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1 Supplementary Data

1.1 Reaction-diffusion model

The continuum-limit description of the discrete model described in Section 2.2 is a two-dimensional

generalization of the Fisher-Kolmogorov equation [13],

∂u

∂t
= D∇2u+ λu(1− u),

where 0 ≤ u ≤ 1 is a scaled density, D is the diffusivity and λ is the proliferation rate. This

model, applied in one-dimensional geometry, where ∇2u = ∂2u/∂x2, supports travelling wave

solutions in the long time limit, t → ∞ [14]. For initial conditions with compact support the

long time travelling wave speed is c =
√
4Dλ [14].

1.2 Näıve Parameter Recovery with High Proliferation Rate

We now consider results that are equivalent to those presented in Section 3.1 (main paper)

except that we consider a higher proliferation rate with parameters (Pm, Pp) = (0.8, 0.02). The

experimental data is given in Figure 1(a) and the corresponding contour plot of E, generated

using Equation (4) (main paper), is given in Figure 1(b) indicates that there is no single well-

defined minimum on this surface. Instead, we observer a large dark blue region, extending right

across the parameter space, from which any combination of D and λ produce indistinguishable

short time leading edge data. We demonstrate this by choosing three different parameter

combinations, highlighted in Figure 1(b), and give the corresponding averaged simulation data

in Figure 1(a).
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Figure 1: Comparison of in silico experimental data and averaged simulation data. (a) Lead-
ing edge in silico experimental data (blue crosses) corresponds to (Pm, Pp) = (0.5, 0.02) (blue
crosses). Data is presented every 20th time step. (b) Contour plot of E (Equation (4), main
paper) measuring the difference between the in silico data and averaged simulation data within
the region Pm ∈ [0, 1], Pp ∈ [0, 0.1]. Simulation parameters are M = 10, Y0 = 750 µm, ∆ = 25
µm and τ = 0.09191 h, with a final time of 24 h. The contour plot of E was generated
by considering 2601 different parameter combinations; 51 equally-spaced values of Pm and 51
equally-spaced values of Pp. The red, green and light blue coloured squares in (b) correspond to
three different parameter combinations: (Pm, Pp) = (0.5, 0.05), (0.32, 0.096) and (0.78, 0.028),
respectively. Averaged simulation data from these three different parameter combinations are
superimposed in (a), showing that all three parameter combinations lead to indistinguishable
short time leading edge data. All averaged simulation data are insensitive to τ .
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Figure 2: Recovery of parameter values from in silico experimental data using a separation
of timescales. (a) In silico experimental data (blue crosses) with (Pm, Pp) = (0.8, 0.02). The
vertical line denotes T = 1.5 h. (b) Shows a plot of E (Equation 4, main paper) measuring the
difference between the in silico experimental data and averaged simulation data for t < T with
Pp = 0. The plot of E was generated by considering 51 equally-spaced values of Pm within the
interval Pm ∈ [0, 1], and indicates that Pm is approximately 0.84. (c) Plot of E measuring the
difference between the in silico experimental data and averaged simulation data for t > T with
Pm = 0.84. The plot of E, generated using 51 equally-spaced values of Pp within the interval
Pp ∈ [0, 0.1], indicates that Pp is approximately 0.022. All simulations were performed with
M = 10, Y0 = 750 µm, ∆ = 25 µm and τ = 0.09191 h, with a final time of 24h. Pm and Pp

took three iterations to converge. All simulation results are independent of the duration of the
time step.

1.3 Parameter Recovery Accounting for the Separation of Time Scales with

High Proliferation Rate

We now apply the technique described in Section 3.2 (main paper) to the in silico experimental

data from Figure 1(a) with T = 1.5 h, as shown in Figure 2(a). We consider the leading

edge data from the first 1.5 h of the experiment and scan the parameter space in the interval

Pm ∈ [0, 1]. Results in Figure 2(b) indicate that we have Pm ≈ 0.84. We then consider the

leading edge data in the interval 1.5 < t < 24 h and scan the parameter space in the interval

Pp ∈ [0, 0.1]. Results in Figure 2c indicate that we have Pp ≈ 0.022, which provides an excellent

match to the real parameters. Our procedure to estimate Pm and Pp required three iterations

to converge.

Experimental data

The experimental data set describing n = 4 images from the scratch assay, performed according

to the methods outlined in Section 2.1, are presented in Table 1.

3



Table 1: Data describing the mean, ⟨Y ⟩, and standard deviation, σ, of the leading edge position
from four images of the scratch assay. Data corresponds to t = 0, 3, 6, 9, 12 and 24 h, as
indicated.

t = 0 h t = 3 h t = 6 h t = 9 h t = 12 h t = 24 h

Y1 (µm) 0 39.99 46.38 109.53 161.82 183.84
Y2 (µm) 0 13.87 52.46 82.18 130.29 230.53
Y3 (µm) 0 14.85 71.74 97.34 125.65 261.14
Y4 (µm) 0 33.04 58.27 125.60 155.06 235.92
⟨Y ⟩ (µm) 0 25.44 57.21 103.66 136.45 227.86
σ (µm) 0 13.11 31.03 18.42 27.12 32.34
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