient of a node is the ratio of actual

edges between neighbors of a node to the number of possible edges between them. The

average clustering coefficient is the average over all nodes (1 input).

8



2.2.2. Graph spectrum

Table S5: Graph spectrum features

Feature Description Number of inputs

Largest eigenvalue Largest eigenvalue 1

Second largest eigenvalue Second largest eigenvalue 1

Number of different eigenvalues Number of different eigenvalues 1

Sum of eigenvalues Trace of the adjacency matrix 1

Energy Sum of squared eigenvalues 1

Total inputs 5

Graph spectrum features are extracted from the adjacency matrix of the graph, which

reflects the connectivity of the graph. Spectrum features are based on the eigenvalues of

the adjacency matrix (Table S5).

Number of different eigenvalues: The number of eigenvalues with different values in

the adjacency matrix of the graph (1 input).

Sum of eigenvalues: Sum of all eigenvalues of the adjacency matrix. This is equivalent

to the trace of the adjacency matrix (1 input).

Energy: The energy of the graph is the sum of all squared eigenvalues of the adjacency

matrix (1 input).

2.2.3. Single node features

Single node features describe some topological properties of the residues i and j due to

their embedding in the contact network. The features are calculated for residues i and j

separately. A summary of single node features is given in Table S6.
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Table S6: Single node features

Feature Description Number of inputs

Degree Node degree in the graph 1

Closeness Reciprocal average path length

centrality from the node to all other nodes 1

Betweenness Average number of shortest

centrality paths that pass through the node 1

Sequence conservation Conservation of residue position in

multiple sequence alignment 1

Sequence neighborhood Conservation of neighboring

conservation residues in multiple-sequence alignment 1

Total inputs 5

2.2.4. Node label statistics

Node label statistics are used to describe the distribution of node labels in the graph

(Table S7). If the node label has a discrete value (such as chemical type), the distribution

is simply the counts over the distinct node labels in the graph. Continuous values, such

as the solvation energy of a residue, are discretized into multiple bins. The distribution is

then the number of counts of the continuous labels that fall into each bin.

The node label statistics are separately calculated for each type of label. Examples of

label types are the secondary structure and the solvent accessibility of the nodes.

Chemical type: Number of nodes with polar, non-polar, basic or acidic labels in the

graph. This feature measures the distribution of the chemical types of amino acids in the

graph (4 inputs).

Secondary structure: Number of nodes with helix, sheet, turn and coil labels (4 inputs).

Secondary structure length: The average length (in amino acids) of the secondary

structure elements in the graph. This feature, as well as any other secondary structure
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Table S7: Node label statistics

Feature Description Number of inputs

Chemical type Number of polar, non-polar,

acidic, basic labels 4

Secondary structure Number of nodes with helix, sheet,

turn, coil labels 4

Secondary structure Average length of secondary structure

length element in amino acids 4

Secondary structure 3D Average 3D length of secondary structure

length element 4

Secondary structure Average number of buried residues in

buried secondary structure element 4

Secondary structure Average number of exposed residues in

exposed secondary structure element 4

Solvent accessibility Number of exposed/buried nodes 2

Hydrogen bonding Number of nodes that act as donor,

acceptor or do not form hydrogen bonds 3

Average solvation energy Average free solvation energy 1

Solvation energy 4-bin distribution of

distribution free solvation energy 4

Label entropy Entropy of the labels 3

Neighborhood impurity Average number of neighbors

degree with different labels 3

Distance to Average distance of

centroid nodes to the centroid 1

Sequence conservation Average sequence conservation of nodes 1

Sequence neighborhood Average sequence neighborhood

conservation conservation of nodes 1

Total inputs 43
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description feature, is calculated separately for each secondary structure type (4 inputs).

Secondary structure 3D length: The average length in 3D of the secondary structure

elements in the graph (4 inputs).

Secondary structure buried: Average number of buried residues in the secondary

structure elements of a specific type (4 inputs).

Secondary structure exposed: Average number of exposed residues in the secondary

structure elements of a specific type (4 inputs).

Solvent accessibility: Number of exposed and buried nodes in the graph (2 inputs).

Hydrogen bonding: Number of nodes involved in hydrogen bonding as a donor, accep-

tor or do not form any hydrogen bonds (3 inputs).

Average solvation energy: The average of all free solvation energies in the graph (1 in-

put).

Solvation energy distribution: The 4-bin distribution of all free solvation energies in

the graph (4 inputs).

Label entropy: Calculates the entropy of one class of labels. The label entropy is calcu-

lated separately for chemical type, secondary structure and solvent accessibility (3 inputs).

Neighborhood impurity degree: Calculates the number of neighbors of a node that

have a different label than the node. The feature value for the graph is the averaged

impurity degree of all nodes. This feature is also separately calculated for chemical type,

secondary structure and solvent accessibility (3 inputs).
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2.2.5. Edge label statistics

Edge label statistics describe the distribution of edge labels in the graph in the same

fashion as node labels (Table S8).

Table S8: Edge label statistics

Feature Description Number of inputs

Link impurity Number of edges connecting two nodes

with different labels 3

Mutual information 5-bin distribution of mutual information

distribution 5

Cumulative mutual Cumulative mutual information over all edges

information 1

Contact potential 3-bin distribution of contact potential 3

Total inputs 12

Link impurity: Calculates the fraction of edges, connecting two nodes with different

node labels. This feature is separately calculated for chemical type, secondary structure

and solvent accessibility (3 inputs).

Mutual information distribution: To calculate the mutual information distribution of the

graph, we calculate the number of edges that are formed by nodes with different ranges of

sequence separation (adjacent, 2-6, 7-11, 12-23, >24). This 5-bin distribution describes

the mutual information distribution of the graph (5 inputs).

Contact potential: The potential of Li et al. [4] is binned into edges with low (smaller

than 0.1), medium (between 0.1 and 0.3) or high (larger than 0.3) contact potential. The

distribution of contact potential is given by the number of edges with contact potential that

fall into each bin (3 inputs).

13



2.3. Whole protein features

Whole protein features capture global properties of the protein (Table S9).

Table S9: Whole protein features

Feature Description Number of inputs

Amino acid composition Occurrence of each amino acid in the protein 20

Secondary structure Occurrence of secondary structure in decoy

composition 4

Length class Binned length of the protein 5a

Total inputs 29

aBinary inputs

Amino acid composition: The composition of amino acids in the protein (20 inputs).

Secondary structure composition: The composition of secondary structures (helix,

sheet, turn, coil) in the decoy (4 inputs).

Length class: The length of the protein in amino acids is binned into 5 categorical inputs

(<60, 60-89, 90-119, 120-149, >150) (5 inputs).

In total, this results in an input vector of length 228. Note that all features defined on

graphs are evaluated for the shared and the immediate neighborhood graph separately

and therefore are present two times in the final input vector.

Text S3: Setup and example files for contact-guided Rosetta
predictions

The following section supplies flag file and constraint file examples that we used to perform

contact-guided predictions with Rosetta.
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Example flag file:

-abinitio::fastrelax

-in::file::fasta 2kjpA.fasta

-in::file::frag3 2kjpA.200.3mers

-in::file::frag9 2kjpA.200.9mers

-constraints::cst_file 2kjpA_contact_constraints.txt

-in::path::database <path_to_rosetta_database>

-out::path .

-out::nstruct 1000

-mute core.chemical core protocols core.util.prof

Example restraints:

AtomPair CB 26 CB 54 LORENTZ 1.5 8.0 1.5

AtomPair CB 22 CB 57 LORENTZ 1.5 8.0 1.5

AtomPair CB 52 CB 65 LORENTZ 1.5 8.0 1.5

Rosetta is then executed by using the command: AbinitioRelax.linuxgccrelease @flags
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Text S4: Supplementary tables

Table S10: Contact prediction performance of several methods on the CASP10 data set

(104 proteins)

Method Range Acca(SEb)/Covc[L/10] Acca(SEb)/Covc[L/5] Acca(SEb)/Covc[L/2]

EPC-map Long 0.561(0.030)/0.064 0.492(0.028)/0.105 0.378(0.024)/0.188
IGB-Team (CMAPpro) Long 0.338(0.027)/0.033 0.285(0.023)/0.057 0.208(0.017)/0.100
MULTICOM-construct (DNcon) Long 0.327(0.025)/0.030 0.285(0.021)/0.053 0.215(0.015)/0.101
SAM-T08 Long 0.288(0.024)/0.028 0.260(0.020)/0.050 0.202(0.016)/0.093
ProC_S4 Long 0.285(0.026)/0.030 0.245(0.022)/0.048 0.183(0.015)/0.091
RaptorX-Roll Long 0.308(0.024)/0.032 0.269(0.020)/0.053 0.211(0.016)/0.097
MULTICOM-novel (NNcon) Long 0.212(0.021)/0.020 0.167(0.017)/0.031 0.120(0.011)/0.055
Counting Long 0.338(0.030)/0.039 0.272(0.025)/0.059 0.184(0.016)/0.096
GREMLIN Long 0.498(0.031)/0.047 0.448(0.029)/0.082 0.341(0.025)/0.153
PSICOV Long 0.447(0.031)/0.036 0.375(0.028)/0.061 0.284(0.023)/0.117
PhyCMAP Long 0.365(0.026)/0.031 0.325(0.022)/0.059 0.246(0.016)/0.106

EPC-map Medium 0.648(0.026)/0.159 0.537(0.025)/0.258 0.362(0.020)/0.406
IGB-Team (CMAPpro) Medium 0.429(0.026)/0.105 0.361(0.022)/0.173 0.263(0.015)/0.301
MULTICOM-construct (DNcon) Medium 0.454(0.026)/0.106 0.377(0.021)/0.177 0.276(0.016)/0.313
SAM-T08 Medium 0.381(0.021)/0.090 0.322(0.017)/0.153 0.237(0.013)/0.270
ProC_S4 Medium 0.447(0.024)/0.106 0.370(0.020)/0.176 0.272(0.014)/0.316
RaptorX-Roll Medium 0.464(0.022)/0.109 0.393(0.019)/0.181 0.301(0.015)/0.300
MULTICOM-novel (NNcon) Medium 0.400(0.027)/0.093 0.329(0.022)/0.148 0.248(0.016)/0.257
Counting Medium 0.543(0.031)/0.121 0.453(0.027)/0.201 0.308(0.019)/0.326
GREMLIN Medium 0.473(0.029)/0.110 0.380(0.026)/0.171 0.242(0.019)/0.256
PSICOV Medium 0.429(0.030)/0.088 0.345(0.026)/0.137 0.229(0.019)/0.215
PhyCMAP Medium 0.474(0.023)/0.103 0.418(0.021)/0.179 0.309(0.016)/0.321

aAccuracy
bStandard error
cCoverage
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Table S11: Contact prediction performance of several methods on the CASP10_hard data

set (14 proteins)

Method Range Acca(SEb)/Covc[L/10] Acca(SEb)/Covc[L/5] Acca(SEb)/Covc[L/2]

EPC-map Long 0.280(0.081)/0.026 0.246(0.068)/0.046 0.169(0.045)/0.076
IGB-Team (CMAPpro) Long 0.201(0.062)/0.015 0.165(0.047)/0.025 0.126(0.032)/0.049
MULTICOM-construct (DNcon) Long 0.192(0.036)/0.015 0.168(0.027)/0.028 0.130(0.018)/0.054
SAM-T08 Long 0.222(0.041)/0.018 0.192(0.032)/0.033 0.147(0.024)/0.062
ProC_S4 Long 0.170(0.050)/0.013 0.155(0.037)/0.025 0.115(0.022)/0.047
RaptorX-Roll Long 0.130(0.033)/0.011 0.147(0.029)/0.027 0.130(0.025)/0.060
MULTICOM-novel (NNcon) Long 0.102(0.029)/0.008 0.074(0.018)/0.012 0.051(0.011)/0.020
Counting Long 0.148(0.041)/0.013 0.116(0.033)/0.022 0.084(0.019)/0.039
GREMLIN Long 0.257(0.082)/0.022 0.203(0.068)/0.034 0.155(0.050)/0.064
PSICOV Long 0.191(0.071)/0.016 0.135(0.052)/0.022 0.104(0.036)/0.042
PhyCMAP Long 0.240(0.049)/0.020 0.200(0.034)/0.033 0.154(0.026)/0.064

EPC-map Medium 0.438(0.089)/0.110 0.344(0.074)/0.171 0.238(0.055)/0.263
IGB-Team (CMAPpro) Medium 0.317(0.079)/0.085 0.258(0.060)/0.136 0.189(0.038)/0.229
MULTICOM-construct (DNcon) Medium 0.348(0.068)/0.079 0.279(0.053)/0.121 0.216(0.041)/0.237
SAM-T08 Medium 0.300(0.061)/0.074 0.286(0.048)/0.147 0.203(0.039)/0.239
ProC_S4 Medium 0.286(0.054)/0.070 0.242(0.042)/0.117 0.185(0.030)/0.220
RaptorX-Roll Medium 0.342(0.075)/0.082 0.283(0.057)/0.135 0.222(0.040)/0.233
MULTICOM-novel (NNcon) Medium 0.278(0.070)/0.067 0.232(0.051)/0.108 0.176(0.034)/0.192
Counting Medium 0.360(0.083)/0.088 0.311(0.064)/0.151 0.211(0.041)/0.239
GREMLIN Medium 0.270(0.084)/0.060 0.213(0.064)/0.090 0.156(0.056)/0.137
PSICOV Medium 0.277(0.091)/0.061 0.216(0.078)/0.085 0.156(0.062)/0.136
PhyCMAP Medium 0.346(0.077)/0.077 0.303(0.062)/0.136 0.232(0.041)/0.249

aAccuracy
bStandard error
cCoverage
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Table S12: Contact prediction performance of EPC-map, Counting, GREMLIN, PSICOV,

PhyCMAP and NNcon on the CASP9-10_hard data set (20 proteins)

Method Range Acca(SEb)/Covc[L/10] Acca(SEb)/Covc[L/5] Acca(SEb)/Covc[L/2]

EPC-map Long 0.414(0.064)/0.046 0.322(0.049)/0.072 0.222(0.031)/0.122
Counting Long 0.246(0.055)/0.028 0.176(0.034)/0.043 0.120(0.017)/0.072
GREMLIN Long 0.230(0.062)/0.022 0.193(0.053)/0.038 0.134(0.038)/0.063
PSICOV Long 0.192(0.054)/0.018 0.157(0.048)/0.030 0.111(0.034)/0.052
PhyCMAP Long 0.277(0.044)/0.029 0.225(0.034)/0.046 0.169(0.023)/0.088
NNcon Long 0.097(0.031)/0.008 0.089(0.021)/0.016 0.080(0.021)/0.041

EPC-map Medium 0.445(0.076)/0.146 0.343(0.053)/0.223 0.216(0.033)/0.332
Counting Medium 0.407(0.075)/0.138 0.312(0.059)/0.200 0.196(0.036)/0.301
GREMLIN Medium 0.166(0.038)/0.055 0.120(0.027)/0.081 0.080(0.015)/0.140
PSICOV Medium 0.150(0.040)/0.043 0.114(0.033)/0.063 0.086(0.027)/0.105
PhyCMAP Medium 0.311(0.055)/0.087 0.273(0.047)/0.153 0.186(0.027)/0.269
NNcon Medium 0.158(0.042)/0.049 0.141(0.034)/0.085 0.122(0.026)/0.173

aAccuracy
bStandard error
cCoverage

Table S13: Contact prediction performance of EPC-map, Counting, GREMLIN, PSICOV,

PhyCMAP and NNcon on the EPC-map_test data set (132 proteins)

Method Range Acca(SEb)/Covc[L/10] Acca(SEb)/Covc[L/5] Acca(SEb)/Covc[L/2]

EPC-map Long 0.553(0.026)/0.059 0.496(0.023)/0.109 0.376(0.019)/0.205
Counting Long 0.378(0.028)/0.042 0.327(0.024)/0.076 0.263(0.018)/0.150
GREMLIN Long 0.426(0.027)/0.044 0.363(0.024)/0.077 0.268(0.019)/0.139
PSICOV Long 0.383(0.026)/0.040 0.315(0.021)/0.066 0.218(0.016)/0.114
PhyCMAP Long 0.320(0.020)/0.033 0.288(0.016)/0.061 0.228(0.012)/0.123
NNcon Long 0.251(0.022)/0.024 0.225(0.017)/0.045 0.183(0.012)/0.095

EPC-map Medium 0.632(0.023)/0.159 0.523(0.021)/0.264 0.358(0.016)/0.437
Counting Medium 0.577(0.026)/0.147 0.475(0.023)/0.245 0.322(0.016)/0.400
GREMLIN Medium 0.408(0.025)/0.100 0.313(0.021)/0.152 0.197(0.013)/0.234
PSICOV Medium 0.339(0.024)/0.082 0.226(0.018)/0.128 0.173(0.012)/0.203
PhyCMAP Medium 0.440(0.023)/0.106 0.363(0.018)/0.178 0.273(0.013)/0.329
NNcon Medium 0.335(0.024)/0.079 0.296(0.020)/0.138 0.209(0.013)/0.246

aAccuracy
bStandard error
cCoverage
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Table S14: Contact prediction performance of EPC-map, Counting, GREMLIN, PSICOV,

PhyCMAP and NNcon on the D329 data set (329 proteins)

Method Range Acca(SEb)/Covc[L/10] Acca(SEb)/Covc[L/5] Acca(SEb)/Covc[L/2]

EPC-map Long 0.613(0.016)/0.057 0.546(0.015)/0.102 0.421(0.013)/0.195
Counting Long 0.363(0.017)/0.036 0.304(0.014)/0.061 0.219(0.010)/0.107
GREMLIN Long 0.545(0.017)/0.047 0.487(0.016)/0.086 0.368(0.013)/0.162
PSICOV Long 0.485(0.017)/0.041 0.414(0.015)/0.072 0.293(0.011)/0.128
PhyCMAP Long 0.393(0.014)/0.033 0.339(0.011)/0.059 0.256(0.008)/0.110
NNcon Long 0.236(0.011)/0.020 0.204(0.009)/0.035 0.156(0.006)/0.067
DNCONd Long - 0.329(0.037)/0.066 -

EPC-map Medium 0.663(0.014)/0.173 0.563(0.013)/0.287 0.380(0.011)/0.464
Counting Medium 0.578(0.016)/0.148 0.476(0.014)/0.241 0.323(0.010)/0.395
GREMLIN Medium 0.468(0.017)/0.115 0.369(0.014)/0.179 0.230(0.009)/0.274
PSICOV Medium 0.411(0.016)/0.100 0.320(0.013)/0.152 0.202(0.008)/0.237
PhyCMAP Medium 0.471(0.013)/0.113 0.406(0.011)/0.196 0.295(0.008)/0.356
NNcon Medium 0.380(0.015)/0.087 0.324(0.012)/0.149 0.231(0.008)/0.266
DNCONd Long - 0.427(0.036)/0.192 -

aAccuracy
bStandard error
cCoverage
dValues reported in the original paper of DNCON [9]
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Table S15: Contact prediction performance of EPC-map, Counting, GREMLIN, PSICOV,

PhyCMAP and NNcon on the SVMCON_test data set (47 proteins)

Method Range Acca(SEb)/Covc[L/10] Acca(SEb)/Covc[L/5] Acca(SEb)/Covc[L/2]

EPC-map Long 0.679(0.044)/0.067 0.632(0.044)/0.127 0.482(0.036)/0.233
Counting Long 0.394(0.048)/0.042 0.323(0.042)/0.072 0.238(0.027)/0.131
GREMLIN Long 0.642(0.048)/0.059 0.584(0.045)/0.113 0.455(0.038)/0.215
PSICOV Long 0.609(0.047)/0.057 0.525(0.042)/0.100 0.360(0.031)/0.167
PhyCMAP Long 0.414(0.039)/0.039 0.373(0.034)/0.073 0.270(0.023)/0.127
NNcon Long 0.297(0.031)/0.027 0.263(0.025)/0.050 0.197(0.017)/0.094
DNCONd Long - 0.326(0.011)/0.052 -

EPC-map Medium 0.714(0.032)/0.172 0.589(0.031)/0.283 0.405(0.028)/0.455
Counting Medium 0.558(0.038)/0.136 0.475(0.032)/0.227 0.334(0.026)/0.380
GREMLIN Medium 0.547(0.045)/0.128 0.450(0.040)/0.212 0.279(0.027)/0.314
PSICOV Medium 0.501(0.046)/0.111 0.375(0.037)/0.168 0.243(0.025)/0.275
PhyCMAP Medium 0.490(0.035)/0.110 0.407(0.029)/0.181 0.307(0.022)/0.337
NNcon Medium 0.354(0.038)/0.078 0.314(0.032)/0.136 0.265(0.023)/0.272
DNCONd Long - 0.368(0.011)/0.190 -

aAccuracy
bStandard error
cCoverage
dValues reported in the original paper of DNCON [9]

Table S16: Accuracies of the single SVM classifiers and the Ensemble SVM on 528 pro-

teins from the CASP9-10_hard, EPC-map_test, D329 and SVMCON_test data sets

Classifier Range Acca(SEb)/Covc[L/10] Acca(SEb)/Covc[L/5] Acca(SEb)/Covc[L/2]

SVM 1 Long 0.309(0.011)/0.031 0.280(0.009)/0.058 0.218(0.007)/0.113
SVM 2 Long 0.294(0.011)/0.031 0.267(0.009)/0.057 0.220(0.007)/0.114
SVM 3 Long 0.317(0.010)/0.033 0.283(0.009)/0.059 0.222(0.007)/0.115
SVM 4 Long 0.328(0.011)/0.033 0.287(0.009)/0.059 0.220(0.007)/0.135
SVM 5 Long 0.309(0.011)/0.032 0.286(0.009)/0.060 0.224(0.007)/0.117

Ensemble SVM Long 0.387(0.012)/0.039 0.332(0.010)/0.068 0.255(0.007)/0.131

aAccuracy
bStandard error
cCoverage
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