
1

User Guide for

Vacceed

Version 1.1

Professor John Ellis
School of Medical and Molecular Biosciences

University of Technology, Sydney (UTS)
Broadway NSW 2007, Australia

Email: John.Ellis@uts.edu.au

An in silico vaccine discovery pipeline

for eukaryotic pathogens

Vacceed – User Guide

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 2

Vacceed – User Guide – Contents

Introduction .. 3

Installation ... 3

Test installation by running sample data ... 4

How to get started .. 5

PART A – Build Proteome ... 7

Quick overview of steps required prior to building proteome ... 7

Directory structure following Vacceed installation ... 7

Prerequisite Programs .. 9

Configuration of prerequisite programs .. 11

Prerequisite Starting Data .. 12

Vacceed Execution .. 14

Configuration file –startup.ini ... 14

Specifies configuration file.. 15

Resource Scripts .. 20

Output Files ... 23

Running scripts in parallel ... 32

Adding a new resource .. 33

PART B – Run Pipeline .. 36

Quick overview of steps required prior to running pipeline .. 36

Directory structure following Vacceed installation ... 36

Prerequisite Programs .. 38

Configuration of prerequisite programs .. 40

Prerequisite Starting Data .. 41

Vacceed Execution .. 41

Configuration file –startup.ini ... 42

Specifies configuration file.. 42

Resource Scripts .. 47

Output Files ... 50

Running scripts in parallel ... 55

Adding a new resource .. 56

Appendix A .. 60

Introduction ... 60

WoLF PSORT ... 60

SignalP... 62

TargetP .. 63

Vacceed – User Guide

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 3

TMHMM ... 64

Phobius .. 65

MHC Binding Predictors ... 66

References ... 68

Introduction

Vacceed is the collective name for a framework of linked bioinformatics programs, Perl

scripts, R functions, and Linux scripts. It has been designed to facilitate an automated, high-

throughput in silico approach to vaccine candidate discovery for eukaryotic pathogens. This

document explains how to install, configure, and run Vacceed. The first important point to

note is not to be overwhelmed by the length of this user guide. It is not intended to be read

from cover to cover but as a reference to assist in a stress-free experience in getting started

and, only if desired, to obtain a more detailed understanding of how Vacceed works.

We recommend the following published articles for background information on motivation

and theory behind Vacceed:

Goodswen SJ, Kennedy PJ, Ellis JT. A guide to in silico vaccine discovery for

eukaryotic pathogens, Briefings in Bioinformatics 2013;14:753-774.

Goodswen S, Kennedy P, Ellis J. A novel strategy for classifying the output from an

in silico vaccine discovery pipeline for eukaryotic pathogens using machine learning

algorithms, BMC Bioinformatics 2013;14:315.

Installation

Download:

A compressed Vacceed directory containing all relevant Perl, R, and Linux scripts (including

sample data) can be downloaded from the following URL:

https://github.com/sgoodswe/vacceed/releases

Download vacceed_vx.x.tar.gz (where x.x is the latest version number)

Decompress:

tar –zxvf vacceed_vx.x.tar.gz (where x.x is the latest version number)

After decompressing the downloaded vacceed file, the directory can be moved to any location

of your choice.

Vacceed – User Guide

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 4

Test installation by running sample data

Prior to running tests you need to install dependant programs. The programs to install depend

on which of the following two main tasks you intend to perform: 1) build a proteome for the

target pathogen and/or 2) run the vaccine candidate discovery pipeline. See the following

section How to get started to assist in choosing which task to perform. Subject to your

choice, refer to Prerequisite programs in either or both PART A – Build Proteome and

PART B – Run Pipeline sections to determine which programs need to be installed. Each

installed prerequisite program should be independently tested before attempting to run

Vacceed.

Sample data for the species Toxoplasma gondii is provided as part of the Vacceed download

to specifically test the installation (T. gondii is a eukaryotic protozoan responsible for human

disease).

Test 1 – Build proteome for T. gondii

1. Edit the species configuration file ‘toxoplasma_build.ini’ located in the directory

<install_dir>/vacceed/start/config_dir (where <install_dir> is the directory in which

Vacceed was installed). Change the current path assigned to work_dir to the correct

path to the ‘vacceed’ directory. Also, assign your e-mail address to email_url

2. Change directory to <install_dir>/vacceed/start in a command-line terminal

3. Enter the command: perl startup build tg

Note that only chromosomes ‘Ia’ and ‘Ib’ from T. gondii are used in the test to reduce the

running time. However, step 3 can still take between 5 to 8 hours to complete depending on

your computing environment. The slowness is because of one program in particular called N-

Scan. It is possible to run this test in less than 10 minutes by removing N-Scan from the

building process. This is achieved by removing the word NSCAN from the list of program

names assigned to name under the [Resources] header in file ‘toxoplasma_build.ini’. This

test (including N-Scan) was completed in 6 hours: 30 minutes: 30 seconds using Red Hat

Enterprise Linux Workstation release 6.4, 64 bit kernel, and 12 MB memory with 6 CPUs (

without N-Scan, it only took 8 minutes).

An e-mail will automatically be sent to you either when the building of the proteome is

successfully completed OR immediately when an error occurs. A log file is attached to the e-

mail that provides details of the success or failure. If successful, two output files called

Vacceed – User Guide

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 5

‘proteome_info.txt’ and ‘proteome.fasta’ are created in the directory

<install_dir>/vacceed/toxoplasma/proteome. See Output Files in section PART A – Build

Proteome for details on the contents of these files.

Test 2 – run vaccine candidate discovery pipeline for T. gondii

1. Edit the species configuration file ‘toxoplasma.ini’ located in the directory

<install_dir>/vacceed/start/config_dir (where <install_dir> is the directory in which

Vacceed was installed). Change the current path assigned to work_dir to the correct

path to the ‘vacceed’ directory. Also, assign your e-mail address to email_url

2. Change directory to <install_dir>/vacceed/start in a command-line terminal.

3. Enter the command: perl startup tg

Note that only proteins encoded in chromosomes ‘Ia’ and ‘Ib’ are used in the test to reduce

the running time. However, step 3 can still take between 3 to 4 hours to complete. The

slowness is due to the peptide-MHC predicting. It is possible to run the test in less than 5

minutes by removing both MHCI and MHCII from the pipeline. This is achieved by removing

the words MHCI and MHCII from the list of program names assigned to name under the

[Resources] header in file ‘toxoplasma.ini’. This test (including MHCI and MHCII) was

completed in 3 hours: 21 minutes: 17 seconds using Red Hat Enterprise Linux Workstation

release 6.4, 64 bit kernel, and 32 MB memory with 8 CPUs (Without MHCI and MHCII , it

only took 55 seconds. MHC I took 1 hour: 25 minutes: 09 seconds and MHC II took 1 hour:

53 minutes: 51 seconds to complete).

An e-mail will automatically be sent to you either when the pipeline is successfully completed

OR immediately when an error occurs. A log file is attached to the e-mail that provides details

of the success or failure. If successful, two output files called ‘vaccine_candidates’ and

‘vaccine_candidates.fasta’ are created in the directory

<install_dir>/vacceed/toxoplasma/proteome. See Output Files in section PART B – Run

Pipeline for details on the contents of these files.

How to get started

The framework of Vacceed is organised into two major parts referred henceforth as part A –

Build Proteome, and part B – Run Pipeline (see Figure below). A starting prerequisite to run

the pipeline (i.e. part B) for in silico vaccine candidate discovery is a file in a FASTA format

containing amino acid sequences for proteins from the target eukaryotic pathogen i.e. the

proteome. The ultimate goal of Vacceed is to distinguish which of these proteins in the file are

Vacceed – User Guide

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 6

potential vaccine candidates. Known protein sequences for many pathogens can be

downloaded from public databases. Part A is therefore used only if required to predict novel

protein sequences and/or collect evidence to support the existence of known proteins.

How you start to utilise Vacceed depends on whether you have the prerequisite file:

Starting Vacceed WITHOUT the prerequisite file ���� See section ‘PART A – Build

Proteome’

Starting Vacceed WITH the prerequisite file ���� See section ‘PART B – Run Pipeline’

Vacceed – User Guide PART A – Build Proteome

7

PART A – Build Proteome

The primary goal here is to generate a file containing the amino acid (protein) sequences in a

FASTA format for all proteins from the target pathogen (referred henceforth as the

proteome). The protein sequences for many pathogens can be downloaded from public

databases. In light of this, the building of the proteome here entails collecting evidence to

support the existence of known proteins recorded in public databases and the prediction of

novel proteins. Vacceed collects evidence and makes predictions using linked resources.

Quick overview of steps required prior to building

proteome

1. Install the programs Perl, BLAST, Augustus, GlimmerHMM, Blat, GMAP, and N-

Scan (see section Prerequisite Programs).

2. Configure the installed programs, if required, for the target pathogen (see section

Configuration of prerequisite programs).

3. Add the target pathogen to startup.ini (see section Configuration file – startup.ini).

4. Create a configuration file specific to the target pathogen (see Specifies

configuration file).

5. Obtain chromosome sequences, and if available, known gene and protein sequences

for the target pathogen (see Prerequisite Starting Data).

6. Run Vacceed (see Program Execution).

Directory structure following Vacceed installation

After decompressing the downloaded Vacceed file, the directory can be moved to any

location of your choice. Figure 1 shows an example of the directory structure for the

distributed version of Vacceed. The ‘?’ in Figure 1 implies any pathname. Names shown in

square brackets e.g. [Species Name] imply user-defined directory names. Directory names

should not contain spaces e.g. Toxoplasma species is invalid, Toxoplasma_species is valid.

Also, remember that Linux/UNIX is case sensitive.

The contents of the directories are:

Start – contains the Perl script to invoke Vacceed called startup. The master Linux script is

also created in this directory.

config_dir – a directory within the start directory that contains the species specific

configuration files.

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 8

Figure 1: The Vacceed directory structure for the distributed version

[Species name] – A separately named but identical directory structure is used as a work area

for each species. For example, the data and work area for Toxoplasma gondii will be in a

separate user-defined directory name, perhaps called toxoplasma, and similarly for

Plasmodium falciparum in a separate directory called plasmodium.

build_proteome – The main work area for building the proteome for the target pathogen

build_dir – contains all the resource directories used to build the proteome. Each resource

has its own user named directory

[Resource name] – A separately named but identical directory structure is used for each

building resource. For example, each resource directory contains three sub directories: output

(contains the main output files from the resource programs), scripts (contains Linux scripts

?

vacceed

start

(Run startup from

here)

here

[Species name]

build_proteome

build_dir

pipeline

proteome

chromosomes

genes

proteins

ests

mapping

training_files

[Resource name]

output

scripts

summary_files

config_dir

common_programs

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 9

that invoke the resource programs), and summary_files (contains summarised output files

containing descriptive statistics for the genome or proteome of the target pathogen).

common_programs – contains programs that are common to more than one resource.

chromosomes – contains nucleotide sequences for each chromosome from the target

pathogen. A separate file in a FASTA format is required for each chromosome. The filename

should consist of a consistent prefix (e.g. chr or chromosome), a chromosome number (e.g. 1

or Ia), and a consistent extension e.g. fasta or seq. Example filenames: chr1.fasta, chr2.fasta.

The FASTA sequence identifier for each chromosome should also have consistent prefix and

chromosome numbering e.g >chr1|gi|401396281|, >chr2|chromosome 2|.

genes – contains nucleotide sequences for each gene within a chromosome. A separate file in

a FASTA format is required for each chromosome. The filename should consist of a

consistent prefix (e.g. genes_chr), a chromosome number (e.g. 1 or Ia), and a consistent

extension e.g. fasta or seq. Example filenames: genes_chr1.fasta, genes_chr2.fasta.

proteins – contains amino acid sequences for all known proteins from the target pathogen.

Only one file in a FASTA format is required. Any filename can be used. The FASTA

sequence identifier for each protein should be in a consistent format e.g. >gi|490147168,

>gi|52000749| or >tr|F0V7C2|, >tr|F0VF65|

ests – contains nucleotide sequences for Expressed Sequence Tags (ESTs). Only one file in a

FASTA format is required. Any filename can be used. The FASTA sequence identifier for

each EST should be in a consistent format

mapping – contains all files used to map different gene or protein identifiers e.g. map

UniProt ID to NCBI gi number.

training_files – contains user created training files for resources e.g. AUGUSTUS provides

the option to create a training dataset specific to the target pathogen.

proteome – contains the two most important output files. One containing resource scores for

each protein and the other, the built proteome in the form of protein sequences (see section

Output Files).

pipeline – The main work area for running the pipeline (see Part B – Run Pipeline).

Prerequisite Programs

Perl – Vacceed has been developed and tested on Perl 5.10.1 for Linux. The following Perl

modules MUST be installed:

Config::Simple

File::HomeDir

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 10

The distributed version of Vacceed is configured to run the programs blastn, blastp, Augustus,

GlimmerHMM, Blat, GMAP, and N-SCAN. These programs MUST be installed if you intend

to use all resources as per the distributed version. However, you can elect to only install

and/or use some of these resources by modifying a configuration file (see Species

configuration file):

Here are the program’s URLs (last viewed October 2013):

Augustus – http://bioinf.uni-greifswald.de/augustus/

GlimmerHMM – http://ccb.jhu.edu/software/glimmerhmm/

Blat – http://genome.ucsc.edu/FAQ/FAQblat.html

GMAP – http://research-pub.gene.com/gmap/

N-SCAN – http://mblab.wustl.edu/software.html (look for Twinscan/N-SCAN and the

Releases link)

Blast+ –

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE

=Download (includes blastn and blastp)

Note: Installing the prerequisite programs is perhaps the most challenging aspect to preparing

Vacceed ready for use. It is highly recommended that you seek the help of an administrator

(or an experienced Linux user). Ensure that the each program successfully runs with sample

data before running Vacceed.

Important requirements:

[1] Append program location to the PATH variable so that the program will run from any

directory. The best place to add the location is to modify the user's .bash_profile file e.g.

PATH=$PATH:$HOME/Gene_Prediction_Programs/augustus.2.5.5/bin

export PATH

[2] The name of the programs MUST be as follows (remember Linux is case sensitive):

 augustus

 glimmer_linux

 blat

 gmap

 Nscan_driver.pl

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 11

Configuration of prerequisite programs

Some of the prerequisite programs need to be configured specifically for the target pathogen:

Augustus has been trained for many organisms (see the list at: http://bioinf.uni-

greifswald.de/augustus/). If your target pathogen is not on the list, Augustus will need to be

trained. The Augustus installation directory contains a comprehensive set of training

instructions in the file ‘retraining.html’. The end result of the retraining is a directory specific

to the pathogen containing all relevant training files. It is recommended that you copy this

directory to the training_files directory (see Directory structure following Vacceed

installation); then, assign the directory name to the key ‘train_file’ under the AUGUSTUS

resource header in the species configuration file.

GlimmerHMM has been trained on several species including Arabidopsis thaliana,

Coccidioides species, Cryptococcus neoformans, and Brugia malayi, C. elegans and Danio

rerio (zebrafish), and humans. If your target pathogen is not on the list, GlimmerHMM will

need to be trained. Training instructions in the file ‘readme.train’ are located in the train

directory of the GlimmerHMM installation directory. The end result of the training is a

directory specific to the pathogen containing all relevant training files. It is recommended that

you copy this directory to the training_files directory (see Directory structure following

Vacceed installation); then, assign the directory name to the key ‘train_file’ under the

GLIMMER resource header in the species configuration file.

GMAP requires a genome database to be created for the target pathogen. Instructions on how

to do this are in the README file located in the gmap_install directory. Data for gmap

genome database are typically saved in a user-defined directory under gmapdb in the gmap

installation. This user-defined directory name needs to be assigned to the key ‘gmap_db’

under the GMAP resource header in the species configuration file. The directory path to the

gmap genome database also needs to be assigned to the key ‘gmap_path’

N-SCAN uses a configuration file called nscandriver.config, which is provided with the N-

SCAN installation. However, a copy of nscandriver.config is also in the nscan resource

directory of the Vacceed installation. This file needs to be modified to conform to your

installation. For example, absolute paths to tmpdir, nscan, repmask (optional), blastz,

lav2maf, and maf2align are required. Note that the variable $HOME is not valid in

nscandriver.config. The name and location of the N-Scan configuration file needs to be

assigned to the key ‘nscan_config’ under the NSCAN resource header in the species

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 12

configuration file. N-Scan also requires a closely related genome (referred to as the informant

genome) to the target pathogen. That is, a directory that contains nucleotide sequences for

each chromosome from the informant organism. A separate file in a FASTA format is

required for each chromosome. The filename is expected to have a prefix of ‘chr’, a

chromosome number (e.g. 1 or Ia), and an extension of fasta e.g: chr1.fasta.The directory

name containing the informant chromosome files needs to be assigned to the key

‘informant_dir’ under the NSCAN resource header in the species configuration file.

Prerequisite Starting Data

The only absolute mandatory data to build the proteome are nucleotide sequences. Ideally,

however, known gene and protein sequences for the target pathogen are also obtained from

public databases and saved in the directories as specified below. Without these existing genes

and proteins, Vacceed can only assume that any predicted genes and proteins are novel.

Expressed sequence tags, although not mandatory, provide useful evidence to support existing

or novel genes.

Nucleotide sequences for each chromosome

All the resources distributed with Vacceed require nucleotide sequences as input. For

example, the programs Augustus and GlimmerHMM are ab initio gene predictors i.e. they

predict genes from DNA sequence alone. Blat and GMAP align expressed sequence tags

(ESTs) to DNA. A separate file in a FASTA format is required for each chromosome. The

filename should consist of a consistent prefix (e.g. chr or chromosome), a chromosome

number (e.g. 1 or Ia), and a consistent extension e.g. fasta or seq. Example filenames:

chr1.fasta, chr2.fasta. The FASTA sequence identifier for each chromosome should also have

consistent prefix and chromosome numbering e.g >chr1|gi|401396281|, >chr2|chromosome 2|.

The chromosome files should be saved in the chromosome directory (see Directory

structure following Vacceed installation).

Gene sequences for each chromosome

Vacceed uses resources such as Augustus and GlimmerHMM to predict genes. The

predictions are compared to known genes (i.e. those recorded in public databases) using

blastn. A score is determined based on the percentage of query coverage * sequence

percentage similarity (see Output Files). The score provides evidence to support the

existence of the known genes. A separate file in a FASTA format is required to contain the

known genes for each chromosome. The filename should consist of a consistent prefix (e.g.

genes_chr), a chromosome number (e.g. 1 or Ia), and a consistent extension e.g. fasta or seq.

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 13

Example filenames: genes_chr1.fasta, genes_chr2.fasta. The gene files should be saved in the

genes directory (see Directory structure following Vacceed installation). To link the

evidence for the known genes to known proteins a mapping file is required (see Mapping

requirements below).

Protein Sequences

Predicted gene sequences by resources such as Augustus and GlimmerHMM are translated to

amino acid (protein) sequences. The predicted proteins sequences are compared to known

proteins (i.e. those recorded in public databases) using blastp. A score is determined based on

the percentage of query coverage * sequence percentage similarity (see Output Files). The

score provides evidence to support the existence of the known protein. Only one file in a

FASTA format is required. Any filename can be used but the name used must be assigned to

the key ‘protein_fasta’ in the species configuration file (see Species configuration file). The

protein file should be saved in the proteins directory (see Directory structure following

Vacceed installation). The FASTA sequence identifier for each protein should be in a

consistent format with the same prefix e.g. ‘gi’ for >gi|490147168| or ‘tr’ for >tr|F0V7C2.

Vacceed uses the second entity in the identifier as the protein ID e.g. 490147168 and F0V7C2

from the previous example. The default prefix is assigned to the key ‘prot_id_prefix’ in the

species configuration file.

Expressed Sequence Tag (EST) sequences

The programs Blat and GMAP are used to align EST sequences to the chromosome

sequences. Partial genes are then constructed. These predicted partial genes are compared to

known genes in the genes directory using blastn. A score is determined based on the

percentage of query coverage * sequence percentage similarity (see Output Files). The score

provides evidence to support the existence of the known genes. Only one file containing the

ESTs in a FASTA format is required. Any filename can be used but the name used must be

assigned to the key ‘est_file’ in the species configuration file (see Species configuration

file). The EST file should be saved in the ests directory (see Directory structure following

Vacceed installation).

Mapping requirements

Vacceed needs to link the genes in the genes directory to the proteins in the proteins directory

and vice versa. Two mandatory mapping files are required:

Gene ID to protein ID

Protein ID to Gene ID and chromosome number.

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 14

The mapping format is one link per line separated by a space or tab e.g.

 # 1=Protein ID 2=Gene ID 3=Chromosome Number

FoV7C2 NCLIV_0012 Ia

The names of the mapping files must be assigned to the appropriate keys ‘map_gene_protein’

and ‘map_protein_gene’ in the species configuration file (see Species configuration file).

The mapping files should be saved in the mapping directory (see Directory structure

following Vacceed installation). By default Vacceed expects a direct link between the gene

and protein IDs. However, an intermediate mapping file can be used, if required, by assigning

a name to the key ‘map_extra’. For example, the ID for the protein sequences may be UniProt

IDs but the gene IDs can only be directly linked to NCBI GI numbers. In this instance, a

UniProt to GI map file should be created.

Hint: UniProt (http://www.uniprot.org/) provides a user-friendly ID mapping option.

Vacceed Execution

Vacceed is invoked with a Perl script from within a Linux\Unix shell. The Perl script is called

startup and is located in the start directory (See Figure 1).

To build proteome:

Change directory to ~/vacceed/start and type…

perl startup build <pathogen> e.g. perl startup build tg

Description of arguments:

‘build’ instructs the script to build the proteome of the target pathogen

<pathogen> is a user-definable name that determines which configuration file to use

(see configuration file startup.ini)

Configuration file –startup.ini

Each target pathogen requires its own configuration files (see Specifies configuration file).

Typically there is one species configuration file for building proteome, and one for running

the in silico vaccine discovery pipeline. An argument passed to the startup script dictates

which species configuration file to use. For example, perl startup build tg or perl startup tg,

where ‘tg’ is a user-definable code in the configuration file startup.ini (see Figure 2).

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 15

Figure 2: startup.ini – contains a list of species configuration files.

The startup.ini configuration file contains 4 columns separated by a ‘<’ character. The first

column can be any number of characters and is used by the startup script to make the

association with the appropriate species configuration file. Column 2 is simply a description

and is not used by ant program. Column 3 should be either ‘build’ to indicate that the species

configuration file relates to building the proteome or ‘pipeline’ to indicate the configuration

file is used to run a vaccine discovery pipeline. Column 4 is the species configuration

filename (any user definable name). The startup.ini file is located in the start directory (see

Figure 1).

Specifies configuration file

The core of Vacceed is a species configuration file in a header-key format. User-definable

configuration files are required for each species. Typically, each species will have two

configuration files: one for building the proteome and one for running the pipeline. Four

example configuration files (template_build.ini, template.ini, toxoplasma_build.ini,

toxoplasma.ini) are supplied with the Vacceed distribution. The distributed configuration files

are found in config_dir under the start directory (see Figure 1).

The following section describes the content of a typical configuration file and presents an

example of how a user can modify the contents to suit the target species. The first three steps

in configuring Vacceed for a new target pathogen is to: 1) add new line in startup.ini, 2) copy

template_build.ini (or toxoplasma_build.ini or another species configuration file for building

a proteome if available) to <new_species_build>.ini, 3) copy the entire template_species

directory to a user-named directory e.g. neospora for Neospora caninum.

The <new_species_build>.ini configuration file needs to be modified appropriately for the

target pathogen. Any line in the configuration file that begins with ‘#’ is interpreted by the

script as a comment. The Vacceed framework is built around the concept of a resource. A

resource, in this context, is a program or group of programs executed as an independent

modular unit. That is, each module contains everything necessary to execute only one aspect

#Startup.ini – User defined configuration files

code<species<type e.g. build or pipeline<config

tg<Toxoplasma gondii<build<toxoplasma_build.ini

tg<Toxoplasma gondii<pipeline<toxoplasma.ini

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 16

of the desired functionality and can be run independently. Modular units improve

maintainability and allow new resources to be added when required (see Adding a new

resource).

The species configuration file is in header-key format (see Figure 3). For example,

[Resources] is regarded as the header, and ‘name’ is the key. Once startup is invoked, the

script executes in turn each resource listed after the ‘name’ key. A resource name e.g.

AUGUSTUS in principle can be any name on the provision that the same name is used

consistently throughout the rest of the configuration file. For example, instead of

AUGUSTUS one could use ‘Aug gene prediction’. The resource names can be in any order

and/or excluded with the exception of ASSEMBLY, which must always be the last in the list.

The distribution version of Vacceed uses the following programs: Augustus, GlimmerHMM,

Blat, GMAP, and N-Scan as part of the process of building a proteome (See Prerequisite

Programs)

Figure 3: Resources – extract from a species configuration file

In most cases, only keys under the Main header (see Figure 4) will need to be modified by the

user. Any key can be used as a variable replacement in the rest of the configuration file. That

is, a ‘$’ character preceding a word denotes a variable e.g. $work_dir is replaced by

‘$HOME/vacceed’ throughout the configuration file on execution of startup.

Description of keys under Main header:

work_dir:

The path to the directory that contains the Vacceed installation

species_dir

 The directory name that will contain all data and output for a specific species

chromosomes

A list of chromosomes to process. The chromosome number must be consistent with

the number used for the chromosome filename e.g. use Ia if the filename is

chrIa.fasta. The proteome is built from one chromosome at a time. That is, the

execution of a resource will loop in accordance with the number of chromosomes in

the list.

Configuration file for building Toxoplasma gondii proteome Sept 2013

[Resources]

name=AUGUSTUS,GLIMMER,BLAT,GMAP,NSCAN,ASSEMBLY

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 17

master_script

A Linux script file, using the name specified, will be created to collectively contain

all the commands to execute each resource. This file can be modified and executed to

build the proteome without the need for startup and configuration files. It is useful for

debugging.

build_script_only

A ‘YES’ or ‘NO’ to indicate if only the master script should be created without

building of the proteome

log_file

A directory path and a name for the log file. A log file containing program execution

details (including errors if they occur) is created.

email_url

E-mail address. An e-mail will be sent either to indicate that the proteome was built

successfully OR failed. A log file is attached to the e-mail.

Figure 4: Main – extract from a species configuration file

The keys under the Variables header (see Figure 5) are essentially used to save on typing and

limit the number of changes required to the configuration file. The user can add any number

of variables.

[Main]

work_dir="$HOME/vacceed"

species_dir="toxoplasma"

chromosomes="Ia Ib II III"

master_script="master_script"

build_script_only="NO"

log_file="$work_dir/$species_dir_logfile.txt"

email_url=Fred.Bloggs@student.uts.edu.au

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 18

Figure 5: Variables – extract from a species configuration file

Description of keys under Variables header (see also section on Directory structure

following Vacceed installation):

proteome_fasta = filename containing protein sequences from the target pathogen

prot_id_prefix = characters that precede the protein ID in the FASTA file specified with

proteome_fasta key. For example, ‘sp’ for >sp|QQAAA| or ‘tr’ for >tr|QQBBB|. Note that the

various descriptions in a FASTA definition are separated by the character ‘|’. Do not enter this

character here.

chr_dir = Path to directory containing the chromosome files

gene_dir = Path to directory containing the gene files

est_dir = Path to directory containing Expressed Sequence Tags (ESTs) file

prot_dir = Path to directory containing the protein file

train_dir = Path to directory containing training files for resources

map_dir = Path to directory containing files used in mapping identifiers

assembly_dir = Path to directory that will contain the files used to build proteome

common_dir = Path to directory containing programs that are common to more than one

resource.

resource_dir = value for this key must not change. This is a special case in which

$resource_dir is replaced by the relevant resource name e.g. augustus.

[Variables]

protein_fasta="UniProt_proteins.fasta"

prot_id_prefix="tr"

chr_dir="$work_dir/$species_dir/build_proteome/chromosomes"

gene_dir="$work_dir/$species_dir/build_proteome/genes"

est_dir="$work_dir/$species_dir/build_proteome/ests"

prot_dir="$work_dir/$species_dir/build_proteome/proteins"

train_dir="$work_dir/$species_dir/build_proteome/training_files"

map_dir="$work_dir/$species_dir/build_proteome/mapping"

proteome_dir="$work_dir/$species_dir/proteome"

assembly_dir="$work_dir/$species_dir/build_proteome/build_dir/assembly/output"

common_dir="$work_dir/$species_dir/build_proteome/build_dir/common_programs"

map_gene_protein="map_gene_uniprot.txt"

map_protein_gene="map_uniprot_gene_chr.txt"

map_extra="map_uniprot_gi.txt"

resource_dir="[Resources.name]" # do not change

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 19

Each resource has a possible four sections defined by 4 headers – [<resourceName >],

[<resourceName >_files], [<resourceName >_programs], and [<resourceName >_arguments].

The resourceName should be consistent with the name of the resource used under the

Resources header. Figure 6 represents a typical configuration for a resource. The directory for

each resource contains an identical structure of three directories, which by default are called

output, scripts, and summary_files.

Figure 6: Resource Name – extract from a species configuration file

Description of keys under resourceName:

prog_dir

The path to the directory that contains the Linux script for the resource. Typically the

resource directory.

script_dir

The directory name that will contain Linux scripts to execute the various commands

of the resource. A separate script is created for each chromosome e.g. script_Ia,

script_Ib. These scripts are run either in parallel or consecutively (see section on

Running scripts in parallel). The scripts can be run independently and are useful for

debugging.

out_dir

The directory name that will contain all output files generated from the resource. The

output is typically divided into output data for one chromosome per file.

[resourceName]

prog_dir="$work_dir/$species_dir/build_proteome/build_folder/$resource_dir"

script_dir="$work_dir/$species_dir/build_proteome/build_folder/$resource_dir/scripts"

out_dir="$work_dir/$species_dir/build_proteome/build_folder/$resource_dir/output"

sum_dir="$work_dir/$species_dir/build_proteome/build_folder/$resource_dir/summary_files"

[resourceName_files]

train_file="species_all"

[resourceName _programs]

1="resource_script"

[resourceName _arguments]

1="$chromosomes $chr_dir $gene_dir $train_file $out_dir $common_dir"

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 20

sum_dir

The directory name that will contain summary files. These summary files provide

statistical descriptions of the output on a chromosome per chromosome basis but in

one file (See section on Output Files)

The list of keys under the header resourceName_files is used to specify variables for

filenames. These variables are used as arguments to the resource script. It is highly

recommended that careful attention is made to checking filenames because they may be

species-specific.

The programs to run for each resource are numerically listed under the header

resourceName_programs. Only one Linux script is listed for each resource in the distribution

version of Vacceed. This resource script typically contains all commands required to run other

scripts and/or programs associated with the resource (see Resource Scripts). There is no limit

to the number of programs that can be listed under this header. Each program is executed in

numerical order commencing from key ‘1’.

Each program listed under resourceName_programs requires a corresponding list of

arguments under the header resourceName_arguments. For example, the arguments following

key ‘1’ are associated with the program following key ‘1’ (e.g. resource_script). It is critical

the argument variables are retained in the correct order.

Resource Scripts

In the distribution version of Vacceed, each resource has one main Linux script (typically

named after the resource) that creates a new script for each chromosome to be processed.

These scripts are saved in the scripts directory (see Figure 1). Each chromosome script (e.g.

scriptIa) contains all the required commands to execute the resource and to extract relevant

data for that particular chromosome. The extracted data is analysed and then used to build the

proteome incrementally on a chromosome by chromosome basis. There is a set hierarchal

structure for the execution of all Vacceed scripts e.g startup � master_script �

resource_script � chromosome_script. Any script can be run independently, which is ideal

for debugging. Each resource script is constructed from a generic format. Figure 7 shows an

example of this format. There are four main sections in the script:

Get command-line arguments – these arguments are passed by startup. The resource

arguments to pass are read from the appropriate species configuration file (see section

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 21

Specifies configuration file). The arguments constitute the variables (e.g. denoted by the

prefix ‘$’) used throughout the rest of the script.

Hard coding – local variables are recommended to be added here. bg_mode is required to

implement parallel processing of scripts (see section on Running scripts in parallel).

#Main loop for writing scripts – the idea behind this section is to create a subordinate script

that encapsulates all the commands required to process and manipulate data for a given

chromosome. The general pattern for each step or command to be performed is to add one

line as a description of the step, and another line with the actual command. Each command

line should also include ‘|| error_exit’. A generic function called error_exit is executed in the

event of an error raised by the command. All errors are written to the log file. A generic script

called ‘error_script’ is used to write the error_exit function.

#Run the scripts – a generic script called ‘run_scripts’ is used to execute each chromosome

script.

All generic scripts are located in common_programs directory (see Directory structure

following Vacceed installation).

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 22

Figure 7: Example Resource Script

#!/bin/sh

#Resource used: Example

resource=example

#Get command-line arguments

chromosomes=$1

prog_dir=$2

script_dir=$3

out_dir=$4

common_dir=$2

#Hard coding

bg_mode=1 # parallel processing: 1 = ON, 0 = OFF

filename="eg.txt"

#Main loop for writing scripts

for chr_no in $chromosomes

do

 #Write the error function to script

 $common_dir/error_script "$chr_no" "$script_dir"

##Program section ##

 echo "echo Chromosome $chr_no" >> $script_dir/script$chr_no

 #Step 1

 echo "script_step=\">> executing step 1\"" >> $script_dir/script$chr_no

 echo "perl $prog_dir/example1.pl chr$chr_no $out_dir" >> $script_dir/script$chr_no \

 || error_exit

 #Step 2

 echo "script_step=\">> executing step 2\"" >> $script_dir/script$chr_no

echo '$prog_dir/unix_script_1 "$filename" "$out_dir"' >> $script_dir/script$chr_no \

 || error_exit

done

#Run scripts

$common_dir/run_scripts "$chromosomes" "$script_dir" "$bg_mode" || exit 1

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 23

Output Files

The two most important output files are proteome_info.txt and proteome.fasta, which are

saved in the proteome directory (see Directory structure following Vacceed installation). It

is recommended that these files be examined after startup has finished and no errors were

detected.

proteome_info.txt – Lists all known and predicted pathogen proteins by a descending score in

a table format (see example extract below). There is one protein per row. Resource scores (i.e.

evidence for protein’s existence) are presented in columns e.g. aug_gene, aug_prot. Resource

scores are based on: query coverage * sequence percentage similarity as determined by

‘blastn’ or ‘blastp’. Where query coverage = percent of the query sequence (i.e. predicted

gene, protein, or EST sequence) that overlaps the subject sequence (i.e. known gene or

protein sequence); and percentage similarity = percent similarity between the query and

subject sequences over the length of the coverage area. Resource scores are reported as a

value between 0 and 1. Maximum score = 1.0 i.e. 100% query coverage and 100% sequence

percentage similarity. An average score for all resources is reported in the last column and

this value determines the order that the proteins appear in the list. The average score is also

taken into account when the final list of vaccine candidate sequences is determined (see

PART B – Output Files).

#ID,aug_gene,aug_prot,blat_gene,gl_gene,gl_prot,gmap_gene,nscan_gene,nscan_prot,Average score

S8GUS9,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00

S8GUX4,1.00,1.00,1.00,0.93,0.92,1.00,1.00,1.00,0.98

S8GVJ8,1.00,1.00,1.00,1.00,0.84,1.00,1.00,1.00,0.98

chrIa_new7,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.39

S8FCI0,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00

The file ‘proteome_info.txt’ also lists proteins that are potentially novel. A novel protein in

this context is one that matches no known protein from the target pathogen and is derived

from a predicted gene that matches no known gene. A novel protein is denoted by the word

‘new’ as part of the ID e.g. chrIa_new7. This notation also indicates which chromosome

contained the gene that encoded the novel protein. Novel proteins will always have a 0 score

from each resource. However, the last column for novel proteins is a probability score rather

than an average of the resource scores. The probability score (a value between 0 and 1) is

derived by clustering the sequences predicted by different resources that do not match to

known genes or proteins. The clustering here is based on sequence similarity using blastn or

blastp. An assumption made is that a cluster containing several sequences has a greater

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 24

probability than a cluster containing only a few sequences that it represents a ‘real’ sequence

(i.e. a novel sequence).

proteome.fasta – Contains the amino acid sequences in a FASTA format for all known and

predicted novel proteins of the target eukaryotic pathogen. This file provides the starting

prerequisite for in silico vaccine discovery pipeline (i.e. PART B – Run Pipeline). Note that

the FASTA definition line for novel proteins contains for consistency the same characters that

precede the known proteins. For example, if know proteins have ‘sp’ preceding the ID in the

FASTA definition line as in >sp|QQAAA|; the novel proteins will therefore have ‘sp’

preceding the ID as in >sp|chrIa_new7|. The preceding characters are assigned to the key

‘prot_id_prefix’ in the species configuration file.

If the above files are empty or have missing or unexpected data, then the next recommended

step is to review the files in the summary_files directory for each resource. These summary

files typically provide an overview of the output on a chromosome by chromosome basis. If

the results are not what you expect, then probing the more detailed files in the output

directories may provide some clues to the source of the problem. Each resource can

potentially generate many output files. The output filenames, a description of their contents,

and the program that generates them is listed in the following table. In general, the files

represent an audit trail for the various steps performed by each resource. For the most part,

you do not normally need to be concerned with these output files unless there is a requirement

to scrutinise the quality of each step.

The table uses some abbreviations and terms:

prefix – represents a consistent set of characters that precede the rest of the filename.

The default is chr# (where # is the number of the chromosome). The prefix allows for

the grouping and processing of files on chromosome basis

– represents a number either for a chromosome or gene

Query coverage – percent of the query sequence that overlaps the subject sequence

with respect to a BLAST output

Ident – percent of similarity between the query and subject sequences over the length

of the query coverage

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 25

Program Name Output file name Description of contents

Resource = AUGUSTUS

augustus prefix#.gff Gene predictions in a General Feature

Format (GFF)

getAnnoFasta.pl prefix#.aa Gene predictions converted to amino acid

sequences

aug_genes.pl prefix#.exons Predicted exon locations relative to gene

start (ATG)

 prefix#.seq Predicted gene sequences (default gene

identifier >g#) in a FASTA format

 prefix#_check.seq Checks if predicted genes start with ATG

and stop with either TAA, TAG, or TGA

blastn prefix#_blastn.txt Homology between predicted genes

(prefix#.seq) and known genes of the target

pathogen

e_blastn.pl prefix#_map.txt Reports matching genes from blastn hits

 prefix#_summary.txt Reports perfect matching genes (E-value = 0

with 100% query coverage and ident) or

partially matching genes (E-value = 0 with

query coverage > 75% and < 125%)

 genome_summary.txt Reports statistics for matching genes per

chromosome (file found in summary_files

directory)

 prefix#_aug_gene_ids.txt Lists the existing gene IDs with matching

predicted genes (file found in

assembly/output directory)

 prefix#_aug_new_gene.fasta Predicted gene sequences with no match to

existing genes (default gene identifier

>Resource Name-g#) (file found in

assembly/output directory)

blastp prefix#_blastp.txt Homology between predicted proteins

(prefix#.aa) and known proteins of the target

pathogen

e_blastp.pl prefix#_prot_map.txt Reports matching proteins from blastp hits

 prefix#_prot_summary.txt Reports perfect matching proteins (E-value

= 0 with 100% query coverage and ident) or

partially matching proteins (default: E-value

= 0 with query coverage > 75% and <

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 26

125%)

 protein_summary.txt Reports statistics for matching proteins per

chromosome (file found in summary_files

directory)

 prefix#_aug_prot_ids.txt Lists the existing protein UniProt IDs with

matching predicted proteins (file found in

assembly/output directory)

 prefix#_aug_new_prot.fasta Predicted protein sequences with no match

to existing proteins (default protein identifier

>Resource Name-g#) (file found in

assembly/output directory)

blastp prefix#_sim_blastp.txt Homology between predicted proteins with

no match to existing pathogen proteins

(prefix#_aug_new_prot.fasta) and NCBI nr

redundant database. Note that this step is

only performed if variable blastp_on_nr is

set to 1 in the augustus_script [default is 0].

It can take several days to run

e_blastp_sim.pl prefix#_sim_summary.txt Reports perfect matching proteins (E-value

= 0 with 100% query coverage and ident) or

partially matching proteins (default: E-value

= 0 with query coverage > 25% and < 175%,

and ident > 25%)

 prefix#_aug_sim_ids.txt Lists the existing protein UniProt IDs with

matching homologues (file found in

assembly/output directory)

 prefix#_aug_new_sim.fasta Predicted protein sequences with no match

to any existing proteins (default protein

identifier >Resource Name-g#) (file found

in assembly/output directory)

Resource = GLIMMER

glimmerhmm_linux.pl prefix#.gff Gene predictions in a General Feature

Format (GFF)

gl_genes.pl prefix#.exons Predicted exon locations relative to gene

start (ATG)

 prefix#.seq Predicted gene sequences (default gene

identifier >g#) in a FASTA format

 prefix#_check.seq Checks if predicted genes start with ATG

and stop with either TAA, TAG, or TGA

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 27

 prefix#_gene_start_end.txt Predicted gene location relative to the start

of the chromosome

 prefix#_mrna.seq Predicted mRNA sequence

blastn prefix#_blastn.txt Homology between predicted genes

(prefix#.seq) and known genes of the target

pathogen

e_blastn.pl prefix#_map.txt Reports matching genes from blastn hits

 prefix#_summary.txt Reports perfect matching genes (E-value = 0

with 100% query coverage and ident) or

partially matching genes (default: E-value =

0 with query coverage > 75% and < 125%)

 genome_summary.txt Reports statistics for matching genes per

chromosome (file found in summary_files

directory)

 prefix#_gl_gene_ids.txt Lists the existing gene IDs with matching

predicted genes (file found in

assembly/output directory)

 prefix#_gl_new_gene.fasta Predicted gene sequences with no match to

existing genes (default gene identifier

>Resource Name-g#) (file found in

assembly/output directory)

convert_dna_to_aa.pl prefix#.aa mRNA predictions (prefix#_mrna.seq)

converted to amino acid sequences

blastp prefix#_blastp.txt Homology between predicted proteins

(prefix#.aa) and known proteins of the target

pathogen

e_blastp.pl prefix#_prot_map.txt Reports matching proteins from blastp hits

 prefix#_prot_summary.txt Reports perfect matching proteins (E-value

= 0 with 100% query coverage and ident) or

partially matching proteins (default: E-value

= 0 with query coverage > 75% and <

125%)

 protein_summary.txt Reports statistics for matching proteins per

chromosome (file found in summary_files

directory)

 prefix#_gl_prot_ids.txt Lists the existing protein UniProt IDs with

matching predicted proteins (file found in

assembly/output directory)

 prefix#_gl_new_prot.fasta Predicted protein sequences with no match

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 28

to existing pathogen proteins (default protein

identifier >Resource Name-g#) (file found

in assembly/output directory)

blastp prefix#_sim_blastp.txt Homology between predicted proteins with

no match to existing pathogen proteins

(prefix#_gl_new_prot.fasta) and NCBI nr

redundant database. Note that this step is

only performed if variable blastp_on_nr is

set to 1 in the glimmer_script [default is 0].

It can take several days to run

e_blastp_sim.pl prefix#_sim_summary.txt Reports perfect matching proteins (E-value

= 0 with 100% query coverage and ident) or

partially matching proteins (default: E-value

= 0 with query coverage > 25% and < 175%,

and ident > 25%)

 prefix#_gl_sim_ids.txt Lists the existing protein UniProt IDs with

matching homologues (file found in

assembly/output directory)

 prefix#_gl_new_sim.fasta Predicted protein sequences with no match

to any existing proteins (default protein

identifier >Resource Name-g#) (file found

in assembly/output directory)

Resource = BLAT

blat prefix#_est.psl Alignment of Expressed Sequence Tags

(ESTs) with chromosome

psl_to_fasta.pl prefix#.seq Predicted ‘partial’ gene sequences derived

from aligned ESTs (default gene identifier

>gene_#)

blastn prefix#_blastn.txt Homology between predicted partial genes

(prefix#.seq) and known genes of the target

pathogen

e_blastn.pl prefix#_map.txt Reports matching genes from blastn hits

 prefix#_summary.txt Reports perfect matching genes (E-value = 0

with 100% query coverage and ident) or

partially matching genes (default: E-value =

0 with query coverage > 75% and < 125%)

 genome_summary.txt Reports statistics for matching genes per

chromosome (file found in summary_files

directory)

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 29

 prefix#_blat_gene_ids.txt Lists the existing gene IDs with matching

predicted genes (file found in

assembly/output directory)

 prefix#_blat_new_gene.fasta Predicted gene sequences with no match to

existing genes (default gene identifier

>Resource Name-gene_#) (file found in

assembly/output directory)

Resource = GMAP

gmap Est_all.psl Alignment of Expressed Sequence Tags

(ESTs) with ALL chromosomes

split_psl.pl prefix#_est.psl Alignment of Expressed Sequence Tags

(ESTs) with chromosome

psl_to_fasta.pl prefix#.seq Predicted ‘partial’ gene sequences derived

from aligned ESTs (default gene identifier

>gene_#)

blastn prefix#_blastn.txt Homology between predicted partial genes

(prefix#.seq) and known genes of the target

pathogen

e_blastn.pl prefix#_map.txt Reports matching genes from blastn hits

 prefix#_summary.txt Reports perfect matching genes (E-value = 0

with 100% query coverage and ident) or

partially matching genes (default: E-value =

0 with query coverage > 75% and < 125%)

 genome_summary.txt Reports statistics for matching genes per

chromosome (file found in summary_files

directory)

 prefix#_gmap_gene_ids.txt Lists the existing gene IDs with matching

predicted genes (file found in

assembly/output directory)

 prefix#_gmap_new_gene.fasta Predicted gene sequences with no match to

existing genes (default gene identifier

>Resource Name-gene_#) (file found in

assembly/output directory)

Resource = NSCAN

run_nscan.pl prefix#.fasta.masked.gtf Gene predictions in a Gene Transfer Format

(GTF)

nscan_genes.pl prefix#.seq Predicted gene sequences (default gene

identifier >gene_#)

 prefix#_check.seq Checks if predicted genes start with ATG

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 30

and stop with either TAA, TAG, or TGA

 prefix#_mrna.seq Predicted mRNA sequence

blastn prefix#_blastn.txt Homology between predicted genes

(prefix#.seq) and known genes of the target

pathogen

e_blastn.pl prefix#_map.txt Reports matching genes from blastn hits

 prefix#_summary.txt Reports perfect matching genes (E-value = 0

with 100% query coverage and ident) or

partially matching genes (default: E-value =

0 with query coverage > 75% and < 125%)

 genome_summary.txt Reports statistics for matching genes per

chromosome (file found in summary_files

directory)

 prefix#_gl_gene_ids.txt Lists the existing gene IDs with matching

predicted genes (file found in

assembly/output directory)

 prefix#_gl_new_gene.fasta Predicted gene sequences with no match to

existing genes (default gene identifier

>Resource Name-g#) (file found in

assembly/output directory)

Convert_dna_to_aa.pl prefix#.aa mRNA predictions (prefix#_mrna.seq)

converted to amino acid sequences

blastp prefix#_blastp.txt Homology between predicted proteins

(prefix#.aa) and known proteins of the target

pathogen

e_blastp.pl prefix#_prot_map.txt Reports matching proteins from blastp hits

 prefix#_prot_summary.txt Reports perfect matching proteins (E-value

= 0 with 100% query coverage and ident) or

partially matching proteins (default: E-value

= 0 with query coverage > 75% and <

125%)

 protein_summary.txt Reports statistics for matching proteins per

chromosome (file found in summary_files

directory)

 prefix#_gl_prot_ids.txt Lists the existing protein UniProt IDs with

matching predicted proteins (file found in

assembly/output directory)

 prefix#_gl_new_prot.fasta Predicted protein sequences with no match

to existing pathogen proteins (default protein

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 31

identifier >Resource Name-g#) (file found

in assembly/output directory)

blastp prefix#_sim_blastp.txt Homology between predicted proteins with

no match to existing pathogen proteins

(prefix#_gl_new_prot.fasta) and NCBI nr

redundant database. Note that this step is

only performed if variable blastp_on_nr is

set to 1 in the glimmer_script [default is 0].

It can take several days to run

e_blastp_sim.pl prefix#_sim_summary.txt Reports perfect matching proteins (E-value

= 0 with 100% query coverage and ident) or

partially matching proteins (E-value = 0

with query coverage > 25% and < 175%,

and ident > 25%)

 prefix#_gl_sim_ids.txt Lists the existing protein UniProt IDs with

matching homologues (file found in

assembly/output directory)

 prefix#_gl_new_sim.fasta Predicted protein sequences with no match

to any existing proteins (default protein

identifier >Resource Name-g#) (file found

in assembly/output directory)

Resource = ASSEMBLY

merge_fasta.pl prefix#_merged_gene.fasta Merged resource predicted gene sequences

with no match to existing genes .i.e.

prefix#_<resource name>_new_gene.fasta

files are combined (default gene identifier

>Resource Name-g#)

 prefix#_merged_protein.fasta Merged resource predicted protein

sequences with no match to existing genes

.i.e. prefix#_<resource

name>_new_prot.fasta files are combined

(default gene identifier >Resource Name-

g#)

blastn prefix#_merged_blastn.txt Homology between predicted genes in

prefix#_merged_gene.fasta

e_blastn_new.pl prefix#_scored_genes.txt Reports clusters of predicted genes that

match with blastn hits (default ident and

coverage thresholds are 95% and 75%

respectively). The number of unique

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 32

members in the cluster is used as a score.

Clusters are listed in descending score.

blastp prefix#_merged_blastp.txt Homology between predicted genes in

prefix#_merged_protein.fasta

e_blastp_new.pl prefix#_scored_proteins.txt Reports clusters of predicted proteins that

match with blastp hits (default ident and

coverage thresholds are 95% and 75%

respectively). The number of unique

members in the cluster is used as a score

(scores from prefix#_scored_genes.txt are

included). Clusters are listed by descending

score.

 new_prot.fasta Proteins sequences for protein clusters.

Sequence derived from the member with the

longest sequence. These sequences are

potential novel proteins. Default protein

identifier = >chr#_new# (file found in

proteome directory)

assemble.pl proteome_info.txt Lists all know proteins by descending score

in a table format. There is one protein per

row. Resource scores (i.e. evidence for

protein’s existence) are presented in

columns. The total score (shown in last

column) for each protein is derived from the

addition of the individual resource scores.

Resource scores are based on (query

coverage * ident). Maximum resource score

= 1.0

build_proteome.pl proteome.fasta Amino acid sequences in FASTA format for

all known and novel proteins i.e. merged

known proteins FASTA file with

new_prot.fasta

Running scripts in parallel

The resources encapsulate, for the most part, a large number of independent computation-

intensive tasks. Vacceed takes advantage of multi-core processors. The default when building

the proteome is to processes one chromosome per CPU in parallel. Chromosomes are queued

it there are more chromosomes than CPUs i.e. when a chromosome has finished processing a

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 33

new one will commence. The user can specify the number of chromosomes to process in

parallel by altering the number assigned to the variable ‘no_in_parallel’ in run_scripts located

in the common_programs directory. The chromosomes can be processed consecutively if

setting for bg_mode = 0 (default is bg_mode=1 for parallel processing – see Resource

Scripts).

Adding a new resource

This section describes the steps required to add a new resource. It is assumed here that the

resource is to contain a fictitious program called program_x that predicts genes from

chromosome sequences. The primary goal is to deduce protein sequences from the gene

sequences:

1. Install program_x and append program location to the PATH variable so that the

program will run from any directory. The best place to add the location is to modify

the user's .bash_profile file.

E.g. PATH=$PATH:$HOME/Gene_Prediction_Programs/program_x/bin

2. Test that the program will run with sample data and ensure it can be invoked from

any directory. Furthermore, determine the input and output requirements.

3. Add a new resource name in the appropriate configuration file for building the

proteome

[Resources]

name=AUGUSTUS,GLIMMER,BLAT,GMAP,NEW_RESOURCE,ASSEMBLY

4. Add a new section to the same configuration file. The easiest way to do this is to copy

an existing resource and amend accordingly. The texts highlighted in red are the only

parts expected to be changed (see Species configuration file for more details).

[NEW_RESOURCE] � This must be the same name as that used in step 3.

prog_dir="$work_dir/$species_dir/build_proteome/build_folder/$resource_dir"

script_dir="$work_dir/$species_dir/build_proteome/build_folder/$resource_dir/scripts"

out_dir="$work_dir/$species_dir/build_proteome/build_folder/$resource_dir/output"

sum_dir="$work_dir/$species_dir/build_proteome/build_folder/$resource_dir/summary_files"

[NEW_RESOURCE_files]

train_file="species_all" � A training file may not be required for some programs

additional_file="file.txt" � Only if required

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 34

[NEW_RESOURCE_programs]

1="new_resource_script"

 [NEW_RESOURCE_arguments]

1="$chromosomes $chr_dir $gene_dir $train_file $out_dir $common_dir $additional_file"

5. Create a new directory in the ‘build_dir’ (see Directory structure following Vacceed

installation) using the same name (but in lowercase) as the new resource; then create

three directories called ‘output’, ‘scripts’, and summary_files in this newly created

directory.

6. Copy the ‘template_resource_script’ from the common_programs directory into the

new resource directory and rename it to the same name as that specified for the

program under [NEW_RESOURCES_programs] header.

7. Amend the new_resource_script from step 6 (see Resource Scripts for example

script). Add the new program or programs within the ‘Main loop for writing scripts’

where is states “<< Add new programs here >>”. You need to ensure that the required

arguments (i.e. the ‘inputs’ as determined in step 2) are passed to program_x and the

output is to $out_dir (see example below).

#Step description

 echo "script_step=\">> executing program_x\"" >> $script_dir/script$chr_no

 echo "program_x $required_input $out_dir" >> $script_dir/script$chr_no \

 || error_exit

8. The next step is totally dependent on the output generated by program_x. Most gene

prediction programs output the predictions in either a General Feature Format (GFF)

or a Gene Transfer Format (GTF). You need to convert the output from program_x

into gene sequences in a FASTA format. For GFF and GTF there are open source

programs you can download. Alternately, for GFF you can use ‘aug_genes.pl’ from

the augustus resource (or ‘gl_genes.pl’ from glimmer resource) as a template to write

your own conversion Perl script. Similarly, for GTF you can use ‘nscan_genes.pl’

from the nscan resource. The conversion program and appropriate arguments need to

be added to new_resource_script. The pathogen genome is processed on a

chromosome per chromosome basis. The names used for the files containing gene

sequences should be consistent. The default name used in new_resource_script is

Vacceed – User Guide PART A – Build Proteome

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 35

‘chr#.seq’, where # is the chromosome number. Also the gene identifiers e.g.

>gene_# should be consistent, where # in this case is a consecutive gene count.

Example

echo "script_step=\"conversion_program.pl for $chr_no\"" >> $script_dir/script$chr_no

 echo "perl $prog_dir/conversion_program.pl chr$chr_no $chr_dir $out_dir \

 || error_exit" >> $script_dir/script$chr_no

9. The next step is also totally dependent on the output generated by program_x. Some

gene prediction programs automatically convert gene sequences to protein sequences

and some do not. In the latter case, you will need to find a program to do the

conversion. Note that exon locations must be taken into account to obtain the mRNA

sequence before the DNA to amino acid codon translation. Perl scripts such as

‘getAnnoFasta.pl’ from augustus resource or ‘convert_dna_to_aa.pl’ from glimmer

resource (converts mRNA to amino acid sequences) could be used as templates for

your own conversion program. The conversion program and appropriate arguments

need to be added to new_resource_script. The names used for the files containing

protein sequences should be consistent. The default name used in

new_resource_script is ‘chr#.aa’, where # is the chromosome number. Also the

protein identifiers e.g. >gene_# should be consistent with the gene identifiers.

echo "script_step=\"conversion_dna_to_aa.pl for $chr_no\"" >> $script_dir/script$chr_no

 echo "perl $prog_dir/conversion_dna_to_aa.pl chr$chr_no $chr_dir $out_dir \

 || error_exit" >> $script_dir/script$chr_no

10. Check the rest of the commands in the new_resource_script to ensure that they are

appropriate. These commands will compare the predicted gene and protein sequences

with existing ones using blastn and blastp respectively; determine homology between

predicted proteins with no match to existing pathogen proteins (only if variable

blastp_on_nr is set to 1); create gene and protein summary information per

chromosome. The commands will also collect the appropriate data for the assembly

resource to build the proteome.

Provided you have added relevant programs to create files containing gene and

protein sequences, no further amendments or steps are required.

Vacceed – User Guide PART B – Run Pipeline

36

PART B – Run Pipeline

This section describes everything you need to know to automate the process of high-

throughput in silico vaccine candidate discovery for eukaryotic pathogens. The primary goal

here is to computationally generate a file containing only the protein sequences (in a FASTA

format) that represent the predicted vaccine candidates for the target pathogen. A prerequisite

to run the pipeline is a file in a FASTA format containing protein sequences from the target

pathogen. These protein sequences can be downloaded from public databases and/or predicted

following the steps described in Part A – Build Proteome.

The pipeline in this context is a framework of data-processing stages. Each stage in the

pipeline is encapsulated as a resource that mainly contains commands to execute a central

bioinformatics program and pre and post-processing auxiliary scripts/programs. A design

objective of the pipeline was to have a seamless transition from input to final output. The

transition is achieved by internal Perl scripts. The central bioinformatics programs, in the

distributed version of Vacceed, are freely available programs used to predict protein

characteristics (i.e. potential evidence). These programs and their typical outputs are

described in Appendix A. An internal resource called ‘EVIDENCE’ collects all the evidence

and performs a binary classification of the input proteins using a pool of machine learning

algorithms.

Quick overview of steps required prior to running

pipeline

1. Install the programs Perl, WoLF PSORT, SignalP, TargetP, TMHMM, Phobius, and

IEDB peptide-MHC binding predictors (see section Prerequisite Programs).

2. Configure the installed programs, if required, for the target pathogen (see section

Configuration of prerequisite programs).

3. Add the target pathogen to startup.ini (see section Configuration file –startup.ini).

4. Create a configuration file for the target pathogen (see Specifies configuration file).

5. Run Vacceed (see Program Execution).

Directory structure following Vacceed installation

Figure 8 shows an example of the directory structure for the distributed version of Vacceed.

The ‘?’ in Figure 8 implies any pathname. Names shown in square brackets e.g. [Species

Name] imply user-defined directory names. Directory names should not contain spaces e.g.

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 37

Toxoplasma species is invalid, Toxoplasma_species is valid. Also, remember that

Linux/UNIX is case sensitive.

The contents of the directories are:

Start – contains the Perl script to invoke Vacceed called startup. The master Linux script also

is created in this directory.

config_dir – a directory within the start directory that contains the species specific

configuration files.

Figure 8: The Vacceed directory structure for the distributed version

[Species name] – A separately named but identical directory structure is used as a work area

for each species. For example, the data and work area for Toxoplasma gondii will be in a

?

vacceed

start

(Run startup from

here)

[Species name]

pipeline

build_proteome

[Resource name]

output

scripts

config_dir

common_programs

proteome

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 38

separate user-defined directory name, perhaps called toxoplasma, and similarly for

Plasmodium falciparum in a separate directory called plasmodium.

pipeline – The parent directory that contains all the resource directories.

[Resource name] – A separately named but identical directory structure is used for each

evidence prediction resource. For example, each resource directory contains two sub

directories: output (contains the main output files from the resource programs), scripts

(contains Linux scripts that invoke the resource programs). Some resources contain an

additional directory called training_files, which contain the necessary file for training the

resource.

common_programs – contains programs that are common to more than one resource.

proteome – contains the prerequisite input file to run the pipeline i.e. a file containing protein

sequences from the target pathogen in a FASTA format. Also, contains the main output file

from the pipeline, which is a file containing protein sequences for predicted vaccine

candidates in a FASTA format.

Prerequisite Programs

Perl – Vacceed has been developed and tested on Perl 5.10.1 for Linux. The following Perl

modules MUST be installed:

Config::Simple

File::HomeDir

The distributed version of Vacceed is configured to run the programs WoLF PSORT, SignalP,

TargetP, TMHMM, Phobius, and IEDB peptide-MHC binding predictors. These programs

MUST be installed if you intend to use all resources as per the distributed version. However,

you can elect to only install some of the resources and then modify the list of resources to use

via the key ‘name’ under the [Resources] header in the species configuration file.

Here are the program’s URLs (last viewed October 2013):

WoLF PSORT (0.2) – http://wolfpsort.seq.cbrc.jp/

SignalP (v4.1) – http://www.cbs.dtu.dk/services/SignalP/

TargetP (v1.1) – http://www.cbs.dtu.dk/services/TargetP/

TMHMM (v2.0) – http://www.cbs.dtu.dk/services/TMHMM/

Phobius (1.01) – http://phobius.sbc.su.se/

MHC I binding predictor (v2.9.1) – http://tools.immuneepitope.org/mhci/download/

MHC II binding predictor (v2.5.1) – http://tools.immuneepitope.org/mhcii/

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 39

Note: Installing the prerequisite programs is perhaps the most challenging aspect to preparing

Vacceed ready for use. It is highly recommended that you seek the help of an administrator

(or an experienced Linux user). Ensure that the each program successfully runs with sample

data before running Vacceed.

Important requirements:

[1] Append program location to the PATH variable so that the program will run from any

directory. The best place to add the location is to modify the user's .bash_profile file e.g.

PATH=$PATH:$HOME/pipeline_programs/signalp

export PATH

[2] Vacceed uses the default program names in the equivalent resource scripts. The expected

default names of the programs are as follows (remember Linux is case sensitive):

WoLF PSORT – runWolfPsortSummary

SignalP – signalp

TargetP – targetp

TMHMM – tmhmm

Phobius – phobius.pl

MHC I binding predictor – predict_binding.py

MHC II binding predictor – mhc_II_binding.py

Each of the above programs is referred to a as a resource in Vacceed. Consequently each

program, as do all resources, has a specific Linux script that contains all relevant commands

to execute the program. For the most part, these scripts will not need to be altered unless a

program parameter is required to be changed.

[3] The distributed version of Vacceed is configured to run machine learning algorithms via R

functions contained in packages. The following R packages MUST be installed if you intend

to use all algorithms as per the distributed version. However, you can elect to only install

some of the packages and then modify the list of algorithms to use via the key ‘algorithms’

under the [EVIDENCE] header in the species configuration file.

Machine learning algorithm and associated R packages:

Adaptive boosting– ada

Random forest – randomForest

k-nearest neighbour classifier (k-NN) – knn R function contained in Class package

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 40

Naive Bayes classifier – naiveBayes R function contained in the e1071 package

Neural network – nnet R function contained in the nnet package

Support vector machines (SVM) – ksvm R function contained in kernlab package.

The algorithms are executed using Rscript. There are three R functions that encapsulate the

relevant command for each algorithm: <al>_wrapper.R, <al>_runPred.R, and

<al>_makePred.R; where <al> is an algorithm abbreviation. The abbreviations used are: ada

= Adaptive boosting, knn = k-nearest neighbour classifier, nb = Naive Bayes classifier, nn =

Neural network, rf = Random forest, and svm = Support vector machines. The parameters to

fine tune the algorithms can be modified in <al>_makePred.R.

Note: The predictors for the machine learning algorithms are extracted from the

column headers of the ‘evidence_profiles’. The EVIDENCE key called

ignore_predictors is used to list the headers to ignore as predictors.

Configuration of prerequisite programs

Some of the prerequisite programs need to be configured specifically for the target pathogen:

MHC I binding predictor program needs a file containing MHC Class I alleles of the host of

the pathogen. This is required for the peptide-MHC binding predictions. The file should be in

a comma delimited format with columns allele name and peptide length.

Example of an allele file for cattle

BoLA-T2C,10

BoLA-T2C,11

BoLA-T2C,12

BoLA-T2C,13

BoLA-T2C,14

BoLA-T2C,8

BoLA-T2C,9

It is recommended that you copy the appropriate allele file to the ‘alleles’ directory under the

‘mhci’ parent directory; then, assign the allele filename to the key ‘allele_file’ under the

[MHCI] resource header in the species configuration file.

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 41

MHC II binding predictor program needs a file containing MHC Class II alleles of the host

of the pathogen. This is required for the peptide-MHC binding predictions. The file should

have only one column containing the allele name

Example of an allele file for humans

H2-IAb

H2-IAd

H2-IAs

H2-IEd

HLA-DPA1*01/DPB1*04:01

HLA-DPA1*01:03/DPB1*02:01

It is recommended that you copy the appropriate allele file to the ‘alleles’ directory under the

‘mhcii’ parent directory; then, assign the allele filename to the key ‘allele_file’ under the

[MHCII] resource header in the species configuration file.

WoLF PSORT has a default sequence length restriction of 10000. If your input protein

sequences are likely to be greater than this restriction, it recommended that the Perl script

‘checkFastaInput.pl’ located in the bin directory of the WoLF PSORT installation be edited.

Change the value assigned to ‘$maxSeqLen’ e.g. my $maxSeqLen = 50000.

Prerequisite Starting Data

The only absolute mandatory input required to run the pipeline is a file in a FASTA format

containing amino acid sequences for proteins from the target eukaryotic pathogen. This file

must be contained in the ‘proteome’ directory (see Directory structure following Vacceed

installation).

Vacceed Execution

Vacceed is invoked with a Perl script from within a Linux\Unix shell. The Perl script is called

startup and is located in the start directory (See Figure 8).

To run pipeline:

Change directory to ~/vacceed/start and type

perl startup <pathogen> e.g. perl startup tg

Description of arguments:

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 42

<pathogen> is a user-definable name that determines which configuration file to use

(see configuration file startup.ini)

Configuration file –startup.ini

Each target pathogen requires its own configuration files (see Specifies configuration file).

Typically there is one species configuration file for building proteome, and one for running

the in silico vaccine discovery pipeline. An argument passed to the startup script dictates

which species configuration file to use. For example, perl startup build tg or perl startup tg,

where ‘tg’ is a user-definable code in the configuration file startup.ini (see Figure 9).

Figure 9: startup.ini – contains a list of species configuration files.

The startup.ini configuration file contains 4 columns separated by a ‘<’ character. The first

column can be any number of characters and is used by the startup script to make the

association with the appropriate species configuration file. Column 2 is simply a description

and is not used by ant program. Column 3 should be either ‘build’ to indicate that the species

configuration file relates to building the proteome or ‘pipeline’ to indicate the configuration

file is used to run a vaccine discovery pipeline. Column 4 is the species configuration

filename (any user definable name). The startup.ini file is located in the start directory (see

Figure 8).

Specifies configuration file

The core of Vacceed is a species configuration file in a header-key format. User-definable

configuration files are required for each species. Typically, each species will have two

configuration files: one for building the proteome and one for running the pipeline. Four

example configuration files (template_build.ini, template.ini, toxoplasma_build.ini,

toxoplasma.ini) are supplied with the Vacceed distribution. The distributed configuration files

are found in config_dir under the start directory (see Figure 8).

The following section describes the content of a configuration file and presents an example of

how a user can modify the contents to suit the target species. The first three steps in

configuring Vacceed for a new target pathogen is to: 1) add new line in startup.ini, 2) copy

#Startup.ini – User defined configuration files

code<species<type e.g. build or pipeline<config<config directory path

tg<Toxoplasma gondii<build<toxoplasma_build.ini<$HOME/Vacceed/start/config_dir

tg<Toxoplasma gondii<pipeline<toxoplasma.ini<<$HOME/Vacceed/start/config_dir

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 43

toxoplasma.ini (or another species configuration file if available) to <new_species >.ini, 3)

copy the entire template_species directory to a user-named directory e.g. neospora for

Neospora caninum.

The <new_species >.ini configuration file needs to be modified appropriately for the target

pathogen. Any line in the configuration file that begins with ‘#’ is interpreted by the script as

a comment. The Vacceed framework is built around the concept of a resource. A resource, in

this context, is a program or group of programs executed as an independent modular unit.

That is, each module contains everything necessary to execute only one aspect of the desired

functionality and can be run independently. Modular units improve maintainability and allow

new resources to be added when required (see Adding a new resource).

The species configuration file is in header-key format (see Figure 9). For example,

[Resources] is regarded as the header, and ‘name’ is the key. Once startup is invoked, the

script executes in turn each resource listed after the ‘name’ key. A resource name e.g. WOLF

in principle can be any name on the provision that the same name is used consistently

throughout the rest of the configuration file. For example, instead of WOLF one could use

‘WoLF_PSORT’. The resource names can be in any order with the exception of VALIDATE

and EVIDENCE, which must always be the first and last in the list respectively.

Figure 9: Resources – extract from a species configuration file

The distribution version of Vacceed uses the following programs: WoLF PSORT, SignalP,

TargetP, TMHMM, Phobius, and IEDB peptide-MHC binding predictors to predict various

protein characteristics (see section Prerequisite Programs). These programs represent the

prediction resources.

In most cases, only keys under the Main header (see Figure 10) will need to be modified by

the user. Any key can be used as a variable replacement in the rest of the configuration file.

That is, a ‘$’ character preceding a word denotes a variable e.g. $work_dir is replaced by

‘$HOME/vacceed’ throughout the configuration file on execution of startup.

Description of keys under Main header:

work_dir:

Configuration file for Toxoplasma gondii pipeline Sept 2013

[Resources]

name=VALIDATE,WOLF,TMHMM,SIGNALP,TARGETP,PHOBIUS,MHCI,MHCII,EVIDENCE

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 44

The path to the directory that contains the Vacceed installation

species_dir

 The directory name that will contain all data and output for a specific species

master_script

A Linux script file, using the name specified, will be created to contain all the

commands to execute each resource. This file can be modified and executed to build

the proteome without the need for startup and configuration files. It is useful for

debugging.

build_script_only

A ‘YES’ or ‘NO’ to indicate if only the master script should be created without

running the pipeline.

log_file

A directory path and a name for the log file. A log file containing program execution

details (including errors if they occur) is created.

email_url

E-mail address. An e-mail will be sent either to indicate that the proteome was built

successfully OR failed. A log file is attached to the e-mail.

Figure 10: Main – extract from a species configuration file

The keys under the Variables header (see Figure 11) are essentially used to save on typing

and limit the number of changes required to the configuration file. The user can add any

number of variables.

[Main]

work_dir="$HOME/vacceed"

species_dir="toxoplasma"

master_script="master_script"

build_script_only="NO"

log_file="$work_dir/$species_dir_logfile.txt"

email_url=Fred.Bloggs@student.uts.edu.au

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 45

Figure 11: Variables – extract from a species configuration file

Description of keys under Variables header:

proteome_fasta = filename containing protein sequences from the target pathogen

prot_id_prefix = characters that precede the protein ID in the FASTA file specified with

proteome_fasta key. For example, ‘sp’ for >sp|QQAAA| or ‘tr’ for >tr|QQBBB|. Note that the

various descriptions in a FASTA definition are separated by the character ‘|’. Do not enter this

character here.

proteome_dir = Path to directory containing the file assign by the key ‘proteome_fasta’

common_dir = Path to directory containing programs that are common to more than one

resource

evidence_dir = Path to directory that will contain the evidence files generated by the

prediction resources.

resource_dir = value for this key must not change. This is a special case in which

$resource_dir is replaced by the relevant resource name e.g. wolf.

Each resource has a possible four sections defined by 4 headers – [<resourceName >],

[<resourceName >_files], [<resourceName >_programs], and [<resourceName >_arguments].

The resourceName should be consistent with the name of the resource used under the

[Resources] header. Figure 12 represents a typical configuration for a resource. The directory

for each resource contains an identical structure of two directories, which by default are called

output and scripts.

[Variables]

proteome_fasta="test.fasta"

prot_id_prefix="sp"

proteome_dir="$work_dir/$species_dir/proteome"

common_dir="$work_dir/$species_dir/pipeline/common_programs"

evidence_dir="$work_dir/$species_dir/pipeline/evidence/output"

resource_dir="[Resources.name]" # do not change

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 46

Figure 12: Resource Name – extract from a species configuration file

Description of keys under resourceName:

prog_dir

The path to the directory that contains the Linux script for the resource. Typically the

resource directory

script_dir

The directory name that will contain Linux scripts to execute the various commands

of the resource. A separate script is created for each split group of proteins e.g.

script1, script2 where each script processes a subset of the total number of proteins.

These scripts are run either in parallel or consecutively (see section on Running

scripts in parallel). The scripts can be run independently and are useful for

debugging.

out_dir

The directory name that will contain all output files generated from the resource (See

section on Output Files)

The list of keys under the header resourceName_files is used to specify variables for

filenames. These variables are used as arguments to the resource script. It is highly

recommended that careful attention is made to checking filenames because they may be

species-specific.

The programs to run for each resource are numerically listed under the header

resourceName_programs. Only one Linux script is listed for each resource in the distribution

[resourceName]

prog_dir="$work_dir/$species_dir/pipeline/$resource_dir"

script_dir="$work_dir/$species_dir/pipeline/$resource_dir/scripts"

out_dir="$work_dir/$species_dir/pipeline/$resource_dir/output"

[resourceName_files]

train_file="possibe_train_file"

[resourceName _programs]

1="resource_script"

[resourceName _arguments]

1="$proteome_fasta $proteome_dir $script_dir $out_dir $common_dir $evidence_dir $prog_dir"

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 47

version of Vacceed. This script typically contains all commands required to run other scripts

and/or programs associated with the resource (see Resource Scripts). There is no limited to

the number of programs that can be listed under this header. Each program is executed in

numerical order commencing from key ‘1’.

Each program listed under resourceName_programs requires a corresponding list of

arguments under the header resourceName_arguments. For example, the arguments following

key ‘1’ are associated with the program following key ‘1’ (e.g. resource_script). It is critical

the argument variables are retained in the correct order.

Resource Scripts

In the distribution version of Vacceed, each resource has one main Linux script (typically

named after the resource) that in many instances creates subordinate scripts for processing a

subset of the total number of proteins (see Running scripts in parallel). These scripts are

saved in the scripts directory (see Figure 8). Each script (e.g. script1) contains all the required

commands to execute the resource and to extract relevant evidence for a particular protein

characteristic. There is a set hierarchal structure for the execution of all Vacceed scripts e.g.

Startup � master_script � resource_script � subordinate script. Any script can be run

independently, which is ideal for debugging. Each main resource script is constructed from a

generic format. Figure 13a and continued on 13b shows an example of this format. There are

seven main sections in the script:

Get command-line arguments – the arguments are passed by startup via the master_script.

The resource arguments to pass are read from the appropriate species configuration file (see

section Specifies configuration file). The arguments constitute the variables (e.g. denoted by

the prefix ‘$’) used throughout the rest of the script.

Hard coding – local variables are recommended to be added here. bg_mode and split_by

are required to implement parallel processing of scripts (see section Running scripts in

parallel).

Split the total number of proteins into subsets – this section divides the protein sequences

into temporary files saved in the output directory for the purpose of processing the files in

parallel. The number of proteins in each temporary file is determined by the total number of

proteins to be processed divided by the number assigned to the ‘split_by’ variable. For

example, if the total number of proteins is 5000 and split_by = 6, then five temporary files

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 48

containing 833 protein sequences and one file containing 835 are created. The number of

temporary files is assigned to the variable ‘no_of_files’, which in effect is the same as

‘split_by’. The default value for ‘split_by’ is the number of CPUs.

#Main loop for writing scripts – the idea behind this section is create a subordinate script

that encapsulates all the commands required to process and manipulate data for a given subset

of proteins. The general pattern for each step or command to be performed is to add one line

as a description of the step, and another line with the actual command. Each command line

should also include ‘|| error_exit’. A generic function called error_exit is executed in the event

of an error raised by the command. All errors are written to the log file. A generic script

called ‘error_script’ is used write the error_exit function.

#Run the scripts – a generic script called ‘run_scripts’ is used to execute each script.

Tidy up – this section merges the output from the individual scripts and deletes all other

temporary files.

Extract Evidence – where possible a generic Perl script called ‘get_evidence.pl’ is used to

extract from the merged resource output the required evidence. By default the extracted

evidence is saved in the evidence_dir directory (see Adding a new resource).

All generic scripts are located in common_programs directory (see Directory structure

following Vacceed installation).

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 49

#!/bin/sh

#Resource used: Example

resource=example

short_name=ex

#Get command-line arguments

proteome_fasta=$1

prog_dir=$2

script_dir=$3

out_dir=$4

common_dir=$5

evidence_dir=$6

#Hard coding

bg_mode=1 # parallel processing: 1 = ON, 0 = OFF

split_by=`nproc` #default split value is number of CPUs

ex_arg1="example_1"

#Split the total number of proteins into subsets

echo "Splitting FASTA file for " $resource >> $LOG_FILE

perl $common_dir/split_fasta.pl $proteome_dir/$proteome_fasta $split_by $out_dir

no_of_files=$?

if [$no_of_files == 0]; then

 exit 1

fi

#Main loop for writing scripts

for file_no in $(seq 1 $no_of_files)

do

 #Write the error function to script

 $common_dir/error_script "$file_no" "$script_dir"

 #Program section

 echo "echo Running file $file_no for $resource >> $LOG_FILE" >> $script_dir/script$file_no

 echo "script_step=\"executing program_x for $file_no\"" >> $script_dir/script$file_no

 echo "program_x $ex_arg1 >$out_dir/$short_name$file_no \

 2>> $LOG_FILE || error_exit" >> $script_dir/script$file_no

done

Figure 13a: Example Resource Script

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 50

Output Files

The two most important output files are vaccine_candidates and vaccine_candidates.fasta,

which are saved in the proteome directory (see Directory structure following Vacceed

installation).

vaccine_candidates contains an ordered list in a table format of each known and predicted

protein in the proteome of the target pathogen (see example extract below). The order is

determine by a final score based on the average of the machine learning (ML) scores.

#ID,nn,knn,ada,nb,rf,svm,existence_score,average_ML_score

S8F9N7,1.000,1.000,1.000,1.000,1.000,1.000,0.500,1.000

S8GL31,1.000,1.000,1.000,1.000,1.000,1.000,0.400,1.000

chrIa_new10,1.000,1.000,1.000,1.000,1.000,1.000,0.010,1.000

S8GKZ9,0.400,0.667,0.000,1.000,0.025,0.108,0.370,0.367

S8GL08,0.450,0.667,0.000,0.999,0.007,0.070,0.140,0.366

S8FF43,0.000,0.000,0.000,0.000,0.000,0.007,0.700,0.001

#Run scripts

$common_dir/run_scripts "$resource" "$no_of_files" "$script_dir" "$bg_mode" || exit 1

#Tidy up

echo "Tidying up for " $resource >> $LOG_FILE

cat $out_dir/${short_name}* > $out_dir/out_${short_name} || exit 1

rm $out_dir/${short_name}* || exit 1

rm $out_dir/*.fasta || exit 1

#Extract Evidence

#hard coding for extract output format

input_file=$out_dir/out_${short_name}

split_char='\s+'

id_info='1,2,\|'

evd_headers=$short_name"_score,"$short_name"_annotation"

echo "Executing get_evidence.pl" >> $LOG_FILE

perl $prog_dir/get_evidence.pl $input_file $evidence_dir $short_name $split_char $id_info $evd_headers\

2>> $LOG_FILE || exit 1

Figure 13b: Example Resource Script

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 51

Where nn = Neural network, knn = k-nearest neighbour classifier, ada = Adaptive boosting,

nb = Naive Bayes classifier, rf = Random forest, and svm = Support vector machines.

There is one protein per row. Each column represents an average probability score between 0

and 1. This score represents the likelihood or confidence level that the ‘YES’ for vaccine

classification is correct. The R functions for adaptive boosting, random forest, SVM, and

naive Bayes classifier support class-probabilities i.e. an estimated probability for each protein

belonging to ‘YES’ and ‘NO’ classes. The output from the R functions for k-nearest

neighbour classifier and neural network is only a binary ‘YES’ or ‘NO’. The score from these

latter algorithms used in vaccine_candidates is therefore an average frequency for YES

vaccine candidacy. The average score for all machine learning (ML) scores is reported in the

last column and this value determines the order that the proteins appear in the list. There is

also column that indicates a probability score that the protein is ‘real’. This probability score

is extracted from proteome_info.txt (see PART A – Output Files).

vaccine_candidates.fasta contains the protein sequences of the predicted vaccine candidates in

a FASTA format for only proteins that have an average ML score and existence score from

vaccine_candidates greater than user-defined threshold values. The threshold scores are

assigned to the ml_threshold and existence_threshold keys under EVIDENCE resource in the

species configuration file (default value = 0.75).

It is recommended that both ‘vaccine_candidates’ and ‘vaccine_candidates.fasta’ be

examined after startup has finished and no errors were detected. If these files are empty or

have missing or unexpected data, the next recommended step is to review the files in the

output directory of the evidence resource. This latter directory should contain an output file

from each resource. If a particular resource output file is missing or not what you expected,

then probing the files in the output directory of the resource in question may provide some

clues to the source of the problem. Each resource can potentially generate many output files.

The output filenames, a description of their contents, and the program that generates them is

listed in the following table. In general, the files represent an audit trail for the various steps

performed by each resource. For the most part, you do not normally need to be concerned

with these output files unless there is a requirement to scrutinise the quality of each step.

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 52

Program Name Output file name Description of contents

Resource = VALIDATE

check_prot_seq.pl validate_<sequence name> Sequences that contain invalid amino

acid characters i.e. a character other than

[ARNDBCEQZGHILKMFPSTWYV]

Resource = WOLF

runWolfPsortSummary out_wolf Subcellular predictions

get_evidence_for_wolf.pl wolf_evd Extract of the ‘extr’ and ‘plas’

localisation scores (file found in

evidence/output directory

Resource = SIGNALP

signalp out_signalp Secretory signal peptide predictions

get_evidence.pl signalp_evd Extract of the ‘D’ column (file found in

evidence/output directory

Resource = TARGETP

targetp out_targetp Secretory signal peptide predictions

get_evidence.pl targetp_evd Extract of the ‘SP’ column (file found in

evidence/output directory

Resource = TMHMM

tmhmm out_tmhmm Transmembrane helices predictions

get_evidence.pl tmhmm_evd Extract of ‘ExpAA, First60, and

PredHel’ values (file found in

evidence/output directory

Resource = PHOBIUS

phobius.pl out_phobius Transmembrane helices and secretory

signal peptide predictions

get_evidence.pl phobius_evd Extract of ‘TM and SP’ columns (file

found in evidence/output directory

Resource = MHCI

compute_peptides (invokes

predict_binding.py)

out_mhci Peptide-MHC I binding predictions

extract_mhci_output.pl extract_stats.txt Summary of high-affinity peptides per

protein

 allele_stats.txt Frequency of MHC I alleles used

 peptide_stats.txt Frequency of peptide sequences

 id_allele_stats.txt Frequency of alleles per protein

 id_peptide_stats.txt Frequency of peptide sequences per

protein

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 53

 id_allele_peptide_stats.txt Frequency of allele and peptide

sequences per protein

 allele_peptide_stats.txt Frequency of allele and peptide

sequences

extract_stats.pl summary_of_extract.txt Global summary of the file

‘extract_stats.txt’

mhci_ml.pl mhci_ml.txt Peptide-mhc binding scores for each

MHC I allele per protein in a format

required for machine learning (ml)

algorithms.

get_predictors.pl ml_predictors.R MHC I alleles that determine the

predictors for machine learning (ml)

algorithms (written in R syntax).

mhci_wrapper.R predictions.txt Probability values from multiple runs of

randomForest (a machine learning

algorithm) executed by Rscript. The

value is an indicator of the potential of a

protein to be a vaccine candidate.

extract_predictions.pl mhci_evd Average vaccine candidacy probability

values extracted from predictions.txt

(file found in evidence/output directory

Resource = MHCII

compute_peptides (invokes

mhc_II_binding.py)

out_mhcii Peptide-MHC II binding predictions

extract_mhcii_output.pl extract_stats.txt Summary of high-affinity peptides per

protein

 allele_stats.txt Frequency of MHC II alleles used

 peptide_stats.txt Frequency of peptide sequences

 id_allele_stats.txt Frequency of alleles per protein

 id_peptide_stats.txt Frequency of peptide sequences per

protein

 id_allele_peptide_stats.txt Frequency of allele and peptide

sequences per protein

 allele_peptide_stats.txt Frequency of allele and peptide

sequences

extract_stats.pl summary_of_extract.txt Global summary of the file

‘extract_stats.txt’

mhcii_ml.pl mhcii_ml.txt Peptide-mhc binding scores for each

MHC II allele per protein in a format

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 54

required for machine learning (ml)

algorithms.

get_predictors.pl ml_predictors.R MHC II alleles that determine the

predictors for machine learning (ml)

algorithms (written in R syntax).

mhcii_wrapper.R predictions.txt Probability values from multiple runs of

randomForest (a machine learning

algorithm) executed by Rscript. The

value is an indicator of the potential of a

protein to be a vaccine candidate.

extract_predictions.pl mhcii_evd Average vaccine candidacy probability

values extracted from predictions.txt

(file found in evidence/output

directory)

Resource = EVIDENCE

combine_evidence.pl evidence_profiles Merged content of all files with the

suffix ‘_evd’. This file constitutes the

input file for machine learning

algorithms.

get_predictors.pl ml_predictors.R Evidence as defined by the column

headers in ‘evidence_profiles’ that

determine the predictors for machine

learning (ml) algorithms (written in R

syntax). Note: EVIDENCE key called

ignore_predictors in species

configuration file is used to list the

headers to ignore as predictors.

<al>_wrapper.R

<al>_runPred.R

<al>_makePred.R (can

change algorithm

parameters in this file)

<al>_predictions.txt Probability values from multiple runs of

a machine learning algorithm executed

by Rscript. The value is an indicator of

the potential of a protein to be a vaccine

candidate. <al> represents a character

prefix to denote the algorithm used: ada

= Adaptive boosting, rf = Random

forest, knn = k-nearest neighbour

classifier, nb = Naive Bayes classifier,

nn = Neural network, svm = Support

vector machines

extract_prob_predictions.pl <al>_ml Average probability per protein for YES

vaccine candidacy as extracted from

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 55

<al>_predictions.txt. Only applicable to

the algorithms that output class

probabilities e.g. ada, rf, svm, and nb

extract_class_predictions.pl <al>_ml Average frequency per protein for YES

vaccine candidacy as extracted from

<al>_predictions.txt. Only applicable to

the algorithms that output a binary YES

or NO e.g. nn

extract_knn_predictions.pl <al>_ml Probability per protein for YES vaccine

candidacy as extracted from

knn_predictions.txt. Only applicable to

the algorithm knn

combine_scores.pl vaccine_candidates Includes for each protein: score from

each machine learning (ml) algorithm;

score for protein existence; average ml

score (1= maximum and 0= minimum

confidence in prediction)

(file found in proteome directory)

get_candidate_fasta.pl vaccine_candidates.fasta Contains the protein sequences in a

FASTA format for only proteins that

have an average ML score and existence

score from vaccine_candidates greater

than user-defined threshold values.

Threshold scores are assigned to the

ml_threshold and existence_threshold

keys under EVIDENCE resource in the

species configuration file (default value

= 0.75) (file found in proteome

directory)

Running scripts in parallel

The resources encapsulate, for the most part, a large number of independent computation-

intensive tasks. Vacceed takes advantage of multi-core processors. The default when running

the pipeline is to divide protein sequences into a number of temporary files for the purpose of

processing the files in parallel. The number of proteins in each temporary file is determined

by the total number of proteins to be processed divided by the number assigned to the

‘split_by’ variable in the resource script (see Resource Scripts). For example, if the total

number of proteins is 5000 and the split_by = 6, then five temporary files containing 833

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 56

protein sequences and one file containing 835 are created. The default value for ‘split_by’ is

the number of CPUs but you can override this by assigning the desired split number to

‘split_by’. The temporary files can be run in parallel or consecutively depending on the

setting for bg_mode (default is bg_mode=1 for parallel processing – see Resource Scripts).

If there are more temporary files than CPUs, then the surplus files are queued i.e. when a file

has finished processing a new one will commence.

Adding a new resource

This section describes the steps required to add a new resource. It is assumed here that the

resource is to contain a fictitious program called program_z that predicts a particular protein

characteristic. The primary goal is to extract relevant evidence from the output of program_z

to add to overall evidence profile for the purpose of vaccine candidacy decision making using

machine learning algorithms.

1. Install program_z and append program location to the PATH variable so that the

program will run from any directory. The best place to add the location is to modify

the user's .bash_profile file.

E.g. PATH=$PATH:$HOME/Pipeline_Programs/program_z/bin

2. Test that the program will run with sample data and ensure it can be invoked from

any directory. Furthermore, determine the input and output requirements.

3. Add a new resource name in the appropriate configuration file for running the

pipeline.

[Resources]

name=VALIDATE,WOLF,TMHMM,TARGETP,PHOBIUS,NEW_RESOURCE,EVIDENCE

4. Add a new section to the same configuration file. The easiest way to do this is to copy

an existing resource and amend accordingly. The texts highlighted in red are the only

parts expected to be changed (see Species configuration file for more details).

[NEW_RESOURCE] � This must be the same name as that used in step 3.

prog_dir="$work_dir/$species_dir/pipeline/$resource_dir"

script_dir="$work_dir/$species_dir/pipeline/$resource_dir/scripts"

out_dir="$work_dir/$species_dir/pipeline/$resource_dir/output"

[NEW_RESOURCE_files]

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 57

train_file="possibe_train_file" � A training file may not be required for some programs

additional_file="file.txt" � Only if required

[NEW_RESOURCE_programs]

1="new_resource_script"

[NEW_RESOURCE_arguments]

1="$proteome_fasta $proteome_dir $script_dir $out_dir $evidence_dir $prog_dir"

5. Create a new directory in the ‘pipeline’ (see Directory structure following Vacceed

installation) using the same name (but in lowercase) as the new resource; then create

two directories called ‘output’, and ‘scripts’ in this newly created directory.

6. Copy the ‘template_resource_script’ from the common_programs directory into the

new resource directory and rename it to the same name as that specified for the

program under [NEW_RESORCES_programs] header.

7. Amend the new_resource_script from step 6 (see Resource Scripts for example

script). Add the new program or programs within the ‘Main loop for writing scripts’

where is states “<< Add new programs here >>”. You need to ensure that the required

arguments (i.e. the ‘inputs’ as determined in step 2) are passed to program_z and the

output is to $out_dir

#Step description

 echo "script_step=\">> executing program_z\"" >> $script_dir/script$chr_no

 echo "program_z $required_input $out_dir" >> $script_dir/script$chr_no \

 || error_exit

8. The next step is totally dependent on the output generated by program_z. Here, we

need to extract the relevant evidence from the output file. There is a generic Perl

script in the common_programs directory called ‘get_evidence.pl’ that potentially can

be used. This script can be used in the following scenarios.

i) When the output is presented in columns delimited by a fixed character.

E.g.

ID col2 col3 col4 col5

sp|rr|045|A4 0.5 2.4 6.2 8.9

This is a line that should be ignored

sp|rr|099|A4 0.8 3.9 7.2 10.2

Another line to ignore

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 58

Let us say for example that you need to extract the data from column 2 and column 5.

Amend new_resource_script as follows:

Short_name='new_res'

input_file=$out_dir/out_${short_name} <- path and name of output file

split_char='\s+' <- A fixed character that separates the columns e.g. ‘,’ or ‘:’ or ‘|’. In this case a

Perl regular expression is used for one of more white spaces between columns

cols_required='2,5' <- List of column numbers to extract

id_info='1,3,\|' <- Comma delimited information for extracting ID e.g. the ID ‘045’ from

sp|045|A4 where 1 = the column in the input line containing the identifier (e.g. 1), 2 = the

position of the ID in the identifier (e.g. 3), 3 = the separating character between parts of the

identifier (e.g. |) (Note that a ‘\’ is used to escape the character.

evd_headers=$short_name"_score,"$short_name"_validate" <- name of headers to use in

evidence profile

start_prefix='sp’ <- Determines which lines to extract the data columns from. In this case all line

starting with ‘sp’

ignore_lines='This is a, Another’ <- a comma delimited list of text. Any lines that commence

with the same text will be ignored

echo "Executing get_evidence.pl" >> $LOG_FILE

perl $prog_dir/get_evidence.pl $input_file $evidence_dir $short_name $split_char \

$cols_required $id_info $evd_headers $start_prefix $ignore_lines 2>> $LOG_FILE || exit 1

ii) When the output is presented in columns delimited by a fixed character AND the

column header prefixes each value

E.g.

ID=sp|rr|045|A4,score=0.5,prob=2.4,percent=6.2,validate=8.9

ID=sp|rr|099|A4,score=0.8,prob=3.9,percent=7.2,validate=10.2

Let us say for example that you need to extract the data from column 2 and column 5.

Amend new_resource_script as follows:

Short<name='new_res'

input_file=$out_dir/out_${short_name}

split_char=',' <- In this case a comma

cols_required='2,5'

id_info='1,3,\|'

evd_headers=$short_name"_score,"$short_name"_validate"

extract_value='=' <- a fixed character that separates the column header from the value. In this

case an ‘=’

Vacceed – User Guide PART B – Run Pipeline

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 59

echo "Executing get_evidence.pl" >> $LOG_FILE

perl $prog_dir/get_evidence.pl $input_file $evidence_dir $short_name $split_char $id_info \

$cols_required $evd_headers $extract_value 2>> $LOG_FILE || exit 1

9. Provided you have added a program that extracts the relevant output and saves it in a

file with the suffix ‘_evd’ in the evidence/output directory, no further amendments or

steps are required.

Vacceed – User Guide Appendix A

60

Appendix A

Introduction

The current trend in vaccine development is epitope-based due to its potential to be more

specific, safer, and easier to produce than traditional vaccines [1]. The key to subunit vaccine

development is the successful identification of proteins of a pathogen, as opposed to using the

entire entity, which evoke a protective, safe immune response. Proteins that are present on the

surface of the pathogen or are secreted from the pathogen are the most likely candidates to

induce an immune response and are consequently the target for this study. Five programs

(WoLF PSORT [2], SignalP [3], TargetP [4], TMHMM [5], and Phobius [6]) were used to

predict protein characteristics relevant to sub-cellular location given amino acid sequences as

input.

It is the recognition of epitopes on pathogens by T- and B-cells (and soluble antibodies) that

activates the cellular and humoral immune response [7]. The premise here is that if a high

affinity epitope can be associated with a protein then this provides further evidence for the

protein’s vaccine candidacy. Two programs (MHC I Binding Predictor and MHC II Binding

Predictor [8, 9]) were used to predict peptide binding to MHC class I and class II molecules.

All seven programs were essentially chosen because they were applicable to eukaryotes,

could be freely downloaded, run in a standalone mode, allow high throughput processing, and

execute in a Linux environment. All programs can be executed via web interfaces. However,

processing enormous amounts of input is currently unproductive through web interfaces and

in particular the web versions of WoLF PSORT, SignalP, and TargetP restrict the number of

input sequences; hence the reason why equivalent standalone versions of the programs were

employed here in a Linux environment.

WoLF PSORT

WoLF PSORT computationally predicts a protein’s localization and in effect mimics the

biological mechanism of protein sorting [10] by which a protein, after its encoding and

synthesis, is transported to the appropriate position in or outside the pathogen. The main

determinant of a protein’s localization is the protein amino acid sequence [2]. In effect the

sequence contains a delivery address. Many programs have been developed to predict

Vacceed – User Guide Appendix A

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 61

subcellular locations of proteins [4, 11]1. Most programs are web based. The prediction

methods can be broadly grouped into two classifications: rules/knowledge based and machine

learning. The rules based method exploits static knowledge of what determines subcellular

location, whereas the machine learning method dynamically utilises training data to identify

subcellular locations by focusing on the differences between proteins from different known

locations. PSORT [12] is a well-known, well-used example; PSORT II [12] is both rules and

machine learning based.

WoLF PSORT is an extension of the PSORT II program and can be used for the prediction of

protein localisation sites in eukaryotic pathogens [2]. It requires as input, full-length amino

acid sequences of a protein in a FASTA format. The program detects sorting signals within

the sequence from which it then computationally predicts the protein’s subcellular

localisation. Signal detection is achieved by applying stored rules for various sequence

features with specific criteria of known sorting signal motifs e.g. the feature is a GPI-anchor

and the criteria for the feature is ‘type-1a membrane protein with a very short tail’. One of the

extensions to PSORT II implemented by WoLF PSORT is the identification of localisation

features using amino acid composition and functional motifs such as DNA-binding motifs. A

weighted k-nearest-neighbour classifier estimates the likelihood of localization features being

sorted to each candidate site (referred in the program as a localisation class) and outputs the

most probable sites with a score. A training dataset is required comprising protein sequences

with a known localisation label. The training set supplied with the program is stated to be

applicable to animals and contains 12,000 UniProt sequences [2].

Figure A1 shows a typical output from WoLF PSORT. Information about each protein

sequence is displayed on separate lines (only three sequences are shown in Figure A1). Each

field along the line contains a localization class (based on Uniprot "Subcellular Localization"

field keywords) and a score separated by a comma. There are 12 localisation classes that also

map to Gene Ontology (GO)2.

1 Subcellular location prediction programs at

http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/subcellular/

2 Gene Ontology (GO) website at: http://www.geneontology.org/

Figure A1. Typical output from WoLF PSORT

seq1 extr_plas: 11.5, plas: 11, extr: 10, E.R.: 4, lyso: 4, pero: 1.5

seq2 extr: 25, lyso: 3, plas: 2, nucl: 1, E.R.: 1

seq3 extr: 31, lyso: 1

Vacceed – User Guide Appendix A

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 62

As an example of how to interpret the output in Figure A1 protein ‘seq1’ has six candidate

sites listed in descending order of likelihood based on a score. The most likely site is

extracellular (extr) and plasma membrane (plas) i.e. there is dual localisation with a score of

11.5. The plasma membrane (on its own) is the next most likely site, followed by

extracellular, endoplasmic reticulum (E.R.), lysozyme (lyso) and finally peroxisome (pero).

The accuracy of WoLF PSORT is influenced by the number of each type of localisation site

in the training data .e.g. sites with few examples in the training dataset are seldom correctly

predicted.

SignalP

One of the most well-known protein sorting signals is the secretory signal peptide, which

targets its passenger protein to the secretory pathway via the endoplasmic reticulum. The

secretory pathway is a series of steps that ends with the secretion of a protein through the cell

plasma membrane to the outside of the pathogen. It is important to know that not all secretory

proteins have signal peptides, or are necessarily secreted to the outside of the pathogen [4].

Some proteins have specific retention signals that hold them back in the ER or the Golgi or

divert them to the lysosomes [4]. There are many different types of secretory signal peptides

but the most common type is the signal peptide cleaved by signal peptidase. Although there

are no simple consensus sequences, three distinct compositional regions on the peptide’s

amino acid sequence help define this type of signal peptide: N-terminal, central hydrophobic,

and C-terminal regions. Specific motifs that target the protein are within the N-terminal, and

the signal peptidase cleavage site that precedes the mature protein is within the C-terminal.

Signal peptides are cleaved off while the protein is translocated through the cell membrane

[13]. There are also signal peptides that are not cleaved called signal anchors i.e. a

transmembrane protein with one transmembrane segment near the N-terminal of the protein

[14, 15].

Secretory signal peptides can be computationally predicted using machine learning

techniques, such as neural networks and hidden Markov models (HMMs) [16]. The program

SignalP (version 4.0) predicts the presence and location of the signal peptidase I cleavage site

at the C-terminal end of the presequence; and classifies each residue in the presequence as

either belonging or not belonging to a signal peptide using two neural networks. Two

different types of negative data were used for training the neural network models: sequences

(mostly derived from UniProt) with transmembrane regions located within the first 70

residues from the N-terminal were used to train the SignalP-TM network; and sequences from

non-secretory proteins were used to train the SignalP-noTM network. If the network SignalP-

Vacceed – User Guide Appendix A

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 63

TM predicts four or more positions as transmembrane positions, SignalP-TM is used for the

final prediction, otherwise SignalPnoTM is used. Training data for eukaryotes is supplied

with SignalP.

The input format required is multi-FASTA. It is recommended in the SignalP user manual

that only the first 50 to 70 amino acids3 of each sequence should be used in the prediction as

longer sequences increase the risk of false positives. To restrict the length of the input

sequence a command-line parameter is used (e.g. –trunc 70). An example of the summary

output from SignalP is shown in Figure A2.

SignalP comprises five different scores between 0 and 1: 1) Cmax is the maximum “cleavage

site'” score (a C-score is calculated for each position in the submitted sequence and a

significant high score indicates a cleavage site); 2) Ymax is a derivative of the C-score

combined with the S-score resulting in a better cleavage site prediction than the raw C-score

alone. 3) S-max is the “maximum signal peptide” prediction score (the S-score for the signal

peptide prediction is calculated for every single amino acid position in the submitted sequence

and a high score indicates that the corresponding amino acid is part of a signal peptide, and a

low score indicates that the amino acid is part of a mature protein); 4) Smean is the “average

of the S-score”, and 5) D is an average of the “Smean and Ymax” score. Position (pos) is the

location in the amino acid sequence where Cmax (.i.e. cleavage site position), Ymax (i.e.

length of signal peptide), and Smax occur. The “Y” or “N” is a yes or no indication that the

sequence has a cleavage site and a signal peptide, when D is above or below the Dmaxcut.

High scores also indicate that the sequence is a secretory protein. According to the authors of

SignalP, a high D-score is the best indicator of secretory proteins [14].

TargetP

TargetP is similar to SignalP. Neural networks are also implemented to predict subcellular

locations of eukaryotic protein sequences. More specifically, TargetP predicts the presence

and length of secretory pathway signal peptides (SP) and mitochondrial targeting peptides

(mTP) in the N-terminal presequences [17]. As with SignalP the input is a protein sequence in

a FASTA format. An example of TargetP output is shown in Figure A3. Len is the sequence

3 N-terminal peptides typically comprise 15-30 amino acids

Figure A2. Typical summary output format from SignalP

SignalP-4.0 euk predictions

name Cmax pos Ymax pos Smax pos Smean D ? Dmaxcut Networks-used

Q9UB12 0.174 31 0.302 22 0.794 14 0.660 0.495 Y 0.450 SignalP-noTM

Q58L79 0.229 49 0.234 49 0.416 48 0.193 0.218 N 0.500 SignalP-TM

Q9GU48 0.775 24 0.817 24 0.945 13 0.862 0.841 Y 0.450 SignalP-noTM

Vacceed – User Guide Appendix A

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 64

length, followed by neural network scores for mitochondrial targeting peptide (mTP),

secretory signal peptide (SP), and “other” localizations. The predicted localisation (loc) based

on the scores is either mitochondrion (M) or secretory pathway (S) or any other location (-).

The reliability class (RC) is from 1 (most reliable) to 5 (least reliable) and is a measure of

prediction certainty. The truncated peptide length (TPlen) indicates the predicted presequence

length to the cleavage site.

TMHMM

Being exposed to the outside environment, surface membranes of pathogens are in full view

of a host’s immune system surveillance. Consequently membrane molecules, including

proteins spanning or anchored to the membrane, are likely to be antigenic. A transmembrane

protein that spans an entire membrane has predominantly a hydrophobic domain consisting of

one or multiple α-helices motifs [5]. Numerous programs to predict transmembrane helices

have been developed over the last 30 years — programs such as DAS, SOSUI, SPLIT,

TMAP, TMpred, TopPred 2, MEMSAT, HMMTOP, ALOM 2 and Tmpro. Moller and

colleagues evaluated methods for the prediction of membrane spanning regions [18]. Most

prediction methods are based on hydrophobicity of amino acid residues and/or the abundance

of positively charged residues on the cytoplasmic side of the membrane and/or the protein’s

topology patterns of cytoplasmic and non-cytoplasmic loops. These methods are applicable

for almost all organisms [5]. The majority of programs are web servers and therefore are

unsuitable for high-throughput processing.

The program TMHMM based on a hidden Markov model approach [5] predicts

transmembrane helices in given protein sequences in a FASTA format. Figure A4 shows one

line of a typical output from TMHMM in a summary format. Each output line shows the

length (len) of the protein sequence followed by the expected number of amino acid residues

in transmembrane helices (ExpAA). If the ExpAA number is larger than 18 (a value proposed

targetp v1.1 prediction results #########################

Number of query sequences: 3

Cleavage site predictions included.

Using OTHER networks.

Name Len mTP SP other Loc RC TPlen

Seq_1 97 0.555 0.014 0.150 M 5 40

Seq_2 1088 0.070 0.067 0.822 _ 2 -

Seq_3 117 0.095 0.967 0.006 S 1 26

Figure A3. Typical output format from TargetP v1.1

Vacceed – User Guide Appendix A

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 65

SEQENCE TM SP PREDICTION

Seq_1 7 Y n4-19c24/25o219-238i250-269o281-302i322-342o372-391i422-439o451-476i

by the TMHMM creators) it is very likely to be a transmembrane protein (or have a signal

peptide). The output line also shows the expected number of residues in the transmembrane

helices in the first 60 amino acids of the protein (First60), the number of predicted

transmembrane helices (PredHel), and the predicted protein topology i.e. the in/out

orientation of the protein relative to the membrane. TMHMM occasionally incorrectly

predicts a transmembrane helix in the N-terminal region when it is a signal peptide. This

prediction error is mainly because signal peptides also contain a hydrophobic region. The

larger the First60 number the more likely the predicted transmembrane helix in the N-terminal

is a signal peptide. The creators of THHMM propose that a First60 value greater than 10

indicates a possible N-terminal signal sequence.

Phobius

An evaluation of signal sequence prediction methods conducted by Menne and colleagues

indicated that SignalP was more sensitive than other methods but included many false

positive predictions [19]. An inherent problem in signal peptide prediction is the high

similarity between the hydrophobic regions of a transmembrane (TM) helix and that of a

signal peptide (SP) can result in a TM helix falsely classified as a SP, or conversely a SP

falsely classified as a TM helix [15]. Phobius is a combined transmembrane domain and

signal peptide predictor that can help discriminate between TM helices and SPs and also add

endorsement to TMHMM predictions. The different sequence regions of a signal peptide and

a transmembrane protein are modelled in Phobius with hidden Markov models. Figure A5

shows the output from Phobius in a short format. The output information for one protein

sequence (SEQENCE) per line consists of the number of transmembrane (TM) helices, a “Y”

or “N” indicator that the sequence has a signal peptide (SP), and a predicted topology

(information for only one protein sequence is shown).

Seq_1 len=278 ExpAA=68.69 First60=39.89 PredHel=3 Topology=i7-29o44-66i87-109o

Figure A4. Typical summary output format from TMHMM v2.0

Figure A5. Typical short output format from Phobius

Vacceed – User Guide Appendix A

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 66

MHC Binding Predictors

One of the foremost resources for T-Cell MHC class I and II binding prediction tools is

provided by the Immune Epitope Database Analysis Resource (IEDB). IEDB provides a

download Linux package (for a 32 bit system) that contains a collection of peptide binding

prediction tools for MHC class I and class II molecules. Included in the package are

NetMHCpan and NetMHCIIpan, which are extended versions to NetMHC and netMHCII.

The collection of tools is a mixture of Python scripts and Linux specific binary files. Python

2.5 or higher is therefore a prerequisite to run the tools. These tools take as input an amino

acid sequence (or a set of sequences) and determine the ability of each subsequence to bind to

a specific MHC molecule. For MHC class I the available prediction methods are: artificial

neural network (ANN) [20], Average relative binding (ARB) [21], Stabilized matrix method

(SMM) [22], SMM with a Peptide-MHC Binding Energy Covariance matrix (SMMPMBEC),

Scoring Matrices derived from Combinatorial Peptide Libraries (Comblib_Sidney2008) [23],

Consensus [24], and NetMHCpan [25]. A large scale evaluation of three MHC class I binding

prediction methods (ANN, SMM, and ARB) was conducted in 2006 [26]. Each of the three

methods predicts the quantitative affinity of a peptide for an MHC molecule. In the

evaluation, the predicted affinities of all three methods were compared to a collection of

experimentally measured peptide affinities to MHC class I molecules. Linear correlation

coefficients were calculated between predicted and measured affinities on a logarithmic scale.

The evaluation reported that ANN preformed the best in a statistically significant manner

(with a correlation coefficient of 0.69), followed by SMM (0.62) and then ARB (0.55) [26].

The MHC II binding peptide predictions are more computationally challenging than for MHC

class I and this seems to be reflected in the inferior prediction performance of class II

algorithms in comparison to those in class I [21]. In the IEDB download package, the

available prediction methods for MHC class II are: Consensus [27], Average relative binding

(ARB) [21], combinatorial library (unpublished method), NN-align [28] (this method is the

equivalent to netMHCII version 2.2), SMM-align [29] (equivalent to netMHCII version 1.1),

Sturniolo [30] (a method also used in the program TEPITOPE [31]), and NetMHCIIpan [32].

Wang and colleagues assessed MHC class II peptide binding prediction methods in 2008 [27].

The IEDB curators rank Consensus as the best method, followed by NN-align, SMM-align,

combinatorial library, Sturniolo, and ARB.

The performance of a prediction method is governed by the availability of MHC alleles. In

other words, not all methods can currently make predictions for all MHC allele and peptide

length combinations (e.g. there may be insufficient experimental data available to generate

the combinations). The Consensus method is recommended by the creators because this

Vacceed – User Guide Appendix A

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 67

method consecutively uses several prediction methods. For example, for each MHC I allele

and peptide length combination ANN method is tried first, SMM is tried next, and then

comblib_Sidney2008, ARB, and finally NetMHCpan is tried if no previous method was

available for the allele-length combination.

Prediction methods are encapsulated in two programs: predict_binding for MHC class I and

mhc_II_binding for MHC class II. The method to use in the prediction is given as a

command-line parameter. Figure A6 shows an example of the command line syntax. Only one

MHC allele is analysed at a time. Therefore, the relevant program needs to be executed

multiple times for each possible MHC allele-peptide length combination.

Figure A7 shows a typical output from the MHC class I predictor using a Consensus method

(some columns have been deleted and the format adjusted to fit output on the page).

Beginning at the start amino acid (numbered 1) of each sequence (denoted by #), a test

subsequence of a specific peptide length (e.g. PepLengh = 9) is created (e.g. Sequence =

MSMEGDRPS and is located from amino acids 1 to 9 on sequence input #1). The

subsequence is scored (e.g. in units of IC50nM) for binding affinity against the MHC allele

e.g. HLA-A*02:05, using different prediction methods scores are calculated for each amino

acid at each position in the subsequence, which are then added to yield the overall binding

affinity.

In the example Figure 7A, method NetMHCpan was used because no previous method was

available for the allele-length combination. However, the output could in theory contain

scores from multiple methods if the method was available for the allele-length combination.

The next test subsequence in Figure 7A is “SMEGDRPSG” from amino acids 2 to 10 on

sequence input #1 and is scored against the same MHC allele, and so on. The affinity of the

MHC allele and subsequence binding is greater the lower the IC50 value. The program

Figure A6. Command-line syntax for executing IEDB MHC binding peptide predictor

Command-line syntax For MHC I ##

predict_binding.py arb "HLA-A*02:01" 9 sequence.fasta

arb = ARB prediction method

"HLA-A*02:01" = MHC allele name

9 = peptide length

sequence.fasta = name of file containing amino acid sequences in a FASTA format

Command-line syntax For MHC II ##

mhc_II_binding.py consensus3 HLA-DRB1*03:01 sequence.fasta

consensus = consensus prediction method

HLA-DRB1*03:01 = MHC allele name

sequence.fasta = name of file containing amino acid sequences in a FASTA format

Vacceed – User Guide Appendix A

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 68

creators propose a rough guideline for interpretation: peptides with IC50 values <50 nM are

considered high affinity, <500 nM intermediate affinity, and <5000 nM low affinity.

As per Figure 7A there are multiple peptide affinity scores for each protein. The purpose of

using the IEDB epitope prediction was to gather further evidence of a protein’s vaccine

candidacy rather than to identify specific epitopes for vaccine development. Ideally, a single

score was required to encapsulate the collective potential of the epitopes on a protein antigen.

In Vacceed, random forest (a machine learning algorithm) is used to predict a single

probability value that a protein had vaccine candidacy potential.

References

1. Zhao B, Sakharkar K, Lim C et al. MHC-Peptide binding prediction for epitope based
vaccine design, International Journal of Integrative Biology 2007;1.

2. Horton P, Park K-J, Obayashi T et al. WoLF PSORT: protein localization predictor,
Nucleic Acids Research 2007;35:W585-W587.

3. Petersen TN, Brunak S, von Heijne G et al. SignalP 4.0: discriminating signal
peptides from transmembrane regions, Nature Methods 2011;8:785-786.

4. Emanuelsson O, Brunak S, von Heijne G et al. Locating proteins in the cell using
TargetP, SignalP and related tools, Nat. Protocols 2007;2:953-971.

5. Krogh A, Larsson B, von Heijne G et al. Predicting transmembrane protein topology
with a hidden markov model: application to complete genomes, Journal of Molecular
Biology 2001;305:567-580.

6. Kall L, Krogh A, Sonnhammer ELL. A combined transmembrane topology and
signal peptide prediction method, Journal of Molecular Biology 2004;338:1027-1036.

7. Flower DR, Macdonald IK, Ramakrishnan K et al. Computer aided selection of
candidate vaccine antigens, Immunome Research 2010;6 Suppl 2:S1.

8. Kim Y, Ponomarenko J, Zhu Z et al. Immune epitope database analysis resource,
Nucleic Acids Research 2012;40:W525-W530.

9. Kim Y, Sette A, Peters B. Applications for T-cell epitope queries and tools in the
Immune Epitope Database and Analysis Resource, Journal of Immunological
Methods 2011;374:62-69.

10. Richards JE, Hawley RS. The Central Dogma of Molecular Biology: How Cells
Orchestrate the Use of Genetic Information. The Human Genome (Third Edition).
San Diego: Academic Press, 2011, 83-113.

11. Emanuelsson O. Predicting protein subcellular localisation from amino acid sequence
information, Briefings in Bioinformatics 2002;3:361-376.

12. Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and
predicting their subcellular localization, Trends in Biochemical Sciences 1999;24:34-
35.

Allele # Start End PepLength Sequence Method IC50(nM)

HLA-A*02:05 1 1 9 9 MSMEGDRPS NetMHCpan 6829.04

HLA-A*02:05 1 2 10 9 SMEGDRPSG NetMHCpan 26123.53

HLA-A*02:05 1 3 11 9 MEGDRPSGA NetMHCpan 3.32

Figure A7. Typical output from IEDB MHC I peptide binding predictor

Vacceed – User Guide Appendix A

Contact: John.Ellis@uts.edu.au or Paul.Kennedy@uts.edu.au 69

13. von Heijne G. Signal Peptides. eLS. John Wiley & Sons, Ltd, 2001.
14. Dyrløv Bendtsen J, Nielsen H, von Heijne G et al. Improved Prediction of Signal

Peptides: SignalP 3.0, Journal of Molecular Biology 2004;340:783-795.
15. Nielsen H, Engelbrecht J, Brunak S et al. Identification of prokaryotic and eukaryotic

signal peptides and prediction of their cleavage sites, Protein Engineering 1997;10:1-
6.

16. Nielsen H, Brunak S, von Heijne G. Machine learning approaches for the prediction
of signal peptides and other protein sorting signals, Protein Engineering 1999;12:3-9.

17. Emanuelsson O, Nielsen H, Brunak S et al. Predicting Subcellular Localization of
Proteins Based on their N-terminal Amino Acid Sequence, Journal of Molecular
Biology 2000;300:1005-1016.

18. Möller S, Croning MDR, Apweiler R. Evaluation of methods for the prediction of
membrane spanning regions, Bioinformatics 2001;17:646-653.

19. Menne KML, Hermjakob H, Apweiler R. A comparison of signal sequence prediction
methods using a test set of signal peptides, Bioinformatics 2000;16:741-742.

20. Nielsen M, Lundegaard C, Worning P et al. Reliable prediction of T-cell epitopes
using neural networks with novel sequence representations, Protein Science
2003;12:1007-1017.

21. Bui H-H, Sidney J, Peters B et al. Automated generation and evaluation of specific
MHC binding predictive tools: ARB matrix applications, Immunogenetics
2005;57:304-314.

22. Peters B, Sette A. Generating quantitative models describing the sequence specificity
of biological processes with the stabilized matrix method, BMC Bioinformatics
2005;6:132.

23. Sidney J, Assarsson E, Moore C et al. Quantitative peptide binding motifs for 19
human and mouse MHC class I molecules derived using positional scanning
combinatorial peptide libraries, Immunome Research 2008;4:2.

24. Moutaftsi M, Peters B, Pasquetto V et al. A consensus epitope prediction approach
identifies the breadth of murine TCD8+-cell responses to vaccinia virus, Nature
biotechnology 2006;24:817-819.

25. Hoof I, Peters B, Sidney J et al. NetMHCpan, a method for MHC class I binding
prediction beyond humans, Immunogenetics 2009;61:1-13.

26. Peters B, Bui H-H, Frankild S et al. A community resource benchmarking predictions
of peptide binding to MHC-I molecules, PLoS Computational Biology 2006;2:574-
584.

27. Wang P, Sidney J, Dow C et al. A systematic assessment of MHC class II peptide
binding predictions and evaluation of a consensus approach, PLoS Computational
Biology 2008;4.

28. Nielsen M, Lund O. NN-align. An artificial neural network-based alignment
algorithm for MHC class II peptide binding prediction, BMC Bioinformatics
2009;10.

29. Nielsen M, Lundegaard C, Lund O. Prediction of MHC class II binding affinity using
SMM-align, a novel stabilization matrix alignment method, BMC Bioinformatics
2007;8:238.

30. Sturniolo T, Bono E, Ding JY et al. Generation of tissue-specific and promiscuous
HLA ligand databases using DNA microarrays and virtual HLA class II matrices,
Nature biotechnology 1999;17:555-561.

31. Bian HJ, Hammer J. Discovery of promiscuous HLA-II-restricted T cell epitopes with
TEPITOPE, Methods 2004;34:468-475.

32. Nielsen M, Justesen S, Lund O et al. NetMHCIIpan-2.0 - Improved pan-specific
HLA-DR predictions using a novel concurrent alignment and weight optimization
training procedure, Immunome Research 2010;6:9.

