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In this supporting material, based on the stationary analysis of the chemical master equations, we
derive the theoretical results presented in the main text.

1 Introduction
In this section, we briefly introduce the theory of master equation, which is the main mathematical tool
used in this work. Consider a biological system with n molecular species and m elementary reactions

x(t)
Wi(x(t))

GGGGGGGGGGGGGA x(t) + ri, i = 1, 2, · · · ,m,

where x(t) = [x1(t), · · · , xn(t)]> is the vector of molecular numbers, with xj(t) being the number of
the jth molecular species at time t, Wi(x(t)) is the rate of reaction i, r = [r1, · · · , rm] ∈ Zn×m is
the stoichiometric matrix, where ri = [r1

i , · · · , rn
i ]> with rj

i being the change in the number of the jth
molecules in reaction i. Let P(·, t | x0, t0) be the probability distribution of x(t) for a given initial value
x(t0) = x0, then the master equation for the system is

d P(k, t | x0, t0)

dt
=

m∑
i=1

Wi(k − ri) P(k − ri, t | x0, t0) −
m∑

i=1

Wi(k) P(k, t | x0, t0). (1)

Letting 〈x(t)〉 denote the expectation of x(t) and Σ(t) = 〈x(t)x>(t)〉−〈x(t)〉〈x>(t)〉 be the covariance
matrix. When Wi(x) is linear in x such that

∑m
i=1 riWi(x) = Ax + f0 for some matrix A ∈ Rn×n and

vector f0 ∈ Rn, the authors in [1] showed that the dynamics of 〈x(t)〉 and Σ(t) can be exactly described
by the following ordinary differential equations:

d〈x(t)〉
dt

= A〈x(t)〉 + f0, (2)

dΣ(t)

dt
= AΣ(t) + Σ(t)A> + D(t), (3)

where D(t) =
∑m

i=1 riWi(〈x(t)〉)r>i . At the steady state, we have{
A〈x(t)〉 + f0 = 0,
AΣ(t) + Σ(t)A> + D(t) = 0.

(4)

By solving these equations, we can obtain the exact mean and variance of each xi at the steady state.
Furthermore, for the jth molecule species, the noise intensity is defined as its normalized variance, i.e.,
η2

j = σ2
jj/〈xj〉2.

The following sections are devoted to the noise analysis in transcription based on the models pre-
sented in the main text.

2 The influence of reinitiation rate
In this section, we consider the influence of varying the reinitiation rate and scaffold stability on the
noise intensity in mRNA abundance. We analyze the three-state transcription model (Fig. 1 C) where
the mRNA production and the reinitiation scaffold formation are assumed independent. As in the
main text, let PA, PS , and PI denote the active state, the reinitiation scaffold, and the inactive state
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respectively, M the mRNA molecules, and ∅ the outcome of mRNA degradation. Then the elementary
reactions involved in the three-state transcription model are given as follows

PA

λS
GGGGGGA PS, PS

λR
GGGGGGA PA, PS

λI
GGGGGGA PI , PI

λA
GGGGGGA PA, PA

µ
GGGGGA PA + M, M

δ
GGGGGA ∅.

Hereafter, as explained in the main text, we assume that all the parameters are normalized by the mRNA
degradation rate δ(so that δ = 1).

Then we can solve (4) with

A =


−λS λR λA 0
λS −(λI + λR) 0 0
0 λI −λA 0
µ 0 0 −δ

 ,

f0 = 0, and

D(t) =


λS〈xA〉 + λR〈xS〉 + λA〈xI〉 −(λS〈xA〉 + λR〈xS〉) −λA〈xI〉 0

−(λS〈xA〉 + λR〈xS〉) λS〈xA〉 + (λR + λI)〈xS〉 −λI〈xS〉 0
−λA〈xI〉 −λI〈xS〉 λI〈xS〉 + λA〈xI〉 0

0 0 0 µ〈xA〉 + δ〈m〉

 .

Particularly, we obtain the mean and normalized variance at the steady state as 〈m〉 = µλA(λI+λR)
λA(λI+λR)+λS(λI+λA)

,

η2
m = 1

〈m〉 +
λS

[
λI(λI+λR)+(1+λA)(λI+λA)

]
λA(λI+λR)[(1+λA)(1+λS+λI+λR)+λSλI ]

.
(5)

2.1 The influence of high reinitiation rate
First we analyze how the reinitiation rate influences the noise intensity in mRNA abundance. Substi-
tuting 〈m〉 into η2

m, we have

η2
m =

λA(λI + λR) + λS(λI + λA)

µλA(λI + λR)
+

λS

[
λI(λI + λR) + (1 + λA)(λI + λA)

]
λA(λI + λR)[(1 + λA)(1 + λS + λI + λR) + λSλI ]

=
1

µ
+

λS(λI + λA)

µλA(λI + λR)
+

λS

[
λI(λI + λR) + (1 + λA)(λI + λA)

]
λA(λI + λR)[(1 + λA)(1 + λS + λI + λR) + λSλI ]

=
1

µ
+

λS(λI + λA)

µλA(λI + λR)
+

λSλI

λA[(1 + λA)(1 + λS + λI + λR) + λSλI ]

+
λS(1 + λA)(λI + λA)

λA(λI + λR)[(1 + λA)(1 + λS + λI + λR) + λSλI ]
.

From this result, we can see that the noise intensity η2
m is a decreasing function of the reinitiation

rate λR, which means that increasing the reinitiation rate can reduce the mRNA noise intensity in
transcription independent of other parameters.

2.2 Reinitiation vs. non-reinitiation
In this subsection, we compare the transcription noise intensity between the transcription models with
and without reinitiation. To show the advantage of reinitiation, the comparison is under the same
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transcription level. We construct a non-reinitiation model by setting the reinitiation rate as zero but
increase the stability of the active state so that it can have an equal transcription level as the reinitiation
model. From (5),

〈m〉 =
µλA(λI + λR)

λA(λI + λR) + λS(λI + λA)
= µ

1
λS

λI+λR

λI

1
λS

λI+λR

λI
+ 1

λA
+ 1

λI

= µ

1

λS
λI

λI+λR

λS
λI+λR

λI
+ 1

λA
+ 1

λI

.

This implies that we can get a non-reinitiation model with the same transcription level by setting
λR = 0 while λS to λSλI/(λI + λR). Thus we can obtain the stationary noise intensity for the non-
reinitiation model, denoted as η2

nr, by substituting these parameters into (5).

η2
nr =

1

〈m〉
+

λSλI

(λI+λR)

[
λI(λI + 0) + (1 + λA)(λI + λA)

]
λA(λI + 0)[(1 + λA)(1 + λI + 0) + λSλI

(λI+λR)
(1 + λA + λI)]

=
1

〈m〉
+

λS

[
λI(1 + λI + λA) + λA(1 + λA)

]
λA[λSλI(1 + λA + λI) + (1 + λA)(1 + λI)(λI + λR)]

.

Then, at the same transcription level, the difference in noise intensity between these two models is

η2
nr − η2

m =
λSλR(1 + λA)(1 + λA + λI)[λA(λI + λR) + λS(λI + λA)]

λA(λI + λR)F (λS, λI , λR, λA)G(λS, λI , λR, λA)
> 0,

where

F (λS, λI , λR, λA) = (1 + λA)(1 + λS + λI + λR) + λSλI > 0,

G(λS, λI , λR, λA) = λSλI(1 + λA + λI) + (1 + λA)(1 + λI)(λI + λR) > 0.

2.3 The influence of reinitiation rate at a constant transcription level
In this subsection, we investigate the influence of reinitiation rate when the transcription level is kept
constant. For this purpose, we decrease the stability of the active state while increasing the reinitiation
rate. Specifically, we set λS to λS(λI + λR)/λI , so that the transcription level

〈m〉 =
µλA(λI + λR)

λA(λI + λR) + λS(λI+λR)
λI

(λI + λA)
=

µλA

λA + λS

λI
(λI + λA)

=
µλAλI

λAλI + λS(λI + λA)

is independent of the reinitiation rate. By substituting λS(λI + λR)/λI into (5), we get the noise
intensity at a constant transcription level

η2
m =

1

〈m〉
+

λS(λI+λR)
λI

[
λI(λI + λR) + (1 + λA)(λI + λA)

]
λA(λI + λR)[(1 + λA)(1 + λI + λR) + λS(λI+λR)

λI
(1 + λA + λI)]

=
1

〈m〉
+

λS

λI

[
λI(λI + λR) + (1 + λA)(λI + λA)

]
λA[(1 + λA)(1 + λI + λR) + λS(λI+λR)

λI
(1 + λA + λI)]

=
1

〈m〉
+

λS

[
λI(λI + λR) + (1 + λA)(λI + λA)

]
λA[λI(1 + λA)(1 + λI + λR) + λS(λI + λR)(1 + λA + λI)]

=
1

〈m〉
+

λSλI

λA[λS(1 + λI + λA) + λI(1 + λA)]

+
λS(1 + λA)[λS(λI + λA)2 + (λS + λI)(λI + λA) + λIλ

2
A]

λA[(λS + λI)(1 + λA) + λSλI ][λS(1 + λI + λA)(λI + λR) + λI(1 + λA)(1 + λI + λR)]
.

It is obvious that η2
m is a decreasing function of the reinitiation rate λR.
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3 The influence of scaffold stability
Next, we find the influence of the scaffold stability on the transcription noise intensity. By a proper
rearrangement, we have

η2
m =

1

µ
+

λS

µλA

+
1

1 + λS + λA

+
λS(λA − λR)

µλA(λI + λR)

+
λS(1 + λA)(λA − λR)

λA(1 + λS + λA)[(1 + λS + λA)λI + (1 + λA)(1 + λS + λR)]

+
λS(1 + λA)(λA − λR)

λA(λI + λR)[(1 + λS + λA)λI + (1 + λA)(1 + λS + λR)]

=
1

µ
+

λS

µλA

+
1

1 + λS + λA

+
λS(λA − λR)

λA

SI(λI),

where

SI(λI) =
1

µ(λI + λR)
+

1 + λA

(1 + λS + λA)λI + (1 + λA)(1 + λS + λR)

(
1

1 + λS + λA

+
1

λI + λR

)
.

Since SI(λI) is a decreasing function of λI , we can see that the monotonicity of η2
m with respect

to λI is determined by λA − λR. If λA − λR > (or <)0, then increasing λI , which means that
the scaffold becomes more unstable, can reduce (or increase) the transcription noise intensity. In the
critical case λA − λR = 0, varying the scaffold stability does not influence the transcription noise
intensity. Intuitively, this can be understood as the competition between two possible paths for mRNA
synthesis, namely, initiation and reinitiation.

4 The influence of transcription coupling
In this subsection, we consider the coupling model shown in Fig. 1D of the main text. In this model,
a new elementary reaction that incorporate the mRNA production and the scaffold formation is intro-
duced. This reaction introduces direct coupling between the promoter activation and mRNA synthesis
process, and its reaction rate, λC , is a measure of the coupling stength. Using the same notations as in
the preceding section, the elementary reactions involved in the coupling model now become

PA

λS
GGGGGGA PS, PS

λR
GGGGGGA PA, PS

λI
GGGGGGA PI , PI

λA
GGGGGGA PA,

PA

µ
GGGGGA PA + M, PA

λC
GGGGGGA PS + M, M

δ
GGGGGA ∅.

By a similar process we can solve the mRNA average and transcription noise intensity at the steady
state as

〈m〉 = (µ + λC)λA(λI + λR)/[λA(λI + λR) + (λS + λC)(λI + λA)],

η2
m =

1

〈m〉

[
1 − λC(1 + λI + λA)

(λS + λC)(1 + λI + λA) + (1 + λA)(1 + λI + λR)

]
+

(λS + λC)[λA(1 + λI + λA) + λI(1 + λI + λR)]

λA(λI + λR)[(λS + λC)(1 + λI + λA) + (1 + λA)(1 + λI + λR)]
.

Compared with the independent model under the same transcription level(i.e., letting µ + λC , λS +
λC in the coupling model equal to µ, λS in the independent model, respectively), we can find that the
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Figure S1: Illustration of a burst model

noise intensity in the coupling model is reduced by the quantity

1

〈m〉
λC(1 + λI + λA)

λSC(1 + λI + λA) + (1 + λI + λR)(1 + λA)
.

At last, we show that the coupling does not change the qualitative influence of the reinitiation rate on
the transcription noise intensity. For simplicity, we only consider the extreme case where λC = λS = µ.
In this case, by the following rearrangement of the expression of the noise intensity

η2
m =

1

µ
+

λI(1 + µ)

λA[(1 + λA)(1 + µ + λI + λR) + µλI ]
+

(1 + µ)(1 + λA)(λI + λA)

λA(λI + λR)[(1 + λA)(1 + µ + λI + λR) + µλI ]
.

we can see that the noise intensity still is a decreasing function of the reinitiation rate λR independent
of other parameters in the coupling model.

Similarly, by another rearrangement of the expression of the noise intensity

η2
m =

1

µ
+

(1 + µ)

λA(1 + µ + λA)
+

(λA − λR)(1 + µ)(1 + λA)

λA(1 + µ + λA)[(1 + µ + λA)λI + (1 + λA)(1 + µ + λR)]

+
(λA − λR)(1 + µ)(1 + λA)

λA(λI + λR)[(1 + µ + λA)λI + (1 + λA)(1 + µ + λR)]

=
1

µ
+

1

λA

− 1

(1 + µ + λA)
+

(λA − λR)(1 + µ)(1 + λA)

λA

SC(λI),

where

SC(λI) =
1

[(1 + µ + λA)λI + (1 + λA)(1 + µ + λR)]

(
1

λI + λR

+
1

1 + µ + λA

)
is also a decreasing function in λI , we can that in the coupling model, the qualitative influence of the
scaffold stability on the transcription noise intensity still depends on λA − λR in the same manner as
that in the independent model.

By using a burst model approximation (Fig. S1), we provide an intuitive explanation for the noise
reduction effect of the transcription coupling. To be more intuitive, we also consider the extreme case
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Figure S2: Illustration of approximating the mRNA production as a burst model. The promoter
activity is indicated by the blue line, while the production of one mRNA molecule is depicted by
one vertical red line. This figure illustrates how to extract the parameter T and b for a burst model
approximation from a two state transcription model.

where λC = λS = µ. In a burst model, the molecules are released in random quantal bursts of b
molecules during random time intervals T . When using a burst model to approximate the mRNA
synthesis, we define b as the number of mRNA molecules produced during one transcription cycle and
T as the time between the release of the last mRNA molecule in one burst and that of the first mRNA
molecule in its successive burst (Fig. S2). In the approximation, it can be seen that under the same
parameter sets, the independent model and the coupling model have the same distribution of the time
interval T , and the difference lies only in the burst size b. In the independent model, the burst size bI =∑nr

i=1(ai − 1), where ai − 1 is the number of mRNA molecules released during one transcription cycle
without reinitiation (see [2]), with ai’s being independent and identically distributed geometric random
variables with parameter 1/2, and nr − 1 is the times that reinitiation occurs during one transcription
cycle, with nr being a geometric random variable with parameter λI/(λI + λR). Yet in the coupling
model, the burst size bC = nr. The average in mRNA molecules 〈bI〉 = 〈bC〉 = 〈nr〉 = 1 + λR/λI ,
indicating that the coupling does not change the transcription level. On the other hand, the variances of
bI and bC are

σ2
bI

=

(
1 +

λR

λI

)(
2 +

λR

λI

)
,

σ2
bC

=
λR

λI

(
1 +

λR

λI

)
.

We can see the variance in the burst size is reduced by 2(1 + λR/λI) in the coupling model. To
obtain a more intuitive understanding, we may consider the extreme case where the reinitiation rate
is 0. In this case, the average number of mRNA molecules released by each transcription cycle is
〈bI〉 = 〈bC〉 = 1. In the coupling model, each transcription cycle can produce 1 and only 1 mRNA,
with bC = 1 and σ2

bC
= 0. While in the independent model, the number of mRNA molecules produced

in each transcription cycle is a1 − 1, with a1 being a geometrically distributed random variable with
parameter 1/2, and σ2

bI
= 2.

5 Comparison with the multistep mechanism
At last, we briefly introduce the so-called multistep mechanism [3, 4] and compare it with the transcrip-
tion coupling. Here we still use a transcription model to illustrate this mechanism. For simplicity, we
consider an irreversible transcription cycle in which the gene sequentially experiences n states, some
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of which are active ones and the others inactive ones. Let Ii, i = 1, 2, · · · , n denote the n promoter
states, respectively, and M and ∅ be defined as before. If we assume Ii, i = 1, · · · , L to be active states
and the others to be inactive ones, the elementary reactions involved in this model are given as follows:

Ii

λi
GGGGGGA Ii+1, i = 1, 2, · · · , n − 1; In

λn
GGGGGGA I1, Ii

µ
GGGGGA Ii + M, i = 1, 2, · · · , L; M

δ
GGGGGA ∅.

The above model generalizes the one in [4] by considering both multiple active and multiple inactive
steps of the promoter. By solving (4), we can obtain the noise intensity at the steady state

〈m〉 =
µτon

〈T 〉
,

η2
m =

〈T 〉
µτon

+
〈T 〉
τ 2
on

[
1

1 + xonxoff/(xon + xoff )
+

τonτoff

τon + τoff

− 1

]
,

where τi = 1/λi is the average lifetime of state i, τon =
∑L

i=1 τi is the average lifetime of the active
state, τoff =

∑n
i=L+1 τi is the average lifetime of the inactive state, 〈T 〉 = τon + τoff is the average

time of a transcription cycle, xon =
∏L

k=1(1+ τk)− 1 > 0, and xoff =
∏n

k=L+1(1+ τk)− 1 > 0. From
this result, when the average transcription cycle period 〈T 〉 is fixed, adding one more state, either active
or inactive, can reduce the transcription noise intensity independent of other parameters. Clearly, this
result also extends that in [4].

Although both the transcription coupling and the multi-step mechanism can reduce noise indepen-
dent of transcription level, from the viewpoint of a burst model approximation, the multi-step mech-
anism reduces the fluctuations in the time intervals T , which can be attributed to the extrinsic noise
from the upstream dynamics, while the transcription coupling reduces the fluctuations in the burst size
b, which can not be simply attributed to either intrinsic or extrinsic noise. Thus they are both similar
and complementary.
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