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Model Description and Parameters. Stiffness and damping. The elastic
beams have no longitudinal coupling or flexural stiffness. Their
elastic behavior is described by their individual stiffness per unit
length along the propagation direction, s1 and s2. The same holds
for the coupling between the beams s12. The values used were
s1 = 5.2 kN/m2, s2 = 15.1 kN/m2, s12 = 75.4 kN/m2 for the cal-
culations underlying Figs. 3 and 4. This corresponds to a ratio
s1:s2:s12 of 1:3:14, and to a net stiffness per unit length (probed
by pushing beam 1 only) of 20 kN/m2. The latter value matches
stiffness measurements of the basilar membrane in the basal turn
of the gerbil (1). Spatial variation of stiffness was described by
s(x) = s(0)exp(−2αx), with α = 0.46 mm−1, based on the fre-
quency-place map of the gerbil (2). The damping associated with
beam velocity is captured by the two damping coefficients λ and μ
described following Eq. S21. Their values are λ = 3μ = 9.7 Ns/m2.
Geometry and specific fluid mass. (For model layout, see Fig. 1.)
Diameter of the half-cylindrical chambers: 500 μm; width of the
slit connecting the chambers: w = 60 μm; height of the slit: h = 50
μm. This geometry was motivated by the basal turn of the gerbil
cochlea (3). Beam displacement profile was proportional to
ςðyÞ=exp(−(y/b)2/2), with y the coordinate along the width of the
beams (y = 0 corresponding to the center) and b = 35 μm. This was
motivated by radial profiles of basilar membrane motion in the
basal turn of the gerbil (4). Specific mass of the fluid: ρ = 1,000 kg/m3.

Analysis of Fluid Motion. Fanning waves and their dispersion. With only a
single chamber filled with fluid, the waveguide supports a type of
3D fluid wave analyzed by Steele and Taber (5). For sufficiently
small wavelength, the waves are deep (i.e., the rigid boundaries
become irrelevant), and the fluid particles describe circles that
lie in planes perpendicular to the plane of view in Fig. 1. The
projection of the circular trajectories onto the waveguide cross-
section produces a fanning pattern as shown in Fig. S1. The
dispersion of these fanning waves is determined by the de-
pendence of the effective fluid mass on wavenumber (mch curve
in Fig. 2). An illustrative metric of the degree of dispersion is the
ratio U/c of group velocity U and phase velocity c. For non-
dispersive waves U/c = 1; for deep plane waves U/c = 0.5, in-
dependent of wavenumber. For the fanning waves, U/c varies
with wavenumber k as shown in Fig. S2. The minimum value of
U/c depends on the width of the beam displacement profile. The
model geometry used here has a minimum U/c value of 0.16.
Effective fluid mass. Fluid motion was determined by solving the
Laplace equation for the velocity potential Φ describing irrota-
tional fluid motion (6):

∇2Φ= 0: [S1]

Fluid velocity u is the gradient of Φ

u=∇Φ: [S2]

The boundary conditions are

n ·∇Φ= 0
�
rigid  boundaries

�
; [S3a]

∂Φ=∂z= ςðyÞ _ηm ðbeamsÞ; [S3b]

where ςðyÞ is the normalized displacement profile of the beams
(Model Description and Parameters), n is the outward normal,

and η1 and η2 are the transverse displacements of the center of
beam 1 and 2, respectively. The dot denotes the time derivative.
For harmonic traveling waves traveling in the x direction, hav-
ing angular frequency ω and wavenumber of k,

Φ
�
x; y; z; t

�
=Re

�
eiωt−ikxϕ

�
y; z

��
; [S4]

and the 3D Laplace equation for Φ (Eq. S1) reduces to a 2D
Helmholtz equation for ϕ

�
∂2

∂y2
+

∂2

∂z2

�
ϕ
�
y; z

�
= k2ϕ

�
y; z

�
: [S5]

The geometry of Fig. 1 applies to this problem; denoting the ver-
tical (z) positions of the two beams by ±h/2 and their width by w,
the boundary conditions of this 2D problem are

∂ϕ
∂n

= 0  at  rigid  boundaries;

∂ϕ
∂z

= ς
�
y
�
_η1;   z= + h

�
2;   −w

�
2< y<w

�
2

ςðyÞ _η2;   z=−h=2;   −w=2< y<w=2

0;  elsewhere:

[S6]

Eqs. S5 and S6 describe the motion of the fluid in both chambers
and the slit. This problem was solved numerically using triangu-
lation (PDE toolbox in MATLAB). Owing to the geometric
symmetry and the linearity of the problem, it was sufficient to
restrict these calculations to _η1 = 1;   _η2 = 0, i.e., only the upper
beam moving at unit velocity. The real-valued solution to this
reduced problem for ϕ in the upper half-cylindrical chamber will
be denoted by ϕch(y,z; k). This is the solution portrayed in Fig.
S2. The kinetic energy in the chamber per unit length in the
x direction, averaged over one cycle, is

hTchðkÞi= _η21
4
ρ

Z
CH

dydz
h
k2 + ð∂ϕch=∂yÞ2 + ð∂ϕch=∂zÞ2

i
; [S7]

where the braces denote time averaging. The integral is taken
over the cross-section of the chamber. The integrand is the
squared magnitude of the fluid velocity. Because _η1 is the veloc-
ity of the beam, Eq. S7 has the familiar form T = 1=2ðmv2Þ (the
additional factor 1/2 comes from time averaging). The effective
fluid mass of the fluid in the chamber is therefore

mch
�
k
�
= ρ

Z
CH

dydz
h
k2 + ð∂ϕch=∂yÞ2 + ð∂ϕch=∂zÞ2

i
: [S8]

Eq. S8 was used to compute mch(k) shown in Fig. 2.
Fluid between the beams. Fluid motion in the slit (Fig. 1B) is affected
by the motion of both beams. Starting again with _η1 = 1;   _η2 = 0
(only upper beam moving), denote the real-valued solution of
the 2D problem (Eqs. S5 and S6) by ϕ1(y,z;k). This particular
solution ϕ1 of the Helmholtz equation was obtained numerically
for a large range of k values. The solution ϕ2(y,z;k) for the case
where the other beam is moving ( _η1 = 0;  _η2 = 1) follows from the
geometric symmetry:
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ϕ2ðy; z; kÞ=−ϕ1ðy; − z; kÞ: [S9]

The general solution of Eqs. S5 and S6, in which both beams
move, becomes

ϕ= _η1ϕ1 + _η2ϕ2; [S10]

where phase differences between beam motion are realized by
complex η1 and η2.
The kinetic energy of a transversal slice S of fluid equals

Tdx=
ρ

2

ZZZ
S

dV ð∇ΦÞ2

=
ρ

2

ZZZ
S

dV∇ðΦ∇ΦÞ

=
ρ

2

Z Z
δS

dn ·Φ∇Φ;

[S11]

where Eq. S1 and the divergence theorem were used, n is the
outward unit normal, and dx is the thickness of the slice. Given
the dependence of Φ on x and t (Eq. S4), the contributions of the
YZ planes of the boundaries of the slice cancel when averaged
over a period, leaving only the contributions of the boundaries of
the slit. Taking the limit of vanishing dx, the expression for T
becomes a line integral along the boundaries of the cross-section
of the slit. Because the integrand vanishes at the rigid bound-
aries, the only contributions to the integral come from the beams
B1 and B2. Using Eq. S4, one obtains

hTi= ρ

4

Z
B1+B2

dsReðϕp   ∂ϕ=∂nÞ; [S12]

where ∂ϕ=∂n is the gradient of ϕ along the outward normal,
the asterisk denotes complex conjugation, and where I used
the identity

�
Re

�
aeiωt

�
Re

�
beiωt

��
= 1=2hReðapbÞi: [S13]

Combining Eqs. S10 and S12, and using ∂ϕ2=∂n= 0 at B1 and
∂ϕ1=∂n= 0 at B2, one obtains

hTi= 1=4
�
_ηp1m1 _η1 + _ηp1m12 _η2 + _ηp2m21 _η1 + _ηp2m2 _η2

�
; [S14]

with

m1 = ρ

Z
B1

ds  ϕ1   ∂ϕ1=∂n

m2 = ρ

Z
B2

dy  ϕ2∂ϕ2=∂n

m12 = ρ

Z
B2

dy  ϕ1∂ϕ2=∂n

m21 = ρ

Z
B1

dy  ϕ2∂ϕ1=∂n:

[S15]

Using the symmetry (Eq. S9) and the boundary conditions
(Eq. S6), this reduces to

m1 =m2 =mtr
�
k
�
= ρ

Zw=2

−w=2

dy  ςðyÞϕ1ðy; ð1=2Þh; kÞ

m12 =m21 =−mcpl
�
k
�
=−ρ

Zw=2

−w=2

dy  ςðyÞϕ1ðy; −ð1=2Þh; kÞ :

[S16]

The second line of Eq. S16 exposes the mass-loading nature of
the coupling between the beams; it represents the integrated
product of two factors. The first factor is the fluid pressure
(the time derivative of ϕ) evoked by the motion of one beam,
evaluated at the position of the opposite beam. The second
factor is the transversal velocity of the opposite beam. Eq. S16
was used to compute mtr(k) and mcpl(k) shown in Fig. 2. In
matrix notation, and after including the contribution the fluid
of both chambers (Eq. S8), the time-averaged kinetic energy
(Eq. S14) becomes

hTi= ð1=4Þ _η†M�
k
�
_η; [S17]

where the dagger denotes Hermitian conjugation, and the mass
matrix M is given in Eq. 1 of the main text. The negative sign
of the off-diagonal (coupling) term of M reflects the reduction of
effective fluid mass when both beams move in phase (compared
with the case with only one beam moving). The parallel beam
motion alleviates the squirting of the fluid.

Elastic Coupling and Damping. Stiffness matrix. Given beam displace-
ments η1 and η2, individual beam stiffness values s1 and s2, and
coupling s12, the potential energy per unit length equals

V = 1=2
h
s1η21 + s2η22 + s12ðη1 − η2Þ2

i
: [S18]

Generalizing to complex displacement values to describe har-
monic motion, and using Eq. S13, the time-averaged potential
energy becomes

<V > = 1
�
4
�
η†S

�
k
�
η
�
; [S19]

with the stiffness matrix S given in Eq. 3 of the main text.
Damping. The equation of motion for the beam displacement η is

M€η+D _η+ Sη= 0; [S20]

where the damping matrix D, which quantifies the damping force
per unit length per unit beam velocity, equals

D=R
�
λ 0
0 μ

�
R−1;

R=
�

cos 2πβ sin 2πβ
−sin 2πβ cos 2πβ

�
:

[S21]

This form of D has two principal values λ and μ that apply to two
orthogonal vibration mode shapes. In this study, β = 0.3 cycle
and λ = 3μ = 9.7 Ns/m2. This form of D damps the A mode more
than the P mode. Thus, damping is predominantly associated
with an antiparallel beam motion, as if a dashpot is mounted
next to the spring in Fig. 1B. Damping was evaluated as a per-
turbation of the undamped configuration, i.e., Eq. S20 was treated
as a perturbation of the D = 0 case. Denoting the normalized
eigenmodes of the unperturbed case by η(1) and η(2), their dot
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product by χ, and their respective eigenvalues by ω(1) and ω(2),
first-order perturbation yields

ωðnÞ →ωðnÞ +ΔðnÞ;

ΔðnÞ =
i

2ð1− χ2Þ
	
ηðnÞ − χηð3−nÞ


†

M−1DηðnÞ:
[S22]

Because the eigenmodes of the unperturbed case are real, and so
are M and D, Eq. S22 implies that damping causes the frequency
to acquire an imaginary part, describing the temporal decay of
standing waves. To assess the corresponding spatial decay of
traveling waves, one must find the perturbation of the wavenumber
k that restores the temporal periodicity, as analyzed by Lighthill (6),
chapter 3.6:

kðnÞ → kðnÞ −ΔðnÞ�UðnÞ;
U = ∂ω=∂k:

[S23]

Physically, Im(ω) describes the temporal rate of energy loss,
which is related to the spatial rate of loss via the travel speed
of the energy, the group velocity U.

Wave Propagation in the Model. Solving Eq. 4. Eq. 4 (main text)
describes the propagation of the waves by decomposing ar-
bitrary beam displacements into normal mode contributions
and applying the spatial gradients of the two normal modes. It
was solved numerically by dividing a 4-mm length of the
waveguide in 500 segments and approximating the spatial
derivatives by finite differences. Two independent solutions
η(1)(x) and η(2)(x) were determined by using the respective
initial conditions

ηð1Þ
�
0
�
=
�
1
0

�
; ηð2Þ

�
0
�
=
�
0
1

�
: [S24]

From these two particular solutions, the solution having an arbi-
trary initial condition ηA(0) is obtained by

ηA
�
x
�
=E

�
x
�
ηA

�
0
�
; [S25]

where the matrix E is given by

Eij
�
x
�
= ηðjÞi

�
x
�
: [S26]

E(x) contains the complete solution of Eq. 4. It can be used, by
inversion, to find those initial conditions at x = 0 that produce
a given propagation mode at any location xA within the waveguide,
and specifically, to find the initial condition that causes the wave
to be in the AP mode before entering its region of mode shape
swapping. The 24-kHz wave shown in Fig. 5 was presented at x =
0 in the mode shape that causes it to be purely in the AP mode at
x = 1 (Fig. S3). The other two waves (17 and 33 kHz) were pre-
sented in that same mode shape that presumably favors the peak-
ing of 24-kHz waves. Their propagation behavior shows that aiming
for the exact AP mode is not necessary for creating the peak.
Mode conversion and choice of initial condition. In Fig. S3 the model
responses of Fig. 5 are decomposed into the contributions of the
AP and PA modes. The spatial variation of the two components
illustrates mode conversion, but is also affected by the different
propagation properties of the individual modes: their group ve-
locity, effective stiffness, and damping. The fact that the 24-kHz
wave (green curve), which is exactly in the AP mode at x = 1, has
nonvanishing PA components both at x < 1 and x > 1 shows that
a certain amount of mode conversion does occur. However, it is
obvious that mode conversion does not affect the peaking, be-
cause the dominance of the AP mode persists up to locations
well beyond the peak. Eventually, the steeper decay of the AP
mode causes the PA mode to become dominant (circles).
Alternative waveguide geometries. The waveguide geometry shown
in Fig. 1 was not chosen for its physiological resemblance to the
mammalian inner ear, but for its simplicity; it possesses the bare
essentials needed to realize mode shape swapping. As detailed in
Discussion, there exist many alternative geometries that are capa-
ble of showing the same physical behavior. Fig. S4 illustrates some
of those alternatives. Note that, in contrast with the model in Fig.
1, many of the examples involve a combination of horizontal and
vertical deformation. Moreover, most of the mode shapes shown
give rise to fanning and squirting waves even if they are only sur-
rounded by fluid on one side. Thus, the presence of two opposing
fluid chambers is not a strict necessity, and the physics of mode
shape swapping may play a role in nonmammalian ears as well.
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Fig. S1. Fanning wave pattern of fluid motion. Colored lines are the projections on the plane of view of the circular trajectories of fluid particles in the upper
chamber of the model waveguide. Wavelength, 3 mm. Line color is varied to help distinguish the individual trajectories.
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Fig. S2. Strongly dispersive character of fanning waves, illustrated by the ratio U/c of group velocity U and phase velocity c. Minimum value of U/c was 0.16.
The two dashed lines mark the constant U/c ratios of shallow waves (Upper) and deep 2D waves (Lower).

Fig. S3. Decomposition of beam displacement from Fig. 5B into contributions from AP mode (thick lines) and PA mode (thin lines). The initial growth of the
PA mode originates from mode conversion. The subsequent notch corresponds to a change in sign of the contribution of the PA mode shape to the beam
motion. Circles mark the points at which the PA mode finally becomes dominant over the AP mode.

Fig. S4. Alternative geometries leading to fanning waves and squirting waves. Each pair of overlapping quadrangles represents the cross-section of the tunnel
in which fluid is trapped. The two members of each pair depict the two extreme states of deformation and/or displacement during the cycle of the vibration.
The upper row (F1–F4) shows vibration modes that preserve the tunnel cross-section and give rise to fanning waves if the tunnel is surrounded by fluid. Note
that it is not necessary to have fluid chambers on both sides of the tunnel. The lower row (S1–S4) shows vibrations that change the cross-section and will give
rise to squirting waves.
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