Supporting Information for

Hydrogen Production Catalyzed by Bidirectional, Biomimetic Models of the [FeFe]-Hydrogenase Active Site

James C. Lansing, James M. Camara, Danielle Gray, Thomas B. Rauchfuss*

Contents:

- pS2. Figure S1. ¹H NMR spectrum of FcMe₉
- pS2. Figure S2. CV of FcMe9
- pS3. Figure S3. ³¹P{¹H} NMR spectrum of $[Fe(C_5Me_5)(C_5Me_4CH_2P^{Et_2}H)]^+$
- pS3. Figure S4. ¹H NMR spectrum of $[Fe(C_5Me_5)(C_5Me_4CH_2P^{Et_2}H)]^+$
- pS4. Figure S5. ¹H NMR spectrum of PFc^{#Et₂}
- pS4. Figure S6. ${}^{31}P{}^{1}H$ NMR spectrum of FcP^{#Et2}
- pS5. Figure S7. CV of PFc^{#Et2}
- pS5. Figure S8. CV of $PFc^{#Et_2}$
- pS6. Figure S9. ¹H NMR of PFc*^{Cy2}
- pS6. Figure S10. ${}^{31}P{}^{1}H$ NMR spectrum of PFc*^{Cy2}
- pS7. Figure S11. CV of PFc*^{Cy2}
- pS7. Figure S12. CV of PFc*^{Cy2}
- pS8. Figure S13. ¹H NMR spectrum of PFc*^{Ph₂}
- pS8. Figure S14. ${}^{31}P{}^{1}H$ NMR spectrum of PFc* Ph_2
- pS9. Figure S15. CV of PFc*^{Ph2}
- pS9. Figure S16. CV of PFc*^{Ph2}
- pS10. Figure S17. ¹H NMR spectrum of Fe₂(adt^{Bn})(CO)₃(dppv)(PFc^{#Et₂})
- pS10. Figure S18. ³¹P{¹H} NMR spectrum of $Fe_2(adt^{Bn})(CO)_3(dppv)(PFc^{\#Et_2})$
- pS11. Figure S19. CV of Fe₂(adt^{Bn})(CO)₃(dppv)(PFc^{#Et₂})
- pS11. Figure S20. ¹H NMR spectrum of Fe₂(pdt)(CO)₃(dppv)(PFc*^{Et₂})
- pS12. Figure S21. ³¹P{¹H} NMR spectrum of $Fe_2(pdt)(CO)_3(dppv)(PFc^{*Et_2})$
- pS12. Figure S22. CV of Fe₂(pdt)(CO)₃(dppv)(PFc*^{Et₂})
- pS13. Figure S23. Tautomerization of [H1]⁺ to form [1H]⁺ monitored by IR
- pS14. Figure S24. Kinetic plot of the tautomerization of $[H1]^+$ to form $[1H]^+$
- pS14. Figure S25. IR of 1 with >2 equiv of $[H(OEt_2)_2]BAr_4^F$
- pS15. Figure S26. IR spectrum 2.5 h after catalytic HER with 2
- pS15. Figure S27. IR spectrum from Figure 8 at 2nd time point
- pS16. Figure S28. IR spectrum from Figure 8 at 3rd time point
- pS16. Figure S29. IR spectrum from Figure 8 at 4th time point
- pS17. Figure S30. Protonation and subsequent oxidation of $[1]^+$
- pS18. Figure S31. ³¹P{¹H} NMR spectrum of Fe₂(adt^{Bn})(CO)₃(dppv)(PMe₃) + [H(OEt₂)₂]BAr^F₄.
- pS19. Figure S32. IR spectra for reaction of $1 + [NPh_2H_2]BAr^{F_4}$.

Figure S1. ¹H NMR spectrum of FcMe₉ in C_6D_6 solution.

Figure S2. Cyclic voltammogram of 1.0 mM FcMe₉ in CH₂Cl₂ solution at 25 °C at 0.05 V/s. $E_{1/2} = -490 \text{ mV} (i_{pa}/i_{pc} = 0.88)$. *Conditions:* 0.1 M [Bu₄N]PF₆ supporting electrolyte, Pt working and counter electrodes, Ag wire pseudoreference electrode. FeCp₂ is present as an internal standard.

Figure S3. ³¹P{¹H} NMR spectrum of $[Fe(C_5Me_5)(C_5Me_4CH_2PEt_2H)]^+$ in CD₂Cl₂ solution.

Figure S4. ¹H NMR spectrum of $[Fe(C_5Me_5)(C_5Me_4CH_2PEt_2H)]^+$ in CD₂Cl₂ solution. Region for the PH proton is enhanced.

Figure S7. Cyclic voltammogram of 1.0 mM PFc^{#Et₂} in CH₂Cl₂ at 25 °C at 0.1 V/s. $E_{1/2}$ = -475 mV (i_{pa}/i_{pc} = 1.0). *Conditions:* 0.1 M [Bu₄N]PF₆ supporting electrolyte, Pt working and counter electrodes, Ag wire pseudoreference electrode. Ferrocene (Fc) was added at a later scan as an internal standard.

Figure S8. Cyclic voltammogram of 1.0 mM PFc^{#Et₂} in CH₂Cl₂ at 25 °C at 0.1 V/s. $E_{1/2} = -536$ mV ($i_{pa}/i_{pc} = 0.98$). *Conditions:* 0.025 M [Bu₄N]BAr^F₄ supporting electrolyte, Pt working and counter electrodes, Ag wire pseudoreference electrode. Fc was added at a later scan as an internal standard.

Figure S9. ¹H NMR spectrum of PFc^{*Cy_2} in CD_2Cl_2 solution.

Figure S10. ³¹P{¹H} NMR spectrum of PFc*^{Cy_2} in CD₂Cl₂ solution.

Figure S11. Cyclic voltammogram of 1.0 mM PFc*^{Cy₂} in CH₂Cl₂ at 25 °C at 0.1 V/s in [Bu₄N]PF₆. $E_{1/2}$ = -539 mV (i_{pa}/i_{pc} = 0.96). *Conditions:* see Figure S7.

Figure S12. Cyclic voltammogram of 1.0 mM PFc*^{Cy₂} in CH₂Cl₂ solution at 25 °C at 0.1 V/s in [Bu₄N]BAr^F₄. $E_{1/2}$ = -602 mV ($\underline{i}_{pa}/i_{pc}$ = 0.96). *Conditions:* see Figure S8.

Figure S13. ¹H NMR spectrum of PFc^{*Ph_2} in CD_2Cl_2 solution.

Figure S14. ³¹P{¹H} NMR spectrum of PFc^{*Ph_2} in CD_2Cl_2 solution.

Figure S15. Cyclic voltammogram of 1.0 mM PFc*^{Ph₂} in CH₂Cl₂ at 25 °C at 0.1 V/s in [Bu₄N]PF₆. $E_{1/2}$ = -501 mV (i_{pa}/i_{pc} = 0.98). *Conditions:* see Figure S7.

Figure S16. Cyclic voltammogram of 1.0 mM PFc*^{Ph₂} in CH₂Cl₂ solution at 25 °C at 0.1 V/s in [Bu₄N]BAr^F₄. $E_{1/2} = -572$ mV ($i_{pa}/i_{pc} = 0.95$). *Conditions:* see Figure S8.

Figure S17. ¹H NMR spectrum of $Fe_2(adt^{Bn})(CO)_3(dppv)(PFc^{\#Et_2})$ in CD_2Cl_2 solution.

Figure S18. ³¹P{¹H} NMR spectrum of $Fe_2(adt^{Bn})(CO)_3(dppv)(PFc^{#Et_2})$ in CD_2Cl_2 solution.

0.86). Conditions: see Figure S8.

Figure S20. ¹H NMR spectrum of $Fe_2(pdt)(CO)_3(dppv)(PFc^{*Et_2})$ in CD_2Cl_2 solution.

Figure S22. Cyclic voltammogram of 1.0 mM of Fe₂(pdt)(CO)₃(dppv)(PFc*^{Et₂}) in CH₂Cl₂ solution at 25 °C at 0.1 V/s in [Bu₄N]BAr^F₄. $E_{1/2}$ = -675 mV (i_{pa}/i_{pc} = 0.73), -382 mV (i_{pa}/i_{pc} = 0.97). *Conditions:* see Figure S8.

Figure S23. Tautomerization of N-protonated $[1H]^+$ to the hydride $[H1]^+$ monitored by solution IR spectroscopy (CH₂Cl₂, 28 °C).

Figure S24. Kinetic plot of the tautomerization of N-protonated $[1H]^+$ to the hydride $[\mu$ -H1]⁺, as monitored by ¹H NMR spectroscopy and fit to a first order exponential. *Inset:* linearized first plot.

Figure S25. IR spectra (CH₂Cl₂ solution) of a solution prepared by treating $[1]^0$ at -15 °C with >2 equiv of [H(OEt₂)₂]BAr^F₄.

Figure S27. IR spectrum of reaction solution at the 2nd time point in Figure 8. Predominant species in solution identified as the ammonium-ferrocenium dication $[1H]^{2+}$.

 $[\mu$ -H1]⁺: 2018, shoulder near 1970 cm⁻¹

Figure S29. IR spectrum of reaction solution at the 4th time point in Figure 8. *Assignment:* $[\mu$ -H1]⁺ :2018, 1970 cm⁻¹.

Figure S30. IR spectra (CH₂Cl₂ solutions) for Fe₂(adt^{Bn})(CO)₃(dppv)(PFc*^{Et₂}) ([1]⁰) (top), the resulting solution after 1.0 equiv of FcBAr^F₄ (middle top), further reaction of [1]⁺ with an equiv of [H(OEt₂)₂]BAr^F₄ (middle bottom) and the result of addition of 1 equiv of acetylferrocenium to that solution.

Reference: $[1]^{0}$: 1955, 1900 cm⁻¹ $[1]^{+}$: 2013, 1963 cm⁻¹ $[1H]^{2+}$: 1960, 1916 cm⁻¹ $[1H]^{3+}$: 2062, 1991 cm⁻¹

Figure S31. ³¹P{¹H} NMR spectra of various stages in the reaction of

 $Fe_2(adt^{Bn})(CO)_3(dppv)(PMe_3)$ and 5 equiv of $[H(OEt_2)_2]BAr^{F_4}$: 50 min (bottom, red) and 260 min (middle, green) and 18.25 h (top, blue). The solution was maintained at 0 °C for the first 3 h before being allowed to warm to room temperature overnight.

Assignments:

Fe₂(adt^{Bn})(CO)₃(dppv)(PMe₃): δ 92.6, 19.7 [(μ -H)Fe₂(adt^{Bn})(CO)₃(dppv)(PMe₃)]⁺: δ 93 and 24.¹

Figure S32. IR spectrum resulting from treating $[1]^0$ with 5 equiv of Fc* and 10 equiv of [NPh₂H₂]BAr^F₄. By gas chomatographic analysis, ~ 0.30 equiv H₂ was produced. IR was recorded 4.25 hours after acid was added to $[1]^0$.

(1) Olsen, M. T.; Barton, B. E.; Rauchfuss, T. B. Inorg. Chem. 2009, 48, 7507.