Extended Background and Introduction of our study

Although the cure rate for T cell Acute Lymphoblastic Leukemia (T-ALL) has been improved
dramatically during the last couple of decades, the overall prognosis remains dismal, due to frequent
disease relapse and the absence of non-cytotoxic targeted therapy options. We and others have
recently addressed the role of epigenetic regulation in T-ALL initiation and progression. Despite the
fact that drugs targeting the function of key epigenetic factors, such as histone deacetylase (HDAC)
and DNA methyltransferase (DNMT)"?, have been approved in the context of hematopoietic
disorders, “epigenetic” drugs are currently not used for T-ALL treatment. The recent identification of
mutations affecting chromatin modulators in a variety of leukemias’® along with a plethora of
recently generated animal models of disease have shed light on the mechanisms of action for this
class of epigenetic modifiers in blood cancers. Nevertheless, there is an unmet need for development

and utilization of drugs that target the epigenome”'""

in pediatric acute leukemia.

To study the interplay between chromatin state and activity of chromatin modifiers in T-ALL in vivo
we have generated and studied NOTCH 1-induced disease animal models'* (Fig. 1a). Since activating
mutations in NOTCHI1 are a defining feature of >50% of T-ALL cases, this model closely
recapitulates many features of human T-ALL, including early developmental arrest in T-cell
development, with severe blast infiltration observed in bone marrow and secondary lymphoid tissues.
Using molecular and biochemical assays in this mouse model combined with functional and genetic
data from primary T-ALL samples, we recently revealed a key tumor-suppressor function for the
Polycomb Repressive Complex 2 (PRC2) that catalyzes methylation of lysine 27 of histone 3
(H3K27) in this type of leukemia'. These studies also highlighted a pivotal role for the repressive
mark trimethylation of H3K27 (H3K27me3) in leukemogenesis and have demonstrated direct
correlation of NOTCH1 binding and H3K27me3 loss during progression of the disease. Since net
H3K27me3 levels are dictated by the balance between histone methylation and active demethylation,
we hypothesized that removal of methyl groups from H3K27 is also an important process in T-ALL
development. We have therefore investigated possible roles for enzymes with H3K27 demethylase

activity in T-ALL.



There are currently two characterized H3K27 demethylases that belong to the Jumonji family of
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deoxygenases. UTX (KDM6A) is a ubiquitously expressed protein that controls basal levels of

H3K27me3, whereas IMJD3'*"” (KDM6B) is induced upon inflammation'®, viral and oncogenic
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stimuli'”?'. JMJD3 is important for neuronal differentiation”” and promotes epidermal cell

differentiation”. UTX, in turn, is important for induction of ectoderm and mesoderm

%2> Both have been shown to promote differentiation through expression of the HOX

differentiation
genes”*?’. Interestingly, JMJD3 and UTX have been found to play different roles in embryonic stem
cell physiology, where JMJD3 has been found to inhibit reprogramming with its dual function on
INK4a/Arf expression and by mediating PHF20 ubiquitination™, whereas UTX seems to be essential
for reprogramming®. Despite such compelling results in developmental systems, our overall

understanding of H3K27 of demethylases in cancer remains extremely limited*>*'. UTX has been

found to control cell fate®® and to be implicated mainly in solid tumors and less in hematological
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malignancies® >, a finding supported mainly through the identification of inactivating mutations
 However, the roles of these two demethylases as direct modulators of the oncogenic state are

largely uncharacterized.

Extended reference to UTX mutations

Initially, analysis of primary human samples of pediatric T-ALL using single nucleotide
polymorphism (SNP) array’® identified two patients with focal deletions of the UTX locus (Fig. 3f).
Further targeted analyses of the same patient cohort using Sanger sequencing led to identification of
three more patient cases with frameshift mutations, (Fig. 3g, Extended Data Fig. 5 and
Supplementary table 2). Furthermore, we screened all coding exons of UTX for the presence of
somatic mutations in an extended series of adult T-ALL cases (Fig. 3g and Extended Data Fig. 5).
This analysis revealed the presence of U7X mutations in three samples analyzed. The UTX mutations
included an in-frame deletion (p.A14 A17del), a missense (I598V) and an exon 4 splice acceptor site

mutation.
Extended Discussion

Acute lymphoblastic leukemia consists of a panel of aggressive hematopoietic malignancies

characterized by an array of mutations frequently affecting epigenetic modulators. Currently, there



are no targeted therapies available for treatment of this disease, leaving chemotherapy and irradiation
as the only available strategies, both exhibiting severe side effects and toxicity. We propose here the
targeting of JMJD3 as a novel therapy option for pediatric and adult T-ALL. This proposal is based

- 3,37,38
on recent studies®*”

that demonstrate that the repressive chromatin mark trimethylation of lysine 27
on histone H3 (H3K27me3) plays a key role in T-ALL, through interplay with oncogenic NOTCHI1.
Mechanistically, we have previously shown that the PRC2 complex antagonizes the NOTCHI1
oncogenic action’’. As NOTCH1 does not exert demethylase activity itself, we sought to delineate the
exact mechanism through which NOTCHI1 leads to H3K27me3 depletion from its target loci. We
demonstrate here that NOTCH1-mediated JMJD3 recruitment on promoters of key T-ALL gene
regulators is at least in part this mechanism (Extended Data Fig. 10).
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Despite the fact that tumor suppressor roles were attributed to JMJD3 in the past
because of the role in oncogene-induced activation of the INK44/ARF (CDKN2A) locus followed by
senescence, we have shown that this does not apply in T-ALL, where INK4A/ARF is frequently
inactivated. The fact that JMJD3, in contrast to UTX, is prone to activation through specific stimuli,
renders it an ideal partner and modulator of oncogenic pathways. As in the case of inflammation, T-
ALL-specific JMJD3 expression is controlled through NF-kB activation, leading to an intriguing
feedback loop between NOTCHI1 and NFkB pathways. Indeed, this study provides a link between

these two major pathways through a specific epigenetic modulator and underlines molecular

similarities between inflammation and cancer in cells of hematopoietic origin.

It is known that in the absence of NOTCH1, RBPJk interacts with co-repressor complexes (including
the SMRT complex and histone deacetylases). Part of the repressive activity in these loci is filtered
through the activity of PRC2 complex, which leads to high H3K27me3 levels. We propose that
NOTCHI recruitment leads to PRC2 eviction due to active demethylation of lysine 27 on histone 3
through the catalytic activity of JMJD3 and the recruitment of JMJD3 to target promoters leading to
lower H3K27me3 levels. On the other hand, the reported increased levels of the activating H3K4me3
mark on a large fraction of NOTCHI targets'>**** (Fig. 4) and can be explained by the fact that
NOTCHI1 has the ability to recruit MLL complexes (Extended Data Fig. 2 and 10). Our findings
show that both NOTCH1 and JMJD3 interact with WDRS (Extended Data Fig. 2), providing a

potential link between the fine-tuning of these two histone marks.



The GSKJ4 epigenetic inhibitor, targeting H3K27 demethylase activity, was previously tested in
conditions of inflammatory stress'". We now show for the first time anti-tumorigenic activities and
significant specificity towards NOTCHI-transformed T-ALL. We propose that GSKJ4 inhibits
JMJD3 demethylase activity (see Extended Data Fig. 10), targeting T-ALL growth without affecting
other cell types. Obviously, we cannot exclude the possibility that GSKJ4 could potentially affect
other important epigenetic modulators or signaling pathways*’. Nevertheless we believe that the main
action of this inhibitor passes through the inhibition of JIMJD3 activity as knockdown of members of
other Jumonji family-potential candidates did not affect viability of T-ALL cells in shRNA screens
(data not shown). We propose that such inhibitors should be tested either as single drugs or in
combination to standard chemotherapy. This notion is further supported by the fact that GSKJ4 is
active at achievable concentrations in clinical settings, it is more active against JMJD3 and it affects
specifically acute lymphoblastic leukemia but not healthy cells or other types of leukemia,

underscoring the specificity of the compound.
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