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Probabilistic reasoning in area LIP

Yang and Shadlen [1] showed that the firing rate of neurons in parietal cortex of monkeys is

proportional to the momentary log-likelihood ratio of a rewarded action for the given sensory

evidence. Four symbols s1, . . . , s4 were successively presented to the monkey, where each of

them was independently drawn from a set of ten possible shapes, i.e, si ∈ {1, . . . , 10}. Based

on this information, the monkey had to decide whether to make an eye movement to a red or a

green target to obtain reward. A weight wi was assigned to each shape i and kept fixed during

the whole experiment. The sum of the four weights associated with the shapes shown in a trial

established the probability that reward would accompany one of the two choices [1].

Denoting the time of the presentation of the n-th shape as epoch n, the log-likelihood ratio

(measured in units of bans) for an eye movement to the red target for symbols up to epoch n is

defined as

logLRn = log10

P (s1, . . . , sn|reward at red target)

P (s1, . . . , sn|reward at green target)
. (1)

For a red target, this value is exactly the sum of weights once all four shapes are shown (n = 4),

and it is roughly proportional to the sum of the n shapes in the n-th epoch for n < 4. Neurons

in LIP were shown to have firing rates proportional to the logLR.

We modeled this task by assuming that P (s1, . . . , s4|reward at red target) factorizes such

that P (s1, . . . , s4|reward at red target) =
∏

4

i=1
P (si|reward at red target). As we will see below,

this is a very good approximation to the true likelihood. With this assumption, the task falls

into task class B (evidence integration). The optimal solution can be approximated by particle

filtering for a random variable with two hidden states (rewarded eye movement to the red or
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green target respectively), see Figure 1A. Each shape was represented by one afferent neuron.

In addition, we introduced afferent neurons that represented the presence of saccade-targets

for reasons that are detailed below. See Methods in this supporting text for details on this

simulation.
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Figure 1. (Legend on next page)

The behavior of the model is illustrated in Figure 1B-D. It is similar to the experimental

data in several respects. First, the percentage of a given choice increases with the logLR in favor

of this decision according to a typical sigmoidal psychometric curve (Figure 1B). Second, the

firing rate of network neurons is proportional to the logLR in any of the four epochs (Figure

1C, D) as observed in experiments. Note that the logLR on the x-axis of panel D is the true

logLR. In other words, its calculation was exact, not based on the naive Bayes assumption used

in the model. Finally, we see a typical activity transient due to strong network input when
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Figure 1. Probabilistic reasoning through particle filtering. A) Estimated random

variable. It has two states, encoding rewarded saccades to the red and green locations

respectively. Each state gives rise to observed symbols with varying probability (indicated by

blurriness of arrows). See Figure 5B in Results for the circuit architecture. B) Percentage of

red choices as a function of the logLR for red (the choice was defined as the action with the

highest probability at the end of epoch 4). Compare to Figure 1b of [1]. Red curve: sigmoidal

fit to the data points (1000 trials in total). C) Effect of logLR on the ensemble rate of network

neurons. Shown is the average firing rate in one ensemble during each epoch. The averages

were computed for five quantiles of the logLR (i.e., in each epoch, the logLRs were divided into

five sets of approximately equal size; all trials with a logLR in one of these sets in the epoch

were averaged). Quantiles are indicated by color (from lowest to highest logLR: blue, green,

red, cyan, magenta). Compare to Figure 3a in [1]. D) Firing rate is linearly related to the

logLR. Mean firing rate was calculated for one network neuron over the last 75ms of each of

the presentation epochs. The red line shows the least squares fit to the data points. Its slope is

indicated on the bottom right of each panel. Compare to Figure 2c in [1]. In panels B and D,

firing rates for identical logLRs were averaged to obtain the data points.

shapes appear (Figure 1C). This transient is caused by network input which leads to an increase

of circuit activity that is compensated subsequently by lateral inhibition. The first transient is

larger due to additional input from afferents that represent saccade targets. Hence, the strong

response in the first epoch seen in experiments is explained in our model by transient responses

to additional circuit input.

Methods

We simulated a particle filter circuit with ensemble size M = 1000 and estimation sample size

L = 400; The lateral inhibition scaling was set to I lat
0

= 0.25. No action readout layer was

added.

12 evidence neurons provided input to the circuit. Two of them represented the saccade

targets. Each of the remaining eight neurons represented one of the eight shapes that determined
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the probability of reward. Spikes of the afferent neurons were produced as follows. First, the

sequence of shapes s1, . . . , s4 that was presented was drawn randomly. All possible sequences

were equally probable. As in the experiment by Yang and Shadlen [1], the two ’trump’ symbols

were not presented. After 100ms waiting time, the two targets for the eye-movement and the

first shape appeared. This caused a spike in the afferent neurons for the two targets and the

afferent neuron for s1 at a time that was uniformly distributed in [100, 110]ms. Subsequently,

the afferent neuron for s1 continued to spike in a Poissonian manner with rate fin = 10Hz.

The other three targets appeared at respective times 250ms, 400ms, 550ms and spikes in the

corresponding afferent neurons were produced analogously.

To determine weights for connections from evidence neurons to neurons in the evidence layer,

we used λjl = P (si = j|a = l)10Hz. Here, P (si = j|a = l) is the probability that shape j is

observed in epoch i, given that the rewarded action is l. Note that this probability is the same

for all epochs i. It can be computed as follows:

P (s1 = j|a = l) =
P (s1 = j, a = l)

P (a = l)
= 2P (s1 = j, a = l).

We obtain the joint via marginalization:

P (s1 = j, a = l) =
∑

s:s1=j

P (a = l|s1, s2, s3, s4)P (s1, s2, s3, s4) ∝
∑

s:s1=j

P (a = l|s1, s2, s3, s4),

where the sum runs over all shape sequences where the first shape is j. The conditional for

movement to the red target P (a = R|s1, s2, s3, s4) is given by

P (a = R|s1, s2, s3, s4) =
10

P

i
wi

1 + 10
P

i
wi

,

and the conditional for the green target is P (a = G|s1, s2, s3, s4) = 1 − P (a = R|s1, s2, s3, s4)

[1]. Here, wi is the weight associated with symbol si that was set to

w = (−70,−0.9,−0.7,−0.5,−0.3, 0.3, 0.5, 0.7, 0.9, 70). For the afferent neurons indicating the

targets for saccades, λji was set to 0.8Hz for both states i.
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