Supporting Information

Soyano et al. 10.1073/pnas.1412716111

SI Materials and Methods

Plasmid Construction. Promoter regions of CLE ROOT SIGNAL1 (CLE-RS1) and CLE-RS2 were amplified by PCR from MG-20 genomic DNA. The promoter regions were cloned into pENTR-1A (Invitrogen) and then transferred into pMDC162-GFP (1) by LR clonase (Invitrogen). Pro35S-NODULE INCEPTION (NIN)glucocorticoid receptor (GR), ProNIN-GUS, and ProLjUb (Lotus japonicus polyubiquitin)-NIN-myc have been described previously (1). For double transformation of roots with promoter-GUS constructs and either Pro35S-NIN-GR or its empty vector, Pro35S-DsRed was used as the transformation marker for the latter two constructs. Other vectors carried Pro35S-GFP as the marker. To analyze NIN-binding nucleotide sequences (NBSs) in CLE-RS1 and CLE-RS2 promoters, promoter fragments containing NBSs were amplified by PCR, and cloned upstream of the CaMV35S minimal promoter in pENTR-1A-35Smin (1). The resultant chimeric promoters were transferred into pMDC162 (2), pMDC162-GFP (1), and pMDC162-NIN, a pMDC162 derivative, into which NIN cDNA was inserted between XhoI sites to replace HPH (hygromycin phosphotransferase). Luciferase (LUC) cDNA that was cloned into pENTR-D/TOPO (Invitrogen) was transferred into pUB-GW-GFP (3). Nucleotide sequences of primers used for plasmid construction are listed in Table S1.

Transient Expression Assay in N. benthamiana Leaves. A. tumefacients AGL1 transformed with vectors harboring each promoter-GUS reporter and another strain carrying *ProLjUb-LUC* were infiltrated as described by Llave et al. (4). Leaf tissue was harvested at 2.5 d after infiltration. GUS activity was measured as described by Jefferson et al. (5). Tissues (0.2 g) were frozen in liquid nitrogen and homogenized with a tissue lyzer (Quiagen).

- Soyano T, Kouchi H, Hirota A, Hayashi M (2013) Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet 9(3):e1003352.
- 2. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. *Plant Physiol* 133(2):462–469.
- Maekawa T, et al. (2008) Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in *Lotus japonicus*. Mol Plant Microbe Interact 21(4):375–382.
- Llave C, Kasschau KD, Carrington JC (2000) Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. *Proc Natl Acad Sci USA* 97(24):13401–13406.

Protein was extracted with 0.5 mL of extraction buffer (100 mM NaPO₄ pH 7.0, 10 mM EDTA, 10 mM β -mercaptoethanol, 0.1% Triton X-100, 0.1% *N*-lauryl-sarcosine, and 0.2 mM PMSF). After centrifugation, 20 μ L of the clear supernatant was added into 0.3 mL of extraction buffer containing 20% methanol and 1.4 mM 4-methylumbelliferyl β -D-glucuronide, followed by incubation at 37 °C. Then 50 μ L of the reaction mixture was transferred into 0.95 mL of 0.2 M Na₂CO₃ at 0 and 30 min after incubation to stop the reaction. Samples were measured in a microplate reader (SH-9000Lab; Corona) at a 355-nm excitation wavelength and a 460-nm emission wavelength.

For measurement of luciferase activity, 5 μ L of the extract was added into 100 μ L of LUC assay buffer (20 mM Tricine pH 7.8, 5 mM MgSO₄, 0.1 mM EDTA, 5 mM DTT, 150 μ M CoA, 250 μ M luciferin, and 250 μ M ATP). Luminescence was measured in the microplate reader. GUS activities were normalized to those of luciferase.

ChIP-seq Analysis. Chromatin suspensions were prepared from roots transformed with an empty vector and *ProLjUb-NIN-myc*. ChIP was performed with polyclonal anti-myc antibodies (Santa Cruz Biotechnology). Libraries were prepared from three independent ChIP samples according to the instructions for the Illumina ChIP-seq DNA Sample Prep Kit and then sequenced with Hi-seq1000 (Illumina). After sequence reads were trimmed using the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), 30,922,581 and 52,821,816 reads from empty vector control and NIN-myc, respectively, were mapped to *L. japonicus* genomic sequences using Bowtie 2 (6). MACS2 software (7) with default parameters was used to identify peaks representing enriched binding sites.

- Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. *EMBO J* 6(13):3901–3907.
- Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359.
- 7. Zhang Y, et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9): R137.

Fig. S1. Expression of *CLE-RS1* and *CLE-RS2* in roots overexpressing *LjNF-YA1* and *LjNF-YB1*. Plants with roots transformed with either an empty vector, *ProLjUb-LjNF-YA1* plus *Pro35S-LjNF-YB1*, or *ProLjUb-NIN* were cultured for 3 wk in the absence of rhizobia. Expression of *CLE-RS1*, *CLE-RS2*, *LjNF-YA1*, and *LjNF-YB1* was analyzed by RT-PCR. Expression levels were normalized using *polyubiquitin* expression. Data are mean ± SD of three biological repeats. Asterisks indicate data from ref. 1.

U ▼

Fig. S2. ChIP-seq analysis of known NIN target genes and ChIP-PCR analysis to confirm binding of NIN with the *CLE-RS1* and *CLE-RS2* promoters. (A) Read coverage of *LjNF-YA1*, *LjNF-YB1*, and *Plastocyanin-like domain-containing protein* (*PLDP*) encoding gene promoter regions obtained by the ChIP-seq analysis. Red lines and arrowheads indicate promoter regions and positions of NIN-binding sites used for expression analysis and determined in our previous work (1), respectively. (B) Read coverage of the *CLE-RS1* and *CLE-RS2* promoter regions shown in Fig. 2. Regions analyzed by ChIP-PCR are indicated as short bars in boxes. (C) ChIP-PCR was performed to examine NIN binding with *CLE-RS1* and *CLE-RS2* promoter regions. DNA fragments were coimmunoprecipitated with polyclonal anti-myc antibodies from chromatin suspensions prepared from *ProLjUb-NIN-myc* roots or control (empty vector) roots. DNA fragments corresponding to regions indicated in *B* were analyzed by RT-PCR. Amounts of DNA fragments were normalized to input data. Data are mean \pm SD of three biological repeats. Asterisks indicate significant differences compared with empty vector control roots according to the Student *t* test. **P* < 0.1.

Fig. S3. Specificities of NIN binding with *CLE-RS1* and CLE-*RS2* promoter fragments. (*A*) Read coverage of *CLE-RS1* and *CLE-RS2* promoters obtained by ChIP-seq analysis. Regions corresponding to DNA fragments used for electrophoresis mobility shift assay (EMSA) in *B–D* are indicated as short bars in boxes. The size of the probes are as follows: *CLE-RS1* probe 1, 194 bp; probe 2, 186 bp; probe 3, 184 bp; probe 4, 164 bp; probe 5, 168 bp; probe 6, 170 bp; probe 7, 169 bp; probe 8, 169 bp; *CLE-RS2* probe 1, 203 bp; probe 2, 192 bp; probe 3, 179 bp; probe 4, 166 bp; probe 5, 137 bp; probe 6, 166 bp; probe 7, 173 bp: probe 8, 172 bp. (*B*) EMSA detection of NIN-binding to promoter regions of *CLE-RS1* and *CLE-RS2*. ³²P-labeled probes shown in *A* were incubated with NIN(520-878)-myc or in vitro translation products without template (control). Arrowheads and asterisks indicate mobility-shifted bands specifically detected when incubated with the NIN protein and nonspecific bands, respectively. (*C*) Supershift analyses. NIN(520-878)-myc and labeled probes (see *A*) were incubated in the presence (+) or absence (–) of anti-myc antibodies. An in vitro translation product without the template served as a control for the NIN protein. Filled and open arrowheads indicate shifted bands due to NIN binding and supershifted bands, respectively. (*D*) Competition analyses with unlabeled NIS-yB1a. NIN(520-878)-myc and labeled probes were incubated with 200-fold amounts of a competitor, NBS-yB1a, which contains a NBS found in the *LjNF-YB1* promoter (1). Arrowheads indicate shifted bands due to NIN binding. Relative intensities of shifted bands are shown at the bottom.

Fig. 54. NBS-dependent transcriptional activation by NIN. (*A*) Alignment of NBSs. NBS-yA1, -yB1a, -yB1b, -E16a, and -E16b have been reported previously (1). NBS-RS1 S1–S3 and NBS-RS2 S1–S3 were identified in the *CLE-RS1* and *CLE-RS2* promoters in this study. NBS-RS1 S1m–S3m and NBS-RS2 S1m–S3m are mutant derivatives. Red characters represent highly conserved nucleotides. Blue characters indicate substituted nucleotides. (*B*) Sequence logo for NBSs aligned in *A*. (C) Illustration of promoter-GUS constructs. Promoter fragments containing NBSs from *CLE-RS1* and *CLE-RS2* (gray bars) were inserted upstream of the *CaMV355* minimal promoter (black bars), followed by the GUS reporter. NBSs are represented as red bars. (*D*) Transient expression assay. *A. tumefaciens* strain carrying a vector harboring each GUS reporter construct and either *Pro355-NIN* or *Pro355-HPH* as control and another *Agrobacterium* strain carrying *Pro355-LUC* were coinfiltrated into *N. benthamiana* leaves. GUS activities in leaf tissues harvested at 2.5 d after infiltration were measured and normalized to those of luciferase. Data are mean ± SD from three biological repeats. (*E*) GUS expression in nodule primordia. Roots transformed with each GUS reporter construct were inoculated with *Mesorhizobium loti*. GUS expression was analyzed at 7 d after inoculation (dai). All samples were incubated in GUS staining buffer for 2 h. The fractions of transformed roots exhibiting GUS expression in nodule primordia are in parentheses.

Fig. S5. Expression of *CLE-RS1* and *CLE-RS2* in *Pro35S-NIN-GR* roots, and systemic effects of *NIN* overexpression on nodulation. (A) Expression analysis of *CLE-RS1* and *CLE-RS2* in *Pro35S-NIN-GR* roots. Plants with roots that were transformed with the empty vector or *Pro35S-NIN-GR* were cultured for 2 wk in the presence of dexamethasone (DEX). *Pro35S-NIN-GR* roots could be categorized into two groups, malformed roots and roots with normal structure. Expression of *CLE-RS1* and *CLE-RS2* was analyzed by RT-PCR. Expression levels were normalized using *polyubiquitin* expression. Data are mean \pm SD of three biological repeats. (*B* and *C*) Roots transformed with *Pro35S-NIN-GR*. Plants were cultured for 3 wk in the presence of DEX and in the absence of rhizobia. A malformed root with the severe phenotype (B) and a root with apparently normal architecture (C) are shown. (Scale bars: 5 mm.) (*D*) Illustration of the *Agrobacterium*-mediated root transformation. (*E–G*) Nodulation on GFP-negative and GFP-positive hairy roots generated in MG-20 (*E*), *hypernodulation aberrant root formation 1-7* (*har1-7*) (*F*), and too *much love-1* (*tml-1*) (*G*) backgrounds. Roots were transformed with *Pro35S-NIN-GR* the empty vector by the standard *Agrobacterium*-mediated root transformation as illustrated in *D*. (*Left*) Bright-field images. (*Right*) Corresponding fluorescent images with GFP as a transformation marker for roots and DsRed expressed in *M. loti*. Broken lines in the right panels represent GFP-negative roots. Arrowheads in (*E*) indicate infected nodules. Note the absence of nodules in the plant with malformed *Pro35S-NIN-GR* roots. (Scale bars: 5 mm.)

Fig. 56. GUS expression under the *CLE-RS2* promoter and expression of symbiotic genes. (A) Illustration of the *Agrobacterium*-mediated double-root transformation. Roots were cotransformed with *ProCLE-RS2-GUS* and either the empty vector or *Pro35S-NIN-GR*. The former reporter construct carried *Pro35S-GFP* as a transformation marker; the latter two constructs carried *Pro35S-DsRed*. (B) Histochemical GUS staining analysis. Roots were transformed as illustrated in *A*. Plants (Gifu B-192) were inoculated in the presence (4 dai) or absence of *M*. *Ioti* for 4 d (mock) after 5 d of treatment with DEX. GUS expression from the *CLE-RS2* promoter was observed in DsRed-negative roots (–DsRed). Arrows indicate GUS staining spots. (Scale bars: 1 mm.) (C and *D*) Magnified images of GUS staining spots in DsRed-negative control roots (*C*) and DsRed-negative roots of plants with malformed *Pro35S-NIN-GR* roots (*D*). Divided cortical cells can be seen in *C* as indicated by the red bar. DsRed fluorescence indicating infection foci of DsRed-labeled *M*. *Ioti*. (Scale bars: 50 µm.) (*E* and *F*) Number of GUS staining spots (*E*) and ratios of GUS spots containing divided cortical cells (*F*). Mean \pm SD numbers (n > 25) in DsRed-negative control roots and DsRed-negative roots of plants that also generated malformed *Pro35S-NIN-GR* roots are shown. The numbers of GUS spots in areas 2 cm from root tips were counted. Asterisks indicate significant differences compared with DsRed-negative control roots according to the Student *t* test. **P* < 0.01. (*G* and *H*) Expression of symbiotic genes in roots transformed with an empty vector or *Pro35S-NIN-GR* were grown for 5 d in the presence of DEX, and then inoculated with (1 dai) or without (mock) *M*. *Ioti*. Transformed roots were distinguishable by fluorescence of the DsRed transformation marker. Gene expression in DsRed-negative control roots and DsRed-negative roots of plants that also generated roots that were transformed with an empty vector or *Pro35S-NIN-GR* w

Fig. 57. Cortical cell divisions induced by *NIN* overexpression in *har1* and *tml* mutants. (*A*) Proportions of DsRed-positive *Pro355-NIN-GR* roots with ectopic cortical cell division in two independent experiments. More than 25 roots were analyzed in each line. (*B*) Mean \pm SD numbers of sites where cortical cell division occurred in DsRed-positive *Pro355-NIN-GR* roots. Asterisks indicate significant differences from MG-20 according to the Student *t* test (*P* < 0.01). (*C*) Ectopic cortical cell division in transformed roots. Plants with roots transformed with the empty vector or *Pro355-NIN-GR* were cultured for 3 wk after being transferred to soil supplemented with DEX. Red bars indicate regions in which cortical cell division occurred. (Scale bars: 100 μ m.)

Other Supporting Information Files

Table S1 (DOCX) Dataset S1 (XLSX)