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Numerical Evaluation of the Critical Stress
Using the extremal dynamics protocol, the system evolves to the
critical point with an average stress 〈Σc(L)〉 and stress fluctua-
tions δΣ in the stationary state with a dependence of system size
as Eq. 13 in the main text. In Fig. S1 Insets, we plot out the
〈Σc(L)〉 as a function of δΣ(L), and the critical stress in the
thermodynamic limit is just the intersection of the curves with
the y-axis, and we get Σc = 0.5221 ± 0.0001 for dimension (d) = 2
and Σc = 0.5058 ± 0.0002 for d = 3. From the dependence of
δΣ on L, shown in Fig. S1, we also extract ν = 1.16 ± 0.04 in 2d
and ν = 0.72 ± 0.04 in 3d.

Fixed-Stress Protocol
At fixed stress in a finite size system, the dynamics eventually
will stop. To trigger a new avalanche, we give random kicks to all
sites, of amplitude δxj, while keeping Σ fixed. We consider two
methods. In the first one, a site i is chosen randomly, and the
amplitude of the kicks follows:

δxj =−AG�~rij�; [S1]

where A is a constant adjusting the amplitude of kicks. Data
presented in the text correspond to A = 1, but choosing smaller
values of A, such as 0.1 did not affect the results (see Fig. S4).
Eq. S1 ensures that the stress is constant. If no sites become
unstable, another site is chosen randomly and another set of
kicks following Eq. S1 is given. In this method, the site j0 that
eventually becomes unstable typically was close to an instability
before the random kicks were given. However, j0 is not neces-
sarily the weakest site in the entire system.
In the second method, the dynamics are triggered by imposing

that the weakest site o (i.e., xo < xi for all i ≠ o) yields. According
to our automaton model, this leads to a change of local distance
to instability everywhere in the system, which follows

δxj =−G�~roj� [S2]

and may lead to avalanches. We find that these two methods give
consistent results for τ, as shown in Fig. S4.

Finite Size Collapse of the Flow Curve
Our estimations of the threshold Σc and the correlation length
exponent ν are obtained in the main text by using the extremal
dynamics protocol. We obtain the same results if we use the fixed-
stress protocol, with which we can compute the size-dependent
flow curve relating the strain rate, _γ, as a function of the external
stress, Σ. From general arguments of finite size scaling, we expect

_γ∼L−β=νf
�
ðΣ−ΣcÞL1=ν

�
: [S3]

To test the consistency of our methods, in Fig. S2 we collapse the
different flow curves using Eq. S3 and the value of Σc, ν, and β
initially obtained with the extremal dynamics protocol. We ob-
serve a satisfying collapse without any free parameter.

Avalanche Statistics
To extract the avalanche distribution exponent τ accurately, we
compare two protocols: (i) constant stress at Σc and (ii) extremal
dynamics, as shown in Fig. S3. It turns out that the avalanche

distributions in extremal dynamics have stronger finite size ef-
fects than at constant stress. It thus is difficult to extract the
avalanche exponent τ accurately by using extremal dynamics.
From Fig. S3, Right, Inset, τ does not change significantly with
system size in the constant-stress method, in contrast to the es-
timate of τ that increases with L in extremal dynamics. To extract
τ accurately, we fix the stress at Σc to collect the avalanche sta-
tistics, and we find τ = 1.36 ± 0.03 in 2d, and τ = 1.45 ± 0.05 in
3d, and the value of τ is the same for the two methods of fixed-
stress protocol, and also insensitive to the value of A in the first
method, shown in Fig. S4. The error associated with the expo-
nent is estimated by varying the range of avalanche sizes con-
sidered in the fit.

General Scaling Relations
The three scaling relations derived in the main text for the critical
exponents of the yielding transition are similar but not identical to
the scaling relations obtained for the depinning transition of an
elastic interface. In the following, we derive three more general
relations, namely

ν=
1

d− df + αk
[S4]

β= ν
�
d− df + z

�
[S5]

τ= 2−
df − d+ 1=ν

df
−

θ
θ+ 1

d
df
; [S6]

that hold both for yielding and depinning. Here, αk is the di-
mension of the interaction kernel G. In the context of the
yielding transition, αk = 0 and df < d so that β > 1. In the
context of the depinning transition θ = 0 and df ≥ d, the di-
mension of the interaction kernel is αk = 2 for the short-range
elasticity and αk = 1 for the long-range elasticity of the con-
tact line of a liquid meniscus (1) or of the crack front in brittle
materials (2, 3).
Note that relations S5 and S6 are expected to be very general,

whereas the first relation is guaranteed only in the presence of
statistical tilt symmetry, hence only when the interactions are
linear. For example, it is known that the nonharmonic correc-
tions to the elastic energy can modify the universal behavior of
the depinning transition with critical exponents that violate re-
lation S4 (4). For the yielding transition, the validity of [S4] is
supported by recent molecular dynamics simulations (5) that
show that the stress decay during an avalanche is proportional to
the energy jump, a scaling consistent with linear elasticity. Such
linearity is assumed a priori in elasto-plastic models and is re-
quired for the statistical tilt symmetry to apply (see below).

From the Elasto-Plastic Automaton to the Continuum Model. The
d dimensional elasto-plastic model studied in this paper is a dis-
crete automaton. Its continuum limit gives the time evolution of
the strain field γ~r in each point of the space:

∂tγ~r =
Z

~r ′

G�~r−~r′�γ~r ′ +Σ+ σdis
�
γ~r;~r

�
: [S7]

The first term of the equation describes the interactions between
the different parts of the system. Note that the interactions are
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linear in the strain field γ, and governed by a time-independent
interaction kernel, Gð~rÞ. As discussed in the main text, for elastic
depinning models the kernel is monotonic, whereas for amor-
phous materials it is nonmonotonic, anisotropic and may be con-
veniently written in the Fourier space:

G
�
~k
�
=

8>>><
>>>:

−
4k2x k

2
y

k4
; for  d= 2

−
4k2x k

2
y + k2z k

2

k4
; for  d= 3:

[S8]

The other two terms are the external stress, Σ, and the quenched
disorder, σdisðγ;~rÞ, which takes into account the inhomogenei-
ties of the local yield stress. In the automaton model, the scalar
stress σi corresponds to the sum of the first two terms, and
σdisðγ;~rÞ is assumed to be a collection of narrow wells randomly
located along~r. The parameters σth, e, and τc are related, re-
spectively, to the well depth, the distance between consecutive
wells, and the time needed to move from an unstable well to
a stable one.
Below threshold, Σ < Σc, the local strain fields are pinned

inside a set of narrow wells. If a small perturbation is applied
(e.g., a little change in the well locations), the local strain field
responds either (almost everywhere) linearly simply by read-
justing its value inside the well or (when a well becomes un-
stable) with a large modification accompanied by a stress release
that may be the seed of a large avalanche. This nonlinear re-
sponse gives a singular contribution to the susceptibility, which
becomes important close to Σc. Note that in the presence of a
nonmonotonic interaction kernel, the avalanche size S=

P
iΔγi

may be positive or negative; however, the positive external stress
Σ strongly suppresses negative avalanches that, in practice, may
be neglected.

The Statistical Tilt Symmetry. We now focus on the response of
the system when we add to Eq. S7 a tilt, σtilt~r , namely an in-
homogeneous local stress of zero spatial average. In the presence
of linear interactions, the tilt can be absorbed in a new strain
field ~γ r defined as

~γ~r = γ~r +
Z

~r ′

G−1�~r−~r′�σtilt~r ′ [S9]

and governed by the following evolution equation:

∂t~γ r =
Z

~r ′

G�~r−~r′�~γ~r ′ +Σ+ σdis
�
~γ −G−1σtilt;~r

�
: [S10]

The latter equation points out that the effect of the tilt may be
absorbed with a shift in the location of the narrow wells. Thus,
once the average over disorder is taken, the tilt disappears from
Eq. S10 if the correlation σdisðγ;~rÞσdisðγ′;~r′Þ depends only on γ − γ′.
For example, in the steady state, when the system becomes inde-
pendent of the initial conditions, the average response of γq to a
tilt σtiltq acting on the mode q, is

χq =
∂γq
∂σtiltq

=
∂~γ q −G−1

q σtiltq

∂σtiltq
=−G−1

q : [S11]

This exact expression should be compared with the scaling behav-
ior of the singular part of the susceptibility governed by the char-
acteristic scale ξ ∼ (Σc − Σ)−ν. In this regime, the strain field
grows as Δγ ’ ξdf−d and noting that the tilt has the dimension of
a stress, we expect that the singular part of the susceptibility
scales as χsing: ∼ ξ1=ν+df−d, which gives 1/ν − d + df = αk, namely
Eq. S4. Here, αk is the dimension of the kernel 1/Gq. For short-
range elastic depinning, αk = 2, and for long-range depinning,
αk = 1, whereas the anisotropic kernel one has αk = 0.

Stationarity. Concerning the other two scaling relations: Eq. S5
is identical to the one derived in the main text and Eq. S6 is
still a consequence of the stationarity of the avalanche dynamics.
In general, an avalanche of size S leads to a stress drop that is not
simply proportional to the plastic strain, but rather to Δγ  Ld−df−1=ν,
so that the average stress drop induced by avalanches scales as

ΔΣ∼
hSi
Ld

L−1=ν

Ldf−d
: [S12]

On the other hand, the stress injection before a new avalanche is
observed scales as L−d=ðθ+1Þ, so that

hSi
Ld

L−1=ν

Ldf−d
∼L−d=ðθ+1Þ: [S13]

Finally, using hSi∼Lð2−τÞdf , we obtain Eq. S6.
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Fig. S1. Stress fluctuations for the extremal dynamics simulation, from which we extract the correlation length exponents ν = 1.16 ± 0.04 in 2d, and ν = 0.72 ± 0.04
in 3d. (Insets) The relation between Σc(L) and δΣ. The intersection of the curves with the y-axis yields Σc in the thermodynamic limit.

Fig. S2. Collapse of the flow curves obtained from Eq. S3 using the estimations of β, Σc, and ν given in Table 2 of the main text for d = 2 (Left) and d = 3 (Right).

Fig. S3. (Left) Avalanche distributions at Σc in 2d. These distributions clearly overlap for a range of sizes growing with L. In this range, we obtain an exponent
τ = 1.36 ± 0.03. Here A = 1; we check the distributions with a much gentler A = 0.1 and find the same τ. (Inset) Avalanche distribution in 3d leading to τ = 1.45 ±
0.05 for L = 64. (Right) Avalanche distribution obtained by using extremal dynamics with the same three sizes. These distributions do not clearly overlap,
leading to exponents apparently increasing with system size. (Inset) How τ changes with size by using these two different methods.
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Fig. S4. (Left) Effect of the magnitude of random kicks A on the estimation of τ for the first method of fixed-stress simulation, for L = 256 and d = 2. (Right)
Normalized avalanche probability distribution extracted using the second method of fixed-stress simulation (for which the weakest site yields). This method
yields the same exponent τ = 1.36.
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