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Models and Computational Details
First-principles electronic structure calculations based on density
functional theory (DFT) were carried out using the plane-wave-
basis-set and the projector-augmented-wave method (1, 2), as
implemented in the Vienna ab initio package code (3). The energy
cutoff was set to 500 eV. For the exchange and correlation func-
tional, the generalized gradient approximation (GGA) in Perdew–
Burke–Ernzerhof (PBE) format (4) was used. The calculation was
further verified by using the more sophisticated Heyd–Scuseria–
Ernzerhof hybrid functional (5), which made no essential differ-
ence (Fig. S1). Spin-orbit coupling (SOC) is included by a second
variational procedure on a fully self-consistent basis.
Si(111) surfaces were modeled by using a slab geometry of 10

atomic layers, with a vacuum region of 30 Å in the direction
normal to the surface. Test calculations were performed by using
larger thickness (12 and 16 layers), which gave similar results.
The bottom Si surfaces were terminated by H atoms in a mon-
ohydride form. During structural optimization, both the 10th
layer of Si atoms and the H atoms saturating them were fixed
and all other atoms were fully relaxed until the atomic forces are
smaller than 0.01 eV/Å. A 15 × 15 × 1 Γ-centered k-point mesh
was used to sample the Brillouin zone. Dipole corrections were
also tested and found making little difference.
For epitaxial growth of Bi and Au atoms on the one-third

X-covered Si(111) surface (X = Cl, Br, I), we considered
a
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supercell and different adsorption configurations. The

energy barriers for Bi hopping on the Si(111) surfaces were calcu-
lated by using the climbing-image nudged elastic band method (6).
Z2 invariant calculations were performed by using the full-

potential linearized augmented plane-wave method (7) within
the GGA-PBE functional including SOC. A converged ground
state was obtained using 5,000 k points in the first Brillouin zone
and Kmax × RMT = 8.0, where Kmax is the maximum size of the
reciprocal lattice vectors and RMT denotes the muffin-tin radius.
Wave functions and potentials inside the atomic sphere are ex-
panded in spherical harmonics up to l = 10 and 4, respectively.
For Z2 calculation, we follow the method by Fukui et al. (8), to
directly perform the lattice computation of the Z2 invariants
from first principles.

Results by Using Hybrid Functional from Ref. 5

Band structures of Bi@Br(I)-Si(111)
We also calculated band structures of hexagonal Bi lattice grown
on Si(111)-
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-Br and -I surfaces without and with SOC, as

shown in Fig. S2. They show similar electronic properties and
SOC-induced band-gap opening as those of Bi@Cl-Si(111) (Fig.
2 A and C).
It is interesting to note that the Bi-related energy bands become

more dispersive for Bi@Br-Si(111) and Bi@I-Si(111) surface.
This results from different interaction strength between Bi atoms
mediated by different halogen ions on the surface. Going from
Cl to Br and to I, the ionic radius gradually increases from
1.81 to 1.99 Å and to 2.16 Å, respectively. Consequently, the Bi–
Bi interaction mediated by larger halogen ions is stronger with
larger orbital overlap, leading to larger hopping and more dis-
persive bands. This in turn leads to smaller SOC-induced energy
gap for Bi@Br-Si(111) (0.6 eV) and Bi@I-Si(111) (0.4 eV) (Fig.
S2 C and D). In general, the Bi–Bi interaction can also be tuned
by choosing different semiconductor substrates, which is an in-
teresting topic for future study.

Electronic and Topological Properties of Freestanding
Planar Bi/Au Hexagonal Lattice
Fig. S3 A and B show the calculated band structures and density
of states (DOS) around Fermi level of Bi and Au, respectively.
The planar Bi lattice has Z2 = 0, and the Au lattice has Z2 = 1.
More generally, we can better understand the topological phases
in a 2D hexagonal lattice by a multiorbital tight-binding model.
The effective Hamiltonian with the nearest-neighbor hopping
and intrinsic SOC can be written as:
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where c†il creates an electron of lth orbital (s, px, py, pz, dxy, ...) at
site i. «l (tijll′) denotes the on-site energy (hopping energy) and
λSO is the strength of SOC. As mentioned above, the Bi lattice
can be described by the p-orbital six-band model, as illustrated in
Fig. S3C. Due to the planar symmetry, px and py orbitals hybrid-
ize to be distinguished from the pz orbital, resulting in two
branches of energy bands. The pz branch of π and π* bands is
exactly the same as graphene (9). The (px, py) branch has four
bands: two flat bands (pf, ppf ) bracketing two dispersive bands (pd,
ppd), which form a Dirac point at K point. The SOC opens a gap
in the dispersive bands at K point and mixes the pd and ppd bands
into two sets of pd ± i ppd bands encoding a nontrivial topology.
Again, the two branches of bands are both topologically non-
trivial, but their sum becomes trivial. The planar Au lattice can
be described by the s-orbital two-band model, as illustrated in
Fig. S3D. Without SOC, the two s orbitals hybridize into linearly
dispersive twofold degenerate σ and σ* bands, which touches at
K point (Dirac point); the SOC opens a gap and mixes the σ and
σ* bands into two sets of σ ± iσ* bands encoding a nontrivial
topology.
There are two ways to make the planar hexagonal Bi lattice

topologically nontrivial. The first way is by the well-known band-
inversion approach (10), which in the present case can be
achieved by buckling the lattice into a nonplanar structure (Fig.
S4A), i.e., the single Bi(111) bilayer. Fig. S4B shows the band
structure and DOS of a Bi(111) bilayer, which is confirmed with
nontrivial topology (11). In such a buckled structure, the Bi–Bi
bond angle is around 90°, indicating that three (px, py, and pz)
orbitals are degenerate with each other. Chemical bonding and
crystal field splitting lifts the degeneracy and form one set of
doubly degenerate σ1,2 and σp1;2 bands and another set of non-
degenerate σ3 and σp3 bands, in the order of energy as shown in
Fig. S4C. The SOC opens an energy gap and further lifts the
degeneracy of σ1,2 and σp1;2 bands, as well as causes a band in-
version of energy order between σ1±i2 and σp3 bands around the
Fermi level. Consequently, the overall band topology becomes
nontrivial.
The second approach is to simply remove one branch of orbitals

[either (px, py) or pz] to reduce the trivial six-band lattice into
a nontrivial two- or four-band lattice. To verify this idea, we
artificially saturate the planar hexagonal Bi lattice with H to
remove the pz orbital (Fig. S4D). It is found that the pz orbital of
Bi hybridizes strongly with s orbital of H, shifting away from the
Fermi level, so that the system reduces to a (px, py)-orbital four-
band model, which supports a nontrivial topological phase (Fig.
S4 E and F). This is essentially what happens with the Bi@Cl-
Si(111), where the exposed Si atom in the Cl-Si(111) surface
fulfills the role of H atom to remove the pz orbital of Bi.
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Fig. S1. Band structures for Bi@Cl-Si(111) surface system calculated by using hybrid function of ref. 5. (A) Without and (B) with SOC. Bands compositions are
indicted, with size of circles denoting the contribution from Bi.

Fig. S2. Band structures for Bi@Br (I)-Si(111). (A and B) Band structures for Bi@Br-Si(111) and Bi@I-Si(111) surface structure without SOC, respectively. (C and D)
As in A and B, but with SOC. Bands compositions are indicted as in Fig. S1.
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Fig. S3. Band structure, DOS, and energy diagram of planar Bi and Au hexagonal lattice. (A) Band structure without (black solid curves) and with SOC (red
dotted curves) of a planar hexagonal lattice of Bi, along with the atomic-orbital-projected DOS without SOC. (B) As in A, but for Au. (C and D) The energy
diagrams of the Bi and Au lattices at K point illustrating the effects of orbital hybridization and SOC.

Fig. S4. Band structure, DOS, and energy diagram of buckled and H-saturated Bi hexagonal lattice. (A–C) Structural model, band structure, and atomic-orbital-
projected DOS, and the energy diagram (at Γ point), respectively, of a buckled Bi(111) bilayer. The band inversion is highlighted by a dashed rectangle. (D–F) As
in A–C, but for planar Bi hexagonal lattice with one side saturated by H.
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