

Figure S1 MUC1 activates p65 and forms a complex with IKK β and IKK γ . a. Lysates from HeLa and HCT116 cells stably expressing an empty vector or exogenous MUC1 and from ZR-75-1 and MCF-7 cells silenced for endogenous MUC1 were immunoblotted with anti-MUC1-C and anti- β -actin. b. Cytosolic fractions from the indicated cells were immunoblotted with anti-p65 and anti- β -actin. c. Lysates from HeLa/MUC1 cells were

immunoprecipitated with increasing amounts (10, 20 and 40 $\mu g)$ of anti-MUC1-C (left) or a control IgG (right). The precipitates were immunoblotted with anti-MUC1-C (left, upper panel). The MUC1-C or control IgG immunodepleted lysates were immunoblotted with the indicated antibodies. d. Potential binding of MUC1-CD, IKK β and IKK γ in a trimolecular complex.

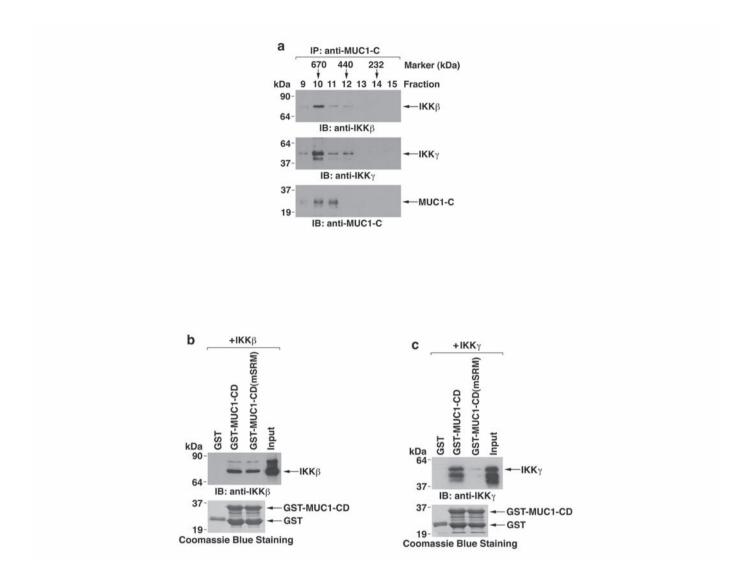


Figure S2 Binding of MUC1-CD to IKK γ , but not IKK β , is abrogated by mutating the SRM. a. Lysates from HeLa/MUC1 cells were precipitated with anti-MUC1-C and released by adding MUC1-C peptide. The proteins were separated in a Sephacryl S-200 HR column and the indicated fractions were immunoblotted with the indicated antibodies. b and c. GST, GST-MUC1-CD

or GST-MUC1-CD(mSRM) bound to glutathione beads was incubated with purified IKK β (b) or IKK γ (c). The precipitates were immunoblotted with the indicated antibodies. Input of GST, GST-MUC1-CD and GST-MUC1-CD(mSRM) was assessed by Coomassie blue staining.

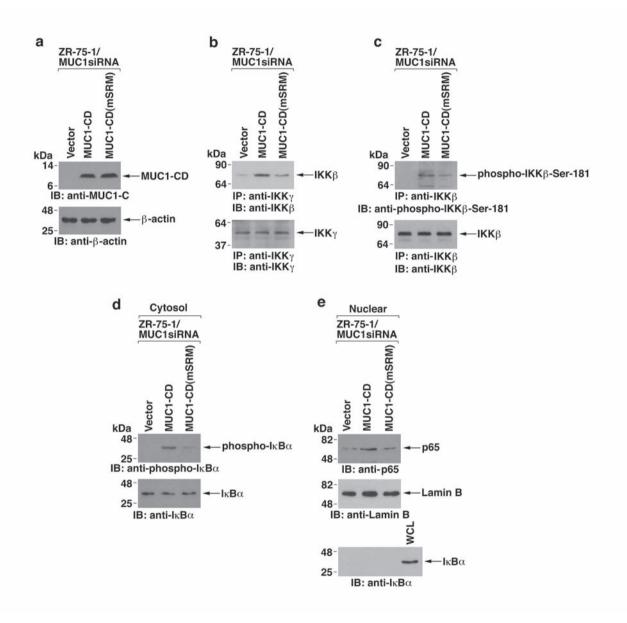
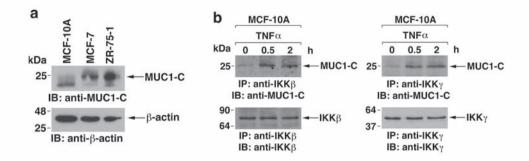
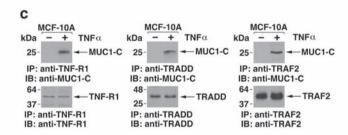




Figure S3 MUC1-CD is sufficient for activation of the IKK β->NF- κ B p65 pathway. ZR-75-1/MUC1siRNA cells were transfected with the empty pIRES-puro2 vector, Flag-MUC1-CD or Flag-MUC1-CD(mSRM) in the presence of Lipofectamine for 48 h. Of note, the MUC1siRNA used to silence endogenous MUC1 in the ZR-75-1 cells targets the extracellular region of MUC1-C and not the cytoplasmic domain . a. Lysates from the

indicated cells were immunoblotted with the indicated antibodies. **b.** Anti-IKK γ precipitates from the indicated cells were immunoblotted with the indicated antibodies. **c.** Anti-IKK β precipitates were immunoblotted with the indicated antibodies. **d.** Cytosolic fractions were immunoblotted with anti-phospho-IKB α and anti-IKB α . **e.** Nuclear fractions were immunoblotted with the indicated antibodies.

C to IKK β and IKK γ and recruitment of MUC1-C to the TNF-R1 complex. a. Lysates from the indicated cells were immunoblotted with anti-MUC1-C and anti- β -actin. b. Lysates from MCF-10A cells left untreated or stimulated with 20 ng/ml TNF α for the indicated times were immunoprecipitated with anti-

the indicated antibodies. **c.** MCF-10A cells were left untreated or stimulated with TNF α for 30 minutes. Lysates were immunoprecipitated with anti-TNF-R1 (left), anti-TRADD (middle) or anti-TRAF2 (right). The precipitates were immunoblotted with the indicated antibodies.

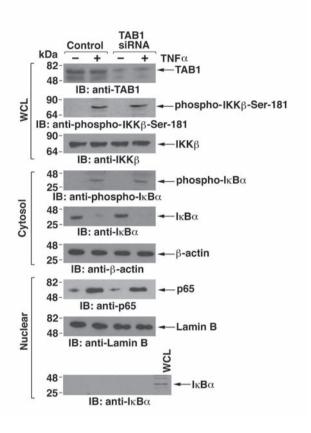
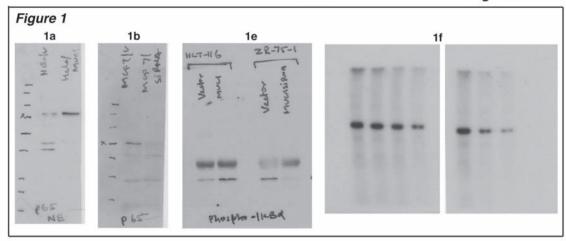



Figure S5 TAB1 is dispensable for TNF α -induced activation of IKK β ->NF-KB signaling in MCF-10A cells. MCF-10A cells were transfected with control siRNA or TAB1 siRNA pools for 72 h and then stimulated with

 $\text{TNF}\alpha.$ Whole cell lysates, cytosolic fractions and nuclear fractions were immunoblotted with the indicated antibodies.

Figure S6-1 & 2

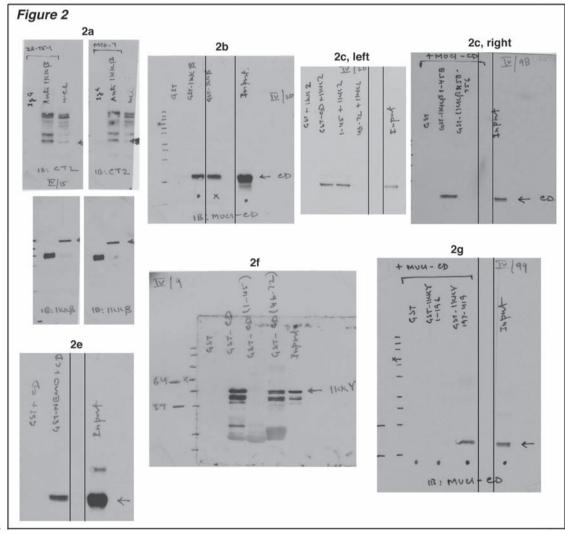
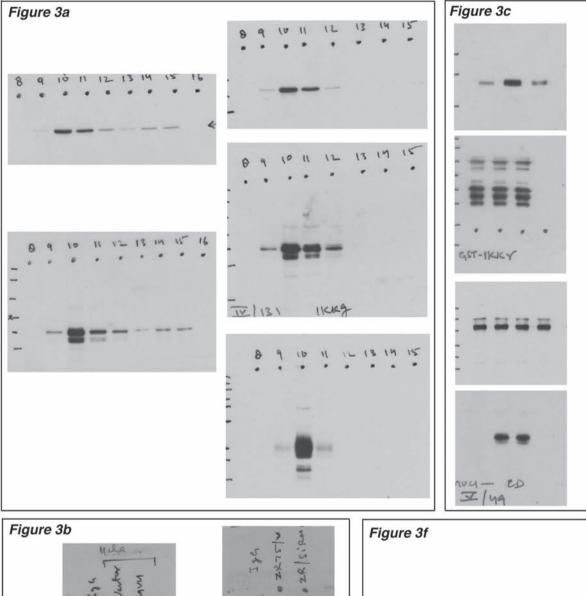
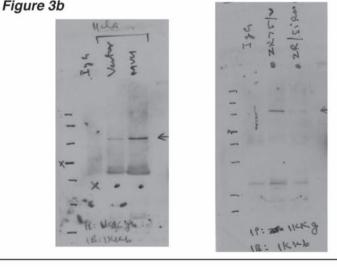
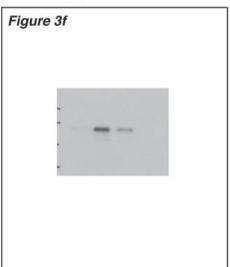





Figure S6-3

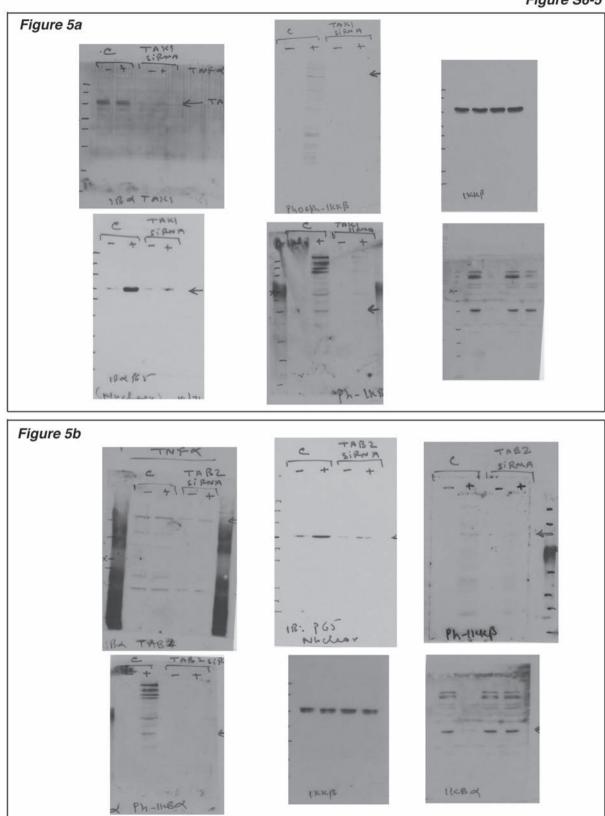


Figure S6 Scans of blots.

Mouse Muc1 siRNA pool (Dharmacon)

- 1. CAACAGCUCUCCAGUAGUC
- 2. CUACCAGUCUAGUCUAUAA
- 3. CCUGAAGACUCUACCAGUA
- 4. AGUCACAGCUUAUACAGCA

Human MUC1 siRNA pool (Dharmacon)

- 1. GAUCUGUGGUGGUACAAUU
- 2. ACCAAGAGCUGCAGAGAGA
- 3. GAUCGUAGCCCCUAUGAGA
- 4. GAUAUAACCUGACGAUCUC

TRADD siRNA pool (Dharmacon)

- 1. GGAGGAUGCGCUGCGAAAU
- 2. GCGAGGGACUGUACGAGCA
- 3. GGGUCAGCCUGUAGUGAAU
- 4. GGACGAGGAGCGCUGUUUG

TRAF2 siRNA pool (Dharmacon)

- 1. GGAGCAUUGGCCUCAAGGA
- 2. GCAGGUACGGCUACAAGAU
- 3. CGGUAGAGGGUGAGAAACA
- 4. GAAGAAGGCAUUUCUAUUU

TAK1 siRNA pool (Dharmacon)

- 1. GAGGAAAGCGUUUAUUGUA
- 2. CCCAAUGGCUUAUCUUACA
- 3. GGACAGCCAAGACGUAGAU
- 4. UACACUGGAUCACCAACUA

TAB1 siRNA pool (Dharmacon)

- 1. GAUGAGCUCUUCCGUCUUU
- 2. GAACAACUGCUUCCUGUAU
- 3. GGAGAUUGCUGCGAUGAUU
- 4. GAACUGUCUUUACCACUGA

TAB2 siRNA pool (Dharmacon)

- 1. GAAGAGAUGAGUACUAUUU
- 2. UAAGGGAAGUGCUGAAAUA
- 3. GGAACAAGGUUUAACUAUU
- 4. CCUCAAGGCUUUAAUGUUU

Non-Targeting Control siRNA pool (Dharmacon)

- 1. UGGUUUACAUGUCGACUAA
- 2. UGGUUUACAUGUUGUGUGA
- 3. UGGUUUACAUGUUUUCUGA
- 4. UGGUUUACAUGUUUUCCUA

(All of the siRNAs from Dharmacon have 3' UU overhangs on both strands and a 5'phosphate on the antisense strand)

RIP1 siRNA pool (Santa Cruz Biotechnology)

- 1. CGUGAAGAGUUUAAAGAAAtt
- 2. GACAGAAUGUGGCUUACAAtt
- 3. GACGAGUUCAUCACUACUAtt