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Estimation of potential landscape due to a constant source
independent of time

In this section, we shall estimate the potential field of the growth factor that a single
spiral artery produces to correspond to a diffusion of a chemical from a point source
with a magnitude M (neglecting the possible effects of spiral artery size) constant
in time from its onset at time t0. Thus the potential field V (x, t) is a solution of:

∂

∂t
V (x, t)−

(
D∇2V (x, t)− k2V (x, t)

)
= Mδ(x0)⊗ θ(t− t0) (0.1)

where consumption of the attracting chemical by surrounding tissue, with a rate k2,
is considered and θ(t) denotes a Heaviside function. Consumption of oxygen is more
appropriately modelled by a Michaelis-Menten term instead of linear consumption
but this dependence is rational when oxygen concentration is low: M0P

P0+P ≈
M0

P0
P .

We shall find the Green’s function for the operator on the left hand side of
(0.1), can be obtained using Fourier transformations, and is given by the following
expression:

ε(x, t) = θ(t)
1

4πDt
exp

(
− ‖x‖

2

4Dt
− k2t

)
, x = (x1, x2), ‖x‖ =

√
x2

1 + x2
2. (0.2)

Thus the potential V satisfying equation (0.1) can be obtained using this result,
and is given by:

V (x, t) = ε(x, t) ∗
(
δ
(
x− x0

)
⊗ θ(t− t0)

)
= ε

(
x− x0, t

)
∗ θ(t− t0)

= θ(t)

∫ t

0

ε
(
x− x0, τ − t0

)
dτ, (0.3)

where the operator ∗ denotes convolution in generalised functions (or distribution).
However, the potential with its gradient (needed for chemotactic growth) from
equation (0.3) cannot be rewritten into analytical or closed form which is desired
for our purposes. That is why we will look for a steady state solution instead which
essentially means that we assume the diffusion process of the attracting chemical
X to be much faster compared to vascular tree growth. Then the potential V (x, t)
satisfies:

−D∇2V (x, t) + k2V (x, t) = Mδ(x) (0.4)
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which can be solved in generalised functions D ′ as follows. Assuming the angiogen-
esis process in placental development is planar, one can rewrite the above equation
(0.4) into polar coordinates, and taking into account the symmetry of the problem
we have

−D
(
∂2

∂r2
+

1

r

∂

∂r

)
V (r) + k2V (r) = Mδ(r). (0.5)

Instead of solving equation (0.4) or (0.5) directly, we will find a solution to the
same equation but dropping the point source in the origin

−D
(
∂2

∂r2
+

1

r

∂

∂r

)
V (r) + k2V (r) = 0 (0.6)

and such that grows to infinity in the origin and decays with r as it goes to infinity
(boundary condition). If we rescale the independent variable r in (0.6) as ρ =
kr√
D

, we obtain a differential equation that can be solved by using modified Bessel

functions, as the parameter k2 is positive. From the considered boundary conditions
(potential decays to zero at infinite distance from a given source) we have

V (r) = B0K0

(
r
k√
D

)
(0.7)

with K0(x) representing the modified Bessel function of the second kind. To relate
the magnitude M of the considered point source to the above solution in terms of
Bessel functions (determining the constant B0 based on a value of M) we have to
carry out some calculations which are outlined below. One has to choose appropriate
test function ϕ(x, y) ∈ D(R2) = C∞c (R2) (test functions are smooth with compact
support).

We look for a relation between constantsB0 andM such that V (x) = B0K0

(
‖x‖ k√

D

)
is a solution of the reaction-diffusion equation with a point source with magnitude
M which we are concerned with for our purposes:

Mδ(x) = −D∇2V (x) + k2V (x).

This is an equality in the space of generalised functions which means that(
Mδ(x), ϕ(x)

)
=
(
−D∇2V (x) + k2V (x), ϕ(x)

)
, ϕ ∈ D(R2).

To obtain the required relation it is enough to consider the following set of test
functions

ϕε,δ(x) = ωε/2(x) ∗ χGε(x),

where the domain is chosen to be G = 〈−ε+ 3δ/2, ε−3δ/2〉× 〈−ε+ 3δ/2, ε−3δ/2〉
and the function ωε is defined as follows

ωε(x) =

{
Cεe
− ε2

ε2−‖x‖2 . . . ‖x‖ < ε

0 . . . otherwise,
(0.8)

where Cε is opted so that
∫
R2 ωε(x)dx = 1. Further χG is a characteristic function

of a domain G and Gε denotes an ε-neighbourhood of the domain G, i.e.

χGε
(x) =

{
1 . . . dist(G,x) < ε

0 . . . otherwise,
(0.9)
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Note that δ is dependent on ε as δ < ε and one can easily check that really ϕε,δ is
a test function for each ε > 0 and 0 < δ < ε. Examples of ϕε,δ for ε = 1 for several
δ values are given in Fig 1.
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Figure 1. Examples of ϕε,δ for ε = 1 in one dimension for several δ values. One can
observe the convergence towards characteristic function of the interval 〈−1, 1〉 and notice
the declared smoothness of these functions.

Now we calculate each term in the equation when considering only the above
mentioned set of test functions ϕεδ

lim
ε→0

lim
δ→0

(Mδ,ϕεδ)︸ ︷︷ ︸
A

= lim
ε→0

lim
δ→0

(−D∇2V + k2V, ϕεδ)

= lim
ε→0

lim
δ→0

(−D∇2V, ϕεδ)︸ ︷︷ ︸
B

+ lim
ε→0

lim
δ→0

(k2V, ϕεδ)︸ ︷︷ ︸
C

. (0.10)

The term A in (0.10) can be easily calculated as follows:

A = lim
ε→0

lim
δ→0

(Mδ,ϕεδ) = lim
ε→0

lim
δ→0

Mϕεδ(0, 0) = M,

as ϕεδ(0, 0) = 1, ∀ε, δ.
The third term C converges to zero. This can be shown for example by following

reasoning (notice that it is shown that function f is locally Lebesgue integrable
f ∈ L1

loc which proves the first equality):

|k2(f, ϕε,δ)| = k2

∣∣∣∣∫
R2

f(x)ϕε,δ(x)dx

∣∣∣∣
= k2

∣∣∣∣∣
∫
B(0,ε)

f(x)ϕε,δ(x)dx

∣∣∣∣∣ ≤ k2

∫
B(0,ε)

|f(x)|dx

= k2

∫ 2π

0

∫ ε

0

|rB0K0(r)|drdϑ,

where we used the fact that 0 ≤ ϕε,δ(x) ≤ 1. If we consider ε small enough, we
can use asymptotic expansion of the modified Bessel function K0(x) ≈ − ln(x/2)−
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γ, 0 < x� 1 which yields

k2

∫ 2π

0

∫ ε

0

|rB0K0(r)|drdϑ ≈ 2π

∫ ε

0

r(− ln(r/2)− γ)dr

=
π

2
ε2

(
1− 2µ+ ln

(
4

ε2

))
.

Finally, carrying out limits for δ → 0 and ε→ 0 we prove that C = 0:

|C| = lim
ε→0

lim
δ→0

k2|(f, ϕε,δ)| ≤
π

2
ε2

(
1− 2µ+ ln

(
4

ε2

))
= 0 (0.11)

and that f(x, y) = B0K0

(√
x2 + y2

)
∈ L1

loc.

Only the second term B will be calculated as a limit in δ and ε. From the
following calculations it will become apparent that ∇2f(x) ∈ L1

loc which means
that

(∇2f, ϕε,δ) =

∫
B(0,ε)

∇2f(x, y)ϕε,δ(x)dx.

Firstly, we will calculate the inner limit in δ → 0:

lim
δ→0

∫
B(0,ε)

∇2f(x)ϕε,δ(x)dx =

∫
B(0,ε)

∇2f(x) lim
δ⇒0

ϕε,δ(x)dx

=

∫
B(0,ε)

∇2f(x)dx,

since |ϕε,δ(x)| ≤ χ〈−ε,ε〉×〈−ε,ε〉(x) ∈ L2(R2), where χ〈a,b〉 denotes a characteristic
function of interval 〈a, b〉. Then divergence theorem leads to∫

B(0,ε)

∇2f(x)dx =

∫
S(0,ε)

∇f(x).nds =

∫ 2π

0

ε
∂f

∂n

∣∣∣∣
r=ε

dr.

Due to symmetry of the problem one can easily deduce that ∂f
∂n

∣∣∣
r=ε

= ∂f
∂r

∣∣∣
r=ε

=

B0
k√
D
K ′0

(
r k√

D

)
= −B0

k√
D
K1

(
r k√

D

)
where the recurrence relation for modified

Bessel function d
dxK0(αx) = −αK1(αx) was used. Finally, we will use asymptotic

expansion for modified Bessel function K1(r) ≈ Γ(1)
2

(
2
r

)1
= 1

r , 0 < r � 1 and thus

B = lim
ε⇒0

∫ 2π

0

ε
∂f

∂n

∣∣∣∣
r=ε

dr = ε2πB0
k√
D
K1

(
ε
k√
D

)
≈ 2πB0.

We can conclude with a relation between the magnitude M of the point source
and the coefficient in front of Bessel function B0:

M = A = B + C = 2πB0 + 0 = 2πB0,

or preferably

B0 =
M

2π
. (0.12)
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