(Supporting Information)

Synthetic Polymers Active Against *Clostridium difficile*Vegetative Cell Growth and Spore Outgrowth

Runhui Liu^{1,†}, Jose M. Su árez^{3,†}, Bernard Weisblum², Samuel H. Gellman^{1,*} and Shonna M. McBride^{3,*}

¹Department of Chemistry, and ²Department of Medicine, University of Wisconsin, Madison, WI, USA 53706.

³Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA 30322

[†]Contributed equally to this work

[†]Co-corresponding authors:

[†] S.H.G. address: University of Wisconsin-Madison Dept. of Chemistry, 1101 University Avenue, Madison, WI 53706. E-mail: gellman@chem.wisc.edu. Tel: (608) 262-3303. Fax: (608) 265-4534. [†] S.M.M. address: Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322. E-mail: shonna.mcbride@emory.edu. Tel: (404) 727-6192. Fax: (404) 727-8250.

Materials and Methods

¹H spectra were collected on a Bruker Avance III 400 spectrometer at 400 MHz using D₂O as the solvent. ¹H NMR chemical shifts were referenced to the resonance for residual protonated solvent (δ 4.79 for D₂O). MM-TM polymers were characterized by GPC in at the side-chain NHBoc protected stage using dn/dc of 0.1 ml/g for all polymers as described previously. ^{1,2} The GPC (Shimadzu) was equipped with two Waters columns (Styragel HR 4E, particle size 5 μm) linked in series, a multi-angle light scattering detector (Wyatt miniDAWN, 690 nm, 30 mW), and a refractive index detector (Wyatt Optilab-rEX, 690 nm). THF was used as the mobile phase at a flow rate of 1 mL/min at 40 °C. The fully deprotected MM-TM polymers were characterized by ¹H NMR (see spectra below). All other polymers were reported and characterized previously. ²⁻⁴ All copolymers in this study were prepared in via anionic ring-opening copolymerization of a mixture of two β-lactam monomers. Polymers are named on the β-lactam proportion used for the polymerization reaction. Thus, "50:50 DM:TM" is the copolymer produced from copolymerization of β-lactams DMβ and TMβ in 50:50 (mol:mol) ratio. The actual ratio of two subunits within each polymer can vary from the β-lactam proportion, especially for some of the MM:TM copolymers described below (see Table S1).

β-Lactams

HN HBoc BocNH BocNH CHβ(±) TMβ

nylon-3 polymers

$$(NH Y)_{X} = (NH Y)$$

Figure S1. β -Lactams and nylon-3 polymers used in this study. β -Lactams β NM β , MM β and DM β gave the corresponding cationic subunits within copolymers, whereas, CH β and TM β gave the corresponding hydrophobic subunits.

Figure S2. Initial screening of nylon-3 polymers against *C. difficile* vegetative cells (R20291 strain). Three of the most active co-polymers (50:50 MM:CH, 50:50 DM:CH, and 50:50 DM:TM; shown as the black bars) were selected for further study.

Table S1. Viability of spores recovered from outgrowth inhibition (OIC) assays.

Compound	Concentration	R20291 Mean	630∆Erm Mean	
Compound	(μg/ml)	Spore Viability	Spore Viability	
50:50 DM:TM	200	$0.5\% \ (\pm 0.1\%)$	$1.4\% \ (\pm 0.5\%)$	
	100	$0.4\% \ (\pm 0.2\%)$	$0.7\% \ (\pm 0.2\%)$	
	50	0.4% (±<0.1%)	$0.5\% \ (\pm 0.1\%)$	
	25	$0.3\% \ (\pm 0.1\%)$	$0.7\% \ (\pm 0.3\%)$	
	12.5	0.4% (±<0.1%)	$1.1\%~(\pm 0.7\%)$	
50:50 DM:CH	200	$1.8\%~(\pm 0.8\%)$	4.7% (±1.7%)	
	100	$1.0\% \ (\pm 0.6\%)$	$3.1\% (\pm 0.9\%)$	
	50	$0.4\%~(\pm < 0.1\%)$	$3.5\% (\pm 2.3\%)$	
	25	$0.5\% \ (\pm 0.1\%)$	2.5% (±1.7%)	
	12.5	$0.9\%~(\pm 0.2\%)$	ND	
50:50 MM:CH	200	$0.5\% \ (\pm 0.1\%)$	2.7% (±2.0%)	
	100	$0.6\%~(\pm 0.2\%)$	$1.4\% (\pm 0.5\%)$	
	50	$0.5\% \ (\pm 0.1\%)$	$1.5\% \ (\pm 0.5\%)$	
	25	$0.7\%~(\pm 0.2\%)$	$6.0\% (\pm 5.2\%)$	
	12.5	2.9% (±3.6%)	ND	
LL-37	80	5.8% (±2.9%)	$7.8\% (\pm 3.9\%)$	
	40	$3.6\% (\pm 1.8\%)$	$4.0\% (\pm 4.0\%)$	
	20	$1.2\%~(\pm 0.7\%)$	$5.5\% (\pm 7.4\%)$	
	10	$0.4\%~(\pm 0.7\%)$	ND	
Nisin	360	0.4% (±<0.1%)	NI	
	180	$0.2\% \ (\pm 0.2\%)$	NI	
	90	0.4% (±<0.1%)	NI	
Vancomycin	8	0.9% (±0.2%)	NI	
	4	$1.3\%~(\pm 0.2\%)$	NI	
	2	$3.4\% (\pm 2.4\%)$	NI	
	1	$7.7\% \ (\pm 7.5\%)$	NI	
	0.5	21.1% (±21%)	NI	

NI = Not Inhibitory; ND = Not Determined

Table S2. GPC characterization of nylon-3 copolymers

	expected subunit ratio (cationic:hydrophobic)	expected Mn	GPC characterization ^a			NMR characterization ^b	
polymer			PDI_{GPC}	Mn_{GPC}	$\mathrm{DP}_{\mathrm{GPC}}$	DP _{NMR}	observed subunit ratio (cationic:hydrophobic)
40:60 MM:TM	40:60	3399	1.22	2338	14	12	68 : 32
50:50 MM:TM	50:50	3574	1.16	2825	17	13	76 : 24
60:40 MM:TM	60 : 40	3748	1.15	3274	18	14	83 : 17
70:30 MM:TM	70:30	3922	1.17	3423	18	15	85 : 15
80:20 MM:TM	80:20	4096	1.15	3774	19	16	88 : 12
90:10 MM:TM	90:10	4270	1.13	4370	21	18	92:8
50:50 MM:CH	50:50	3555	1.32	4938	28	24	46 :54
50:50 DM:CH	50:50	3694	1.05	4766	26	26	50 : 50
50:50 DM:TM	50:50	3714	1.13	3205	18	17	60 : 40

^aPDI is the polydispersity index; Mn is the number average molecular weight at the side chain protected stage; DP is the degree of polymerization, i.e., the average number of subunits, calculated from GPC characterization of side chain protected (NHBoc) polymers using THF as the mobile phase. ^bDP and subunit ratio were calculated independently from NMR data using the integration of proton signals. Aromatic protons of *N*-terminal t-BuBz group were used for calibration and subunit ratio calculation. Polymers 50:50 MM:CH, 50:50 DM:CH and 50:50 DM:TM were reported previously;^{3,4} the data are included here for comparison with the MM:TM series polymers.

References

- Lee, M. R., Stahl, S. S., Gellman, S. H. & Masters, K. S. Nylon-3 Copolymers that Generate Cell-Adhesive Surfaces Identified by Library Screening. *J Am Chem Soc* **131**, 16779-16789, (2009).
- Liu, R. H. *et al.* Nylon-3 Polymers with Selective Antifungal Activity. *J Am Chem Soc* **135**, 5270-5273, (2013).
- Liu, R. *et al.* Tuning the Biological Activity Profile of Antibacterial Polymers via Subunit Substitution Pattern. *J Am Chem Soc* **136**, 4410-4418, (2014).
- 4 Liu, R. *et al.* Structure–Activity Relationships among Antifungal Nylon-3 Polymers: Identification of Materials Active against Drug-Resistant Strains of *Candida albicans*. *J Am Chem Soc* **136**, 4333-4342, (2014).