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1 Mathematical description and analysis of our
model of advantageous drivers and deleterious
passengers.

In this section, we present an exact mathematical formulation of our model,
briefly explore a ‘two-hit’ model where the first driver mutation confers no fitness
advantage, describe the broad ranges of parameters that we chose to explore,
and offer an analytical description of our model. In our analytical analysis, we
estimate three properties of the model that were not completely addressed in
the main text: (i) the effects of stochasticity on population dynamics, (ii) the
rate of accumulation of deleterious passengers, and (iii) the interference of driver
accumulation by deleterious passengers.

1.1 Detailed formulation of our model
As mentioned in the main text, we model cancer progression via a first-order
Gillespie Algorithm. Each cell within the cancer is represented by a separate
“chemical species” or reactant in the Gillespie algorithm. Cells are defined by
their state: {nd, np}1. nd denotes the number of drivers in the cell, while np
denotes the number of passengers. Cells can then divide, with and without
mutations, and die according to the following half-reactions:

{nd, np}
B(nd,np)−−−−−−→ {nd + δnd, np + δnp}+ {nd + δnd, np + δnp}

{nd, np}
D(N)−−−→ ∅

The functions B(nd, np) and D(N) represent the birth and death rates of cells,
while N represents the total number of cells in the precancerous population. The
birth rate assumes multiplicative fitness effects of mutations and no epistasis
between mutations:

B(nd, np) = (1 + sd)nd
(1 + sp)np

≈ (1 + sd)nd(1− sp)np [S1]

We also define a generation in terms of the mean division time:

1 generation = 1
1/N

∑N
i=0B(ndi , npi)

1Depending upon the number of cells and genomes in the population, it may be more
efficient to model cancer as a set of genotypes that gain and lose cells (rather than a set
of cells that gain mutations, as we have done). The efficiency of this choice depends upon
whether the number of genomes in the population outnumber the number of cells, or vice
versa. However, the efficiency of a Gillespie algorithm depends very weakly (logarithmically)
on the number of chemical species [1]. More importantly, however, the other steps in the
simulation (creating mutations, and calculating birth/death rates) are faster for individual
cells than for genomes. Thus, using cells as the basic element of simulations, rather than
genomes, is faster even under circumstances where the number of cells greatly outnumber the
number of genomes. This design choice also allows more plasticity in model design and allows
tracking of coalescent trees.
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The death rate is defined such that, in the absence of mutations, the expec-
tation value of the population size will obey a Gompertz curve at large sizes
and a logistic curve at small sizes:

D(N) = Log[1 + (e− 1)N
N0 ]

We used a simpler form of this death function for populations grown to less
than 106 cells:

D(N) = N

N0 [S2]

This second functional form was used in much of our analysis because (i) it did
not significantly alter dynamics at small sizes [2], (ii) it has been used previ-
ously [3], (iii) it is easier to calculate and treat analytically, and (iv) it seemed
equally justified to us for small sizes because very little is known about the
true carrying capacity of a tumor microenvironment in its early stages. Lastly,
the number of new drivers δnd and passengers δnp acquired during cell division
are Poisson-distributed random variables with mean µd and µp, respectively,
i.e. P (δnd = k|µd) = (µd)ke−µd

k! and P (δnp = k|µp) = (µp)ke−µp
k! . In this

model, mutations arise at a rate proportional to generation time, rather than
absolute time. Our choice, therefore, reflects our belief that most mutational
processes occur in a cell division-dependent manner (e.g. mutations in cell-cycle
checkpoints like p53), rather than independent of cell division. Certainly, some
mutational processes occur independent of cell division. However, because the
generation time in precancerous cells accelerates only mildly over the course of
progression, introducing mutations at an absolute rate would not significantly
alter dynamics.

Many of the particular design choices and properties of our model were
altered and then investigated in a previous study [2]. Specifically, we con-
sidered (1) the effects of mutations with additive effects [i.e. B(nd, np) =
1 + ndsd − npsp], (2) the effects of mutations that alter the death rate [i.e.
D = D(N,nd, np)], (3) the effects of driver and passenger mutations selected
from various distributions (exponential, normal, and gamma) of fitness effect
sizes, and (4) variations on the relation between population size and death rate.
For the parameters that we believe are most relevant to cancer (Table S1),
these permutations did not qualitatively alter our simulations. However, in the
analytical analysis presented below we discuss the boundaries where assump-
tions of our model break-down; this was, in part, why we analyzed the model
in such detail.

Many of the considerations discussed above are germaine to all models of
tumor progression, not simply the in silico model presented here. Consider that
recent data on growth rates of human tumors differs from data obtain from
mouse models: human tumors grow according to an exponential curve [4], while
mouse tumors grow according to a Gompertz curve [5]. Careful mathematical
consideration of the differences between a model of progression where growth is
exponential, and one where growth is Gompertzian, should allow us to under-
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stand when it is necessary to refine the design of simulations and experiments
or change our conclusions.

The mutation rate not only varies considerably between tumors [6], but also
varies as a tumor evolves. We believe that genomic instability happens early
during progression, as this has been shown experimentally in some tumors [7]
and suggested to be the first event during progression by virtue of theoretical
considerations [8]. However this presumably differs from tumor to tumor. Thus,
by developing a theoretical understanding of the process, we hope to gain some
intuitive understanding of how variation in mutation rate over time might alter
dynamics. For example, we show later that for tumors far below the critical
mutation rate µ∗, variation in the mutation rate increases or decreases the rate
of accumulation of drivers and passengers equally. However, near or above µ∗,
variation in the mutation rate has a profound impact on driver’s probability of
fixation and effect size.

Before describing the entire dynamics of our model, it is useful to consider
the difference between our simulations initiated at their stationary size (N0

cells) and simulations initiated at 1 cell. In the absence of mutations, an initial
population of one cell will grow logistically until it reaches the stationary size.
Hence, it takes approximately Log2[N0] ∼ Log2[103] ∼ 10 generations for the
initial cell to approach stationary size. This is far shorter than the average time
required for cancer progression (∼ 10, 000 generations) and the time required
for a new driver to accumulate (∼ 1/(µdN0sd) ∼ 1, 000 generations). Thus, our
choice of initiating a tumor at one cell versus N0 does not significantly alter the
conclusions of our model.

This comparison of timescales also suggests that cancers are almost always
near their stationary size:

B(nd, np) ≈ D(N)
We previously tested this conclusion in simulations and found that it is a excel-
lent approximation of tumor size [2]. If we assume B(nd, np) ≈ B(nd, np), then
a relationship between the number of drivers and passengers in a tumor and its
size is obtainable:

B(nd, np) ≈ D(N)
(1 + sd)nd
(1 + sp)np

≈ Log[1 + N

(e− 1)N0 ]

ndLog(1 + sd)− npLog(1 + sp) ≈ Log[Log[ N
N0 ]]

Hence, if sd, sp � 1, then:

ndsd − npsp ≈ Log[Log[ NN0 ]]
≈ Log[D(N)] [S3]

This final equation suggests that there exist a linear relationship between drivers
and passengers among tumors with similar sd and sp, which we assume is the
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case for tumors of the same tissue of origin. The relationship should be relatively
robust to tumor size, but sensitive to the fitness effects of drivers and passengers.
Moreover, changes in the functional form of D(N) will alter the y-intercept of
this linear relationship, but not the slope of the relationship. Hence, we can
draw conclusions about the relative strength of drivers versus passengers (sd/sp)
without knowing the exact constraints on population size. We tested and verified
this prediction of a linear relationship between drivers and passengers in the
main text.

1.2 Parameter range investigated
Our computational model has 5 independent parameters: a mutation rate µ,
a mutation’s relative likelihood of being a driver versus a passenger Td/Tp,
the fitness benefit of a driver sd, the fitness disadvantage of a passenger sp,
and an initial stationary size N0. These parameters vary considerably between
tumor types (and the mutation rate even varies within tumor types [6]), so we
explored a wide range of values centered around literature best-estimates (Table
S1). More importantly, our analytical analysis reveals that we can describe our
system with two dimensionless parameters, which we then estimated from age-
incidence and genomics data (Fig. 2).

The most critical constraint of our parameters exploration is that Td � Tp.
Without this property a barrier to adaptation is not observed and infinite mu-
tation rates become optimal. This constraint on target sizes for simulations is
justified for a number of reasons. A priori, it should be expected that deleterious
mutations outnumber advantageous mutations in natural populations simply be-
cause natural selection optimizes genomes to their environment—implying that
most changes will be neutral or damaging. Indeed, most protein coding muta-
tions and alterations were deleterious or neutral when investigated empirically
in fly [9], yeast [10], and bacterial genomes [11]. We consider only moderately
deleterious loci here (sp ≈ 10−4 − 10−1), which nevertheless account for most
nonsynonymous mutations [12,13]. Deleterious mutations outside of this range
either do not fixate or negligibly alter progression [2].

There is also considerable evidence that Tp � Td in cancer (like natural
populations). As much as 10% of the human genome is well-conserved and likely
deleterious when mutated [14,15]. Conversely, there are only approximately 100-
200 potential driver genes [16,17]. If driver loci include only a few specific sites
per gene ∼10, then collectively drivers will constitute less than one one-millionth
of the genome. Also, accumulated passengers greatly outnumber accumulated
drivers (Table S2). This implies that the target size of passengers greatly
outnumbers the target size of drivers, as selection can only increase the frequency
of advantageous mutations relative to deleterious mutations.

For most of our parameter range sd > sp, however we do explore exceptions
to this rule and our analytical model continues to explain dynamics well in these
cases. The selection coefficients of drivers sd and passengers sp were estimated
from genomics data in the main text and found to be comfortably within the
range we explored. Nevertheless, there was good evidence for the range of fitness
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benefits for drivers before we began our study. A previous study found that an
sd of 0.1 is necessary to obtain waiting times to cancer consistent with age-
incidence rates [18]. In the main text we discuss evidence from mice models
that support this approximate value of sd.

Two previous investigations of cancer progression have considered deleterious
passengers and found that they have a minimal impact on progression [19, 20].
The first paper assumes that passengers are effectively lethal to cancer cells
(i.e. sp → ∞). They conclude that deleterious passengers are unimportant
because they are quickly weeded out of the population. This is consistent with
our results (see [2], or Fig. S4), however we believe that our best-estimate of
sp ≈ 10−3 is more reasonable. Our justification for this is discussed above, but
also supported by two analyses that we preformed in a previous study [2]. In this
study, we observe very little negative selection in passenger genes (see Figure
S6), which indicates that mutations in these genes cannot be lethal as they
would never accumulate. We also found that mutations continue to accumulate
even in regions classified as ‘deleterious’ within housekeeping genes (see Figure
4 of [2]), so even these very harmful mutations continue to fixate. To us, this
is clear evidence that sp cannot be large enough to prevent the fixation and
accumulation of most deleterious passengers.

In a second study that concludes that deleterious passengers have a min-
imal impact on cancer progression [20], the authors assume that there exist
only ∼ 100 housekeeping genes in cancer that are deleterious when mutated.
Again, we observe similar behavior in our simulations: when Tp ≈ Td, passen-
gers do not appreciably alter progression. However, our best-estimate of the
number of relevant deleterious genes is 50× larger than their estimate (Table
S1), while the paper discussed in the preceding paragraph argues that Tp is
100× greater than this estimate [19]. There are two reasons for this discrepancy
in parameter choice. First, [20] considers only deleterious housekeeping genes,
while we believe many other genes and non-coding sequences (e.g. regulatory
DNA sequences or microRNAs) could potentially be deleterious to cancer cells.
Second, we find that the number of reported housekeeping genes is much larger
than 100 (3,804 genes are classified as ’housekeeping’ in [21], which also reviews
other similar estimates). We believe most genes could be deleterious when mu-
tated because (i) it has been proposed that passengers might invoke an immune
reaction to tumor cells [22], and because (ii) passengers can cause cytotoxicity
via protein disbalance and aggregation [23]. This later mode of damage should
be applicable to nearly all expressed genes within the tumor, which constitute
more than half of the 26,588 identified genes in the human genome [21].

Lastly, [20] remarks that passenger’s effect on dynamics weakens as sp in-
creases beyond 0.01. Again, this is consistent with our analyses, given the au-
thor’s small choice of Tp, but not consistent with results using our best-estimate
of Tp. In our theoretical work below, we show that the optimum sp for slowing
progression s∗p is approximately proportional to the mutation rate of passengers
(s∗p ∼ µp). Hence, for the authors chosen target size of passengers, their finding
is correct; however, given our estimate of the number of deleterious passenger
genes, increases of sp beyond 0.01 continue to increase the drag of passengers
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on cancer progression.
Because the relevance of deleterious passengers depends upon evolutionary

parameters, their effects may be neglected in certain circumstances. In Figure
S4, we identify the evolutionary regimes where passengers dominate, where
they compete with drivers, and where they can be probably be neglected. We
believe and present evidence that passengers are relevant for progression in most
carcinomas, but we also observe that lymphomas fixate very few passengers [2].
Hence, it is important to consider the quantity of passengers accumulating in
a tumor type before concluding that deleterious passenger can or cannot be
neglected in the tumor type. All these concerns underscore the importance
of further investigating the evolutionary parameters of cancer progression for
various tumor types.

1.3 A two-hit model of cancer progression
It has been proposed that driver mutations may only be beneficial in a certain
genetic context [24]. Oncogenes like c-Myc and k-Ras have been shown to induce
senescence in some cancer cell lines unless they are accompanied by mutations
in p53 or other associated proteins [25]. Likewise, many tumor suppressors
mutations are recessive and require a second ’Loss of Heterozygosity’ (LOH)
event to impart their phenotypic effects. These types of mutations have been
described as operating via a ‘two-hit’ process: the first driver event confers no
change to cell fitness, while the second genetic event confers the benefit of both
mutations.

Two-hit models have been studied previously in cancer evolution ( [3, 8, 26]
to name a few), but never in the presence of frequent moderately-deleterious
passenger mutations. For this reason, we considered our originally defined model
above, modified such that the first driver mutation confers no benefit to the cell,
while the second driver mutation confers the benefit of both mutations, and all
remaining mutations confer a benefit of sd. Hence,

w(nd, np) =
{

(1 + sp)np , if nd < 2
(1 + sd)nd(1 + sp)np , otherwise

We kept all other properties of the model the same and investigated the
result of this permutation in Figure S7. We observe three changes:

1. While the critical barrier to progression remains, its location N∗ increases;

2. Initial trajectories slowly decay in a long period of stasis that allows ad-
ditional passengers to accrue and delays progression;

3. The transition from the non-adaptive to adaptive regime is slower, as the
period of stasis is highly variable.

We can understand these observations by first considering the mean time of
stasis (time until the second driver mutation fixates) for the population. The
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probability that a second driver fixates in the population at time t is simply the
probability that a cell already harbors the first driver mutation (µdt), times the
total number of cells in the population (N0e

−vpt), times the probability that the
second driver arises and sweeps through the population (µd 2sd

1+2sd ). Hence, the
probability that stasis will end at generation t is Pexit(t) = N0µ

2
d

2sd
1+2sd te

−vpt.
Thus, the probability that stasis last a certain number of generations Pstasis(t)
is the probability of not exiting in the prior generations and also exiting at
generation t:

dPstasis(t) = −Pexit(t)dtPstasis(t)
Pstasis(t) = e

−
∫ t

0
Pexit(t′)dt′ [S4]

From simulations (Fig. S7), it is clear that most simulations that exit this
early stasis period go onto progress to cancer. Hence to a first approximation,
the new N∗,two−hit is the value of N0, where Pstasis = 50%, thus:

Log(2) =
∫∞

0 N∗,two−hitµ2
d

2sd
1+2sd

te−vptdt
N∗,two−hit = Log(2)(1+sd)v2

p
2µ2
d
sd

This predicts N∗,two−hit to be 883 for the trajectories plotted in Figure S7,
which is within a factor of two from the 50% success point. It is somewhat below
the observed tradition point presumably because trajectories that exit this stasis
period far below N∗ never progress, and because segregating passengers may
interfere with the first beneficial driver. Collectively, these results suggest that
our mathematical framework of our model is generally applicable to cancers
where the first driver isn’t beneficial, but that there are also some dramatic
differences that warrant further investigation.

While two-hit models of progression are most likely applicable in many tu-
mors, we do not believe these models are more universal than our original for-
mulation. Consider that in experiments directly measuring the change in cell
fitness upon activating mutations in k-Ras, an immediate increase in prolifera-
tion was observed [27]. Also, many tumor suppressors are haploinsufficient (e.g.
Dicer [28], p27 [29], CDC4 [30], p18 [31]). These results suggest that driver mu-
tations are often advantageous, after only one mutation, if perhaps at a muted
level.

2 An analytical model of dynamics
In the main text, we demonstrate that dynamics are described by two coun-
teracting forces: an upward velocity vd resulting from accumulating beneficial
drivers, and a downward velocity vp resulting from accumulating deleterious
passengers. The upward velocity vd was further subdivided into a product of
the rate at which new drivers fixate in the population f times their effect on
population size once fixated ∆N (Fig. 1B)2. The velocities vd and vp are bal-

2While we assume that drivers arise at random time intervals, this assumption is not
always true. Because unfixed passengers can interfere with the fixation of drivers, a driver is
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anced at a critical population size N∗, at which the population is approximately
equally likely to go extinct or progress to cancer.

While we were able to describe the average behavior of our population in the
main text, our model (like cancer) is inherently stochastic. The complete dy-
namics of our model are best described by a differential equation with stochastic
jumps:

dN = vpdt+ ∆Ndnd
nd

f−→ nd + 1
[S5]

In this equation, the change in population size dN is the product of a determin-
istic component −vp, along with a stochastic component describing the random
arrival of new drivers (∆Ndnd). Below, we use this equation to estimate the
probability of cancer for any population size Pcancer(x) and the mean waiting
time to cancer tcancer(x), where x = N/N0 is a dimensionless population size dis-
cussed in the main text and below. Lastly, we noticed that simulations differed
from the formalism we presented in the main text when we varied the muta-
tion rate µ and explored a broader range of passenger deleteriousness sp (Fig.
2, S4). These discrepancies could be resolved by considering two phenomena
neglected by our first derivation: selection against passengers, and passenger’s
effect on both the fixation probability and clone fitness of drivers. Fortuitously,
accounting for these phenomena did not alter Eq. 5, nor the overall framework
of our analytical model. Instead, they only affect the rates vp, f , and jump size
∆N in our model. Thus, with the refined formalism, we described dynamics
across a very broad range of parameters (Fig. 2, S4). More importantly, we
observe drastic reductions in the probability of adaptation at high mutation
rates and when passengers are moderately deleterious. These findings suggest
novel strategies to cancer therapy.

From Eq. 5, it is evident that population size is the state variable of our
system and, as such, is all that is needed to describe future dynamics (this is
also observed in Fig. S5). By converting population size into a dimensionless
parameter x = N/N∗ (and x0 = N0/N∗), the probability of cancer collapse
onto a simple curve Pcancer(x) (Fig. 1)—further underscoring the importance
of the critical population size. Hence, we will use this dimensionless quantity x
heavily throughout the remainder of our analysis.

2.1 Estimating the probability of cancer
Using Eq. 5 we can describe how the probability of extinction changes in an
infinitesimal time due to either passenger accumulation or a rare driver jump:

Pcancer(x) = f(x)dtPcancer[x+ ∆N(x)] + [1− f(x)dt]Pcancer[x− vp(x)dt]

In this equation, we see that is the probability of cancer at x is the probability
of a jump times the probability of cancer after the jump (f(x)dtPcancer[x +

more likely to fixate immediately following a previous driver fixation event [32]. Ignoring this
caveat does not significantly alter dynamics in the parameter space explored here.

10



∆N(x)]) plus the probability of decline times the probability of cancer after
the decline ([1 − f(x)dt]Pcancer[x − vp(x)dt]). Note that f , ∆N , and vp are
all functions of x in the equation above. Defining these functions in such a
general form makes solving the stochastic differential equation impossible. So
we note that each function is approximately linear in x. Thus, we can replace
each function with a constant times x: f(x) → fx, ∆N(x) → ∆Nx, and
vp(x) → vpx. The probability of cancer after a decline can be expanded via a
Taylor series: Pcancer[x− vpxdt] ≈ Pcancer(x)− vpxdtP ′cancer(x). Along with the
linear approximations for f and θ, this reduces the above equation to:

vp
f
P ′cancer(x) = Pcancer(θx)− Pcancer(x) [S6]

Here, θ = 1+∆N ≈ 1+sd denotes the logarithmic change in population size
after a driver jump. Next we notice from simulations that Pcancer(x) changers
most significantly when x ≈ 1. Hence, we can logarithmically-transform x and
solve this new variable y = log(x) via a Maclaurin Series:

vp
f

dPcancer(y)
dy

= ey(P (y + Log(θ))− P (y))

≈ ey(Log(θ)dPcancer(y)
dy

+ 1
2Log2(θ)d

2Pcancer(y)
dy2 + ...)

Now, by reverting from y back to x, we obtain:

vp
f
P ′cancer(x) =

Log(θ)xP ′cancer(x) + 1
2Log2(θ)x2P ′′cancer(x) + 1

2Log2(θ)xP ′cancer(x) [S7]

By eliminating the last term in this solution, a reasonable approximation be-
cause Log2(θ) � 1, the differential equation is now solvable. Its boundary
conditions (essentially the definitions of cancer and extinction) are:

Pcancer(x = 0) = 0
Pcancer(x =∞) = 1

The probability of cancer after infinite time (demonstrable by substitution into
Eq. 7):

Pcancer = 1− γ( 2
Log(θ)

, 2
Log(θ)x

) [S8]

Here, γ(s, x) = 1/Γ(s)
∫ x

0 e
−tts−1dt : Γ(s) =

∫∞
0 xs−1e−x dx is the normalized

incomplete gamma function. This solution is parameterized by two dimension-
less quantities: θ and x, which represent the jump size in population of driver
sweeps and our effective population size respectively.
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2.2 Estimating the mean time to progression
We can also use Eq. 5 to solve for the waiting time to cancer. This can be
accomplished in two ways: (1) we can simulate random driver jumps and de-
terministic passenger decline directly, and (2) we can approximate the mean
waiting time to cancer using a Taylor expansion similar to the strategy we em-
ployed to solve for the probability of cancer. These two approaches agree with
each other (thus, illustrating their accuracy), and offer key insights into the
evolutionary parameters that affect age-incidence curves (Fig. 2, S1).

Eq. 5 can be simulated using a “hybrid” Gillespie algorithm: a meta-
simulation of driver- and passenger-accumulation events that we, originally,
observed arising from our atomistic simulations of birth, death, and muta-
tional events. The advantage of this technique is that it allows us to quickly
simulate billions of tumors, which would be computationally impossible via
full-detail simulations. Because we are confident that we are accurately esti-
mating the rate of driver and passenger accumulation events (Fig. S4), this
simplification should retain accuracy. To simulate Eq. 5 directly, we must
consider that the instantaneous probability of a driver jump f [x(t)] is a func-
tion of a constantly declining population size due to passenger accumulation:
x(t) = xnd(1 + sp)vp/spt ≈ xnde

−vpt. Here, xnd is the population size after the
last driver jump. Thus, the waiting time between drivers ∆t = tnd+1 − tnd is:∫∆t

0 fN(t′)dt′ = ζ

f
∫∆t

0 Nnde
−vpt′dt′ = ζ

∆t = − 1
vp

Log(1− vpζ
fNnd

)
[S9]

ζ is an exponentially-distributed random number with mean 1. Using our
precise calculations of f , vp and ∆N below, we can now simulate Eq. 5 directly.

We can also solve Eq. 5 for tcancer, using the exact same approximations as
we did to estimate Pcancer(x). To do this, we begin with a Master Equation for
the probability of acquiring a cancer after waiting time t when currently at size
x:

Pcancer(x, t) = f(x)δt Pcancer(θx, t+ δt) + [1− f(x)δt]Pcancer[x− vp(x)δt, t+ δt]

The mean waiting time to cancer is then:

tcancer(x) =
∫ ∞

0
tPcancer(x, t)dt

Before substituting the Master Equation into this definition, we must first
utilize a first-order Taylor series expansion about θ and δt:

Pcancer(θx, t− δt) ≈ Pcancer(x, t) + ∂Pcancer(x, t)
∂x

(θ − 1) + ∂Pcancer(x, t)
∂t

δt

This leads to the solution:
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tcancer(x) =
∫ ∞

0
Pcancer(x, t)tdt

+ δt

∫ ∞
0

∂Pcancer(x, t)
∂t

tdt

+ [fδt(θ − 1) +
(
1− f

)(
vpδt

)
]
∫ ∞

0

∂Pcancer(x, t)
∂x

tdt

The first integral in this solution is simply the definition of our mean waiting
time (tcancer(x)). The second integral can be integrated by parts by noting that
limt→∞ tPcancer(x, t) = 0 (otherwise, tcancer(x) would be undefined). Lastly, the
third integral reduces to t′cancer(x). Thus, we eventually find:

f(x)[ρc(θx)− ρc(x)]− vp(x)ρ′c(x) + Pcancer(x) = 0
Here, ρc(x) = Pcancer(x)tcancer(x). This equation has a nearly identical form

to Eq. 6. So we used a similar Second-Order Maclaurin series expansion of
Log(x) to approximate its solution:

tcancer(x) = 2
fLog2(θ)

[ ∫ ∞
x

dy

y3
Pcancer(y)[1− Pcancer(y)]

P ′cancer(y)

+ 1− Pcancer(x)
Pcancer(x)

∫ x

0

dy

y3
P 2

cancer(y)
P ′cancer(y)

]
[S10]

These integrals can be numerically computed using Simpson’s Method and
yield a solution that is in good agreement with the hybrid simulations described
in the preceding paragraph (Fig. S1).

Our solution for the waiting time to cancer is most illustrative when x� 1—
the regime that we expect to contain most tumors. In this regime, the mean time
of cancer progression increases as −Log(x)/vp, which implies two interesting
properties of tcancer. First, x has a very weak, sub-linear, effect on the waiting
time and does not significantly alter the shape of incidence curves (Fig. S1).
Second, the waiting time to cancer is dictated by vp (the accumulation rate of
passengers), thus offering yet another reason to continue investigating the rate
of deleterious passenger accumulation.

The mean time to cancer tcancer(x) is a quantity that is conditioned on a
population actually progressing to cancer. Hence, it depends heavily on the
probability of adaptation Pcancer(x). Because Pcancer(x) has an inflection point
at x = 1, tcancer(x) behaves very differently when x > 1, than when x < 1.
When x > 1, tcancer ≈

∫ 1
<dN/dt>dN (i.e. the waiting time to cancer is what

would be expected from our mean-velocity formulation), as nearly all cancers
succeed. However, when x < 1, tcancer(x) defies mean behavior—the average
cancer goes extinct. Only the rare, exceptional populations that progress to
cancer are weighted in the mean of tcancer(x); these exceptional populations
grow much faster than the average population. Hence, the increase in waiting
time to cancer grows sub-linearly with x, when x < 1.
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2.3 Accumulation of deleterious passengers
Passenger mutations accumulate and drag populations down with a rate vp.
This quantity is a product of passenger’s arrival rate µpN , their fixation proba-
bility πp, and their effect on population size once fixated Nsp (i.e. vp ≈ µpspN).
In the main text, we assume that the fixation probability is approximately neu-
tral (πp ≈ 1/N); however, when selection is stronger that genetic drift, the
fixation probability becomes less than the neutral rate. A number of studies
have focused on the fixation probability of deleterious mutations in a popula-
tion, termed Muller’s Ratchet [33–36]. In general, estimates of Muller’s Ratchet
(and consequentially πp) begin by considering the distribution of deleterious
alleles in a population of infinite size in mutation-selection balance—where al-
lele frequencies are not changing. At equilibrium, such a population exhibits
a Poisson distribution in the number of segregating passengers δp within cells
Nδp, defined by a characteristic parameter λp = µp/sp (Fig. 3C):

Nδp = N
e−λpλδpp
δp! [S11]

If we then consider a population of finite size, we find that the allele frequen-
cies fluctuate due to genetic drift. If fluctuations in the fittest class (Nδp=0 =
Ne−λp) are large enough to cause this fittest class to go extinct, then it is irre-
vocably lost from the population. This irrevocable loss is considered a ‘click’ of
Muller’s Ratchet. The new fittest class—individuals harboring one segregating
passenger prior to the ‘click’—then relaxes to a new equilibrium that fluctuates,
and the process repeats. Estimating the time required for a new fittest class
to relax to equilibrium size immediately following a ‘click’ is non-trivial and
dependent upon the parameters of the system: N , sp, and µp, which can vary
by orders of magnitude depending upon the evolutionary system in question;
hence there are many estimates of the exact rate of Muller’s Ratchet.

We present and utilize 3 estimates of the rate of Muller’s Ratchet:

1. A solution that works well for most values of sp, µp, and N considered here
(Fig. 2, magenta lines) and simply ignores the time to equilibration
after ‘clicks’;

2. A traveling-wave solution accurate for large values of λp [35] that allows
the distribution of segregating passengers to be far from equilibrium, but
presumes that that the size of neighboring mutational classes are uncor-
related; and

3. A solution accurate for small values of λp [36] that considers correlations
between neighboring fitness classes, but requires that the population be
in quasi-equilibrium (i.e. near mutation-selection balance).

Estimates (2) and (3) accurately describe Muller’s Ratchet across complimen-
tary regions of our phase space. By combining these later two estimates with
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estimates of the number of hitchhiking passengers and their effects on the proba-
bility of driver fixation events, we developed a precise description of our model’s
dynamics (Fig. 3, S4; black lines).

If we simply ignore the time required for a population to equilibrate into
mutation-selection balance, then we can estimate the rate of Muller’s Ratchet
with a closed form solution that is applicable to all values of sp, µp, and N
investigated here. We assume that the probability of a ‘click’ is approximately
the probability of a new passenger fixating within the fittest class: Nδp=0 =
Ne−λp . In other words, to a first-approximation, deleterious passengers simply
reduce the effective population size of our system, such that Ne ∼ Ne−λp . The
probability of a lone deleterious allele fixating within this fittest class is describe
by a Moran Process [37]. Hence,

π(1)
p = sp

(1 + sp)Ne − 1 [S12]

This refined fixation probability π
(1)
p is then used to correct the downward

velocity due to passengers, using the same formula for vp derived in the main
text:

v(i)
p = µpspNπ

(i)
p [S13]

This equation links vp to the passenger fixation probabilities calculated
above, and the other two fixation probabilities calculated below.

The solution for Muller’s Ratchet as a traveling wave, which we apply when
λp < 1, was obtained from [35]:

Log( Nsp√
λp

)

λp
≈

1− π
(2)
p

2 [Log2( e

π
(2)
p

) + 1]− 1
λp

Log[ (π(2)
p )3/2√

1− pi(2)
p

Log( e
λp

)

1− π(2)
p Log( e

λp
) + 5

6λp

] [S14]

Because this equation is transcendental, we solved for π(2)
p using Brent’s

Method.
When λp ≥ 1, a quasi-stationary analysis of the mutation classes becomes

appropriate. This analysis was first done in [36], resulting in a solution of the
form:

Tclick = e− 1
sp

e
spNp0
2(e−1) [S15]

The fixation probability is then simply the inverse of the ‘click’ time: π(3)
p =

1/Tclick.
Lastly, there is a discontinuity between the above two solutions at their in-

tersection: λp = 1. We resolved this by interpolating between the two solutions,
as follows:
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π(combined)
p = λpπ

(2)
p + (1− λp)π(3)

2.4 Effects of deleterious passengers on fixation probabil-
ity and clone fitness of drivers

The occurrence and fixation of driver mutations are rare events, separated by
nearly random time intervals, with a frequency of occurrence f = µdNπd. Here,
πd is the fixation probability of a new mutant driver once it arises in the pop-
ulation. In the first-order model presented in the main text, we estimate that
πd = sd/(1 + sd) ≈ sd. However, this result assumes that there are no other
non-neutral alleles in the population. In reality, there are many segregating
passengers in the population, and potentially other segregating drivers.

The presence of other drivers in the population, which interfere with the
fixation of our clone of interest, is a phenomena commonly described as Clonal
Interference [38]. Clonal Interference becomes significant in the population once
the time required for a driver to fixate [∼ Log(N)/sd generations] approaches
the fixation rate (f ≈ µdNsd). Nascent precancerous population are in a space
of evolutionary parameters where Clonal Interference is particularly negligible:
population size is small (N ∼ 103), and drivers are rare (µd ∼ 10−5), but
strong (sd ∼ 10−1). Thus, we do not consider its effects here. However, for a
larger tumor population, clonal interference may become very significant. This
is especially true in a poorly-mixed population, where beneficial alleles take
longer to sweep through the population [39].

Segregating passenger mutations can also interfere with a driver sweep by
‘hitchhiking’ on the expanding clone [32, 40]. Most of the analysis we present
here has already been presented in these two previous works, but because it is
integral to our derivation of the critical mutation rate and because we extend
their analysis, we have decided to repeat their work.

For mathematical analysis, we disentangle two types of hitchhikers: (1) those
that reside in the Initial clone before the new driver arises (denoted δpI), and
(2) those that arise and fixate in the new driver clone as it Sweeps through
the population (denoted δpS). It is necessary to distinguish hitchhikers this
way because only the initial hitchhikers (δpI) significantly alter the fixation
probability f , while both types alter the effect size ∆N . The hitchhikers that
accumulate during the sweep will generally arise after the clone is of appreciable
size; however, once the driver clone is of appreciable size, it is exceedingly likely
that it will fixate so long as it remains the fittest clone in the population.

Here, we consider only the average number of hitchhikers in a driver sweep
(δpI and δpS), rather than their entire distribution of quantities; estimates of
the average number of hitchhikers appear to explain dynamics reasonably well
(first shown in [32] and also evident from our analysis’ good agreement with
simulations Fig. S4). Thus the probability that a new clone fixates in the
absence of Clonal Interference is (Fig. 3C):
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πd(δpI) = s′d(δpI)
1 + s′d(δpI)

: s′d(δpI) = sd − δpIsp [S16]

The jump size ∆N becomes:

∆N ′ = N [sd − (δpI + δpS)sp] [S17]

We can conclude our analysis of hitchhikers once we obtain δpI and δpS.
These quantities were first derived in [32]. We use their results (summarized
below), along with a minor necessary adjustment for populations when λp is
large, to complete our analytical model of cancer progression.

For a new driver clone to take over the population and fixate, it has been
shown that its fitness must be greater than the fittest class in the population [32].
This imposes a maximum on the number of initial hitchhikers δpmax

I that a
successful driver clone can have:

sd > δpIsp
δpmax

I = bsd/spc

A clone that does not satisfy this constraint may proliferate for a while in
the population, but it will nevertheless be eventually out-competed by fitter
clones. When the mean number of hitchhiking passengers (λp) approaches this
maximum, hitchhikers dramatically reduce both f and ∆N , thus increasing N∗
to untenable sizes. This occurs when:

λp = δpmax
I

µp/sp = bsd/spc
µp ≈ sd

[S18]

Hence, our analysis suggests a limit on the maximum mutation rate that an
adapting population can tolerate: µ∗p ≈ sd. In simulations, we observe extinction
slightly above this threshold (Fig. 3A, S2). This mechanism of collapse, where
populations go extinct by failing to acquire new advantageous mutations or
adaptations, differs from the traditional model of mutational meltdown. In the
traditional model, advantageous mutations are generally ignored and meltdown
occurs only because deleterious mutations accumulate too quickly. In our model,
however, traditional mutational meltdown is difficult because populations also
acquire advantageous mutations faster as the mutation rate increases. Moreover,
traditional meltdown occurs only when the population size is small, making it
impossible to occur in a large population like cancer. Our discovery of a new
mechanism of meltdown that is independent of population size suggests that
mutational meltdown may be induced via cancer therapeutics.

The number of initial segregating passengers in a clone when a driver arises
(δpI) can be obtained by considering, once again, the population at mutation
selection balance, i.e. Eq. 11. The average number of initial hitchhiking passen-
gers is simply the average of the likelihood of a driver arising in each mutational
class, conditional on the driver successfully sweeping through the population:
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P (δpI) = 1
N
Nnp=δpIπd(δpI)

δpI = 1
N

∑δpmax
I

δpI=0 P (δpI)πd(δpI)
= 1

N

∑δpmax
I

δpI=0
e−λpλδppI
δpI!

s′d(δpI)
1+s′

d
(δpI)

[S19]

Here, N =
∑δpmax

I
δpI=0 π

′
d(δpI) is a normalization constant.

The above solution fails when λp is large. In this circumstance, the popula-
tion is far from mutation-selection balance. Rectifying the solution in this case
is difficult to do precisely, however a simple correction to Eq. 19 can crudely
ameliorate the estimate. Because the assumption of mutation-selection balance
fails only once the expected number of passengers in the fittest class becomes
very small (Nnp=0 = Ne−λp ∼ 1), we propose that the actual fittest surviving
class in the population is the first class of passengers with an expected popula-
tion size that is greater than the size of fluctuations in the population. Because
the variance in a birth and death process is the sum of the rates (2N in our
model), the Fittest Surviving Class kFSC is:

kFSC = minnp [Nnp >
√

2N ]
kFSC = minnp [e−λpλnpp /np! >

√
2
N ]

The corrected distribution of δpI then becomes:

δpI = 1
N

δpmax
I∑

δpI=0
P (k = δpI + kFSC|λp)πd(δpI)

This simple correct yields a final solution for Pcancer that agrees with simu-
lations well (Fig. S4).

Lastly, the number of passengers that accumulate during the selective sweep
(δpS) can be calculated using a recursive relationship. This relationship begins
with the probability of accumulating the maximum possible passengers during
the sweep δpmax

I [32]:

P (δpS = δpmax
I ) = 1

N2
δpmaxI

P (δpS = k) = 1
N2

k+spP (δpS=k+1)
1+sp

δpS = 1
N2

∑δpmax
I

δpS=0 P (δpS)

Where N2 =
∑δpmax

δpS=0 P (δpS) is a second normalization constant.

3 A traditional model of cancer progression with
drivers and neutral passengers.

In the traditional model of cancer progression used to estimate age-incidence
curves, it is assumed that a cancerous population transitions through k inter-
mediate states before malignancy:
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C0
r1−→ C1

r2−→ ...
rk−→ Ck

Simply put, these intermediate states and transitions correspond to the many
phenotypic changes that occur within a tumor as it progresses [41]. The instan-
taneous probabilities of each transition from one state to the next ri can vary
in the general case. Nevertheless, it has been shown that this predicts similar
age-incidence rates to a model where transition rates are all the same [42]. Thus,
for parsimony we only consider the case where all transition rates are the same
constant r. Moreover, if the transition rates are drastically different from one
another, then dynamics will largely be determined by the slowest rate alone.
The faster rates are then no longer rate-limiting-steps and can be neglected.

From a genetic perspective, each transition corresponds to the acquisition
of a new driver in the population. However from a mathematical perspective,
this model is agnostic about the underlying molecular event that transitions
a precancerous population from one state to the next. Thus, this model can
be expanded to include any set of heritable rate-limiting steps required for
carcinogenesis: SNMs, SCNAs, alterations in DNA and histone moieties, stable
changes in cell signaling cascades, etc. Therefore, we believe it is reasonable to
assume that each rate-limiting step is the acquisition of a new driver, as has
been presumed for many years [43].

We now consider the properties of this model when neutral passengers (that
do not alter progression) also accumulate. The precancerous population is now
defined by the state Cnd,np . We consider the case where drivers accumulate at
a fixed rate rd and passengers accumulate at different fixed rate rp:

C0,0
rd−→ C1,0

rd−→ ...
↓ rp ↓ rp
C0,1

rd−→ C1,1
rd−→ ...

↓ rp ↓ rp
...

...
. . .

Cnd,np

As before, cancer arises once enough drivers accumulate (Cnd=k,np).
To interpret age-incidence data, as well as genomics data, we are interested

in both the waiting time until cancer (tcancer) and the total number of mutations
(np + k). This model can be simplify by noting that there is a freedom in the
units for which we measure time. In our simulations, time was measured in
generations and then converted to years. Here, we chose to measure time in
units of the driver transition probability rd and will then convert this to years
afterwards. Hence, rd = 1 without loss of generality. Consider the quantity
τcancer = tcancerrd, as a dimensionless measure of the waiting time to cancer. It
value will be roughly k on average. Because driver and passenger accumulation
events are independent processes in this model, the joint probability of observing
a cancer at time τcancer with np passenger mutations, P (τcancer, np|nd = k, rp),
is:
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P (τcancer, np|nd = k, rp) = P (τcancer|nd = k) · P (np|τcancer, rp) [S20]

This joint probability distribution provides a framework for identifying our
quantities of interest.

The waiting times to cancer in this neutral-passenger model, has been pre-
viously shown to be a sum of exponentially-distributed waiting times [42], i.e.
an Erlang or Gamma distribution, of the form:

P (τcancer|nd = k) = Erlang[τcancer|nd = k, rd = 1]
= rkdτ

k−1
cancere

−rdτcancer

(k−1)!
= τk−1

cancere
−τcancer/(k − 1)!

∝ tk−1
cancer , when τcancer/k � 1

[S21]

Traditionally in this model, it is believed that very few precancerous popu-
lation have enough time to progress, as lesion formation rates are much greater
than cancer incidence rates. Hence, it is believed that age-incidence curves
should be fit with only the beginning of this distribution: i.e. a power-law
distribution (last line of Eq. 21). We find that although this hypothesis ex-
plains age-incidence rates well at mid-age, it fails to explain the plateau in
age-incidence rates seen at older ages in most cancer subtypes (Fig. 2A, S1).

In this model, the total number of passengers accumulated is a Poisson
distribution, if the time of progression tcancer is known:

P (np|τcancer, rp) = Poisson[np| < np >= tcancerrp]
= e−<np> < np >

np /np!
[S22]

Here, < np >= tcancerrp is the mean number of expected passengers. The
distribution takes this form because each passenger accumulation event occurs
with an exponentially-distributed waiting time, whose sum over a fixed time
interval is described by a Poisson distribution. Because we do not know when
a new lesion arrises, we must convolute this distribution with our expected
distribution of tcancer.

The available time for cancer progression depends upon the length of a hu-
man life: thuman. If thuman < tcancer, then the precancerous population will be
unobserved in age-incidence and genomics data because the person died of an
alternate cause prior to malignancy. Although the actual distribution of human
lifetimes is complicated, we can still make inferences about the validity of this
model by considering its extremes. Consider two opposing extreme cases: (1)
when thuman � tcancer, all lesions eventually progress and are sequenced (i.e. a
human lifetime is much greater than the mean time to cancer); and (2) when
thuman � tcancer, only a few exceptional lesions progress (i.e. the mean time to
cancer is much shorter than a human lifetime). We find that this first extreme
predicts a much broader and more positively skewed distribution in the number
of passengers, than the second case. In either case, both distributions exhibit
similar predicted distributions in the number of total mutations. We used the
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second extreme where a human lifetime is much shorter than the mean time
to progression, as this would be predicted by a power-law fit to age-incidence
curves. This distribution is still not wide enough, nor positively skewed enough,
to explain the observed distribution of passengers in cancer under realistic pa-
rameters (Fig. 2B, Table S4). In contrast, our model predicts a broader and
positively skewed distribution that captures observed passenger histograms well
(Fig. 2B).

In the case where thuman � tcancer, accumulation of passengers follows a
binomial process. Each accumulation event has probability p = rd/(rd + rp)
of being a driver and probability (1 − p) of being a passenger. Because the
population has infinite time to progress to cancer, the binomial process continues
until nd = k drivers accumulate. A binomial process that continues until k
successes (i.e. drivers), will have a total number of failures (i.e. passengers)
that samples a negative binomial distribution:

P (np|p, k) =
(
np + k − 1

np

)
(1− p)nppk [S23]

A negative binomial distribution with p � 1 (i.e. passengers greatly out-
number drivers–as is the case in observed) reduces to a Poisson distribution.

In the case where thuman � tcancer, the waiting time to cancer follows a power
law distribution (Eq. 21). This, convoluted with the distribution of passengers
expected for a particular tcancer (Eq. 22) yields the expected distribution of
passengers for a cancer subtype:

P (np|k) =
∫ τh

0 P (τcancer|k)P (np|τcancer, rp)dτcancer

≈
∫ τh

0
τk−1

cancerk

τk
h

e−τpτ
np
p

np! dτcancer

≈ 1/[∗np!]
∫ τh

0 e−τpτk−1
cancerτ

np
p dτcancer

≈ k/[τkhnp!rkp ]
∫ τp=τhrp
τp=0 e−τpτ

k−1+np
p dτp

≈
(
np+k−1
np

)
k!< nmax

p >−k γ(k + np, < np >
max)

[S24]

Where γ(s, x) is the normalized incomplete gamma function defined previ-
ously (Eq. 8). In the above derivation, we eliminated a parameter by consider-
ing the quantity: < np >

max= τhrp, which corresponds to the mean number of
passengers expected for a person who lives until the maximum allowable time
τh.

Lastly, it is important to remember that the total number of mutations
nd+np is the expected number of passengers P (np|k) plus the number of drivers
k, which is constant. This is true for both predicted passenger distributions
(Eqs. 24 and 23).
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4 Materials & Methods
4.1 Simulations
All simulations were run using a previously-described first-order Gillespie al-
gorithm [2]. Extinction was defined when a population declined to zero, while
successful growth was defined when a population doubled. For each calculation
of Pcancer, 3,000 simulation outcomes were averaged. To calculate predicted
age-incidence curves, 2 · 106 simulations were used. All treatments began once
a successful trajectory reached 106 cells and continued until extinction or until
the population achieved 2 · 106 cells.

4.2 Inference of lesion formation rate
In the main text, we argue that r is at least 10 lesions·year−1 in breast epithelial.
This lower-bound estimate was based on the assumption that r =( 103 breast
epithelial stem cells per mouse [44]) × ( 2 · 103 human breast epithelial stem
cells per mouse breast epithelial stem cell) × ( 10−5 initiating mutations per
cell per year [45]) ≈ 20. Moreover, there are generally scores of of lesions
observed in normal breasts tissue [46, 47], which suggests that this estimate is
close provided that lesions last for several years. This lead us to the conclusion
that age-incidence curves cannot be explained by models which permit most
lesions to eventually progress to cancer.

4.3 Analysis of cancer genomes
Driver genes were identified using MutSig [6] (for potential NSM drivers) and
GISTIC 2.0 [48] (for SCNA drivers) in each dataset. To be defined as a ‘driver’,
a mutation needed to arise in a gene with a Bonferroni-corrected enrichment
p-value ≤ 5 · 10−3. All other mutations were classified as ‘passengers’. These
classifications were done in the articles where the SNMs and SCNAs were first
identified in exome-sequenced tumor-normal pairs: breast [49], colon [16], lung
[50], and skin [51] cancer (Table S2). MIN colorectal cancers were distinguished
from non-MIN tumors in a previous study [16].

We chose to normalize observed and expected distributions (for both our
model and the neutral passenger model) by their median because both models
can adjust their median with a free parameter. In the neutral passenger model,
this parameter is < nmax

p >, while in our model, Tp/Td and sp could be simul-
taneously adjusted to fit the observed median without altering other properties
of the distribution (see Eq. 1 in the main text).

There were also 6 breast cancers (5% of the dataset) with mutation totals
greater than 4 times the median. All models in our study poorly explain these
cancers, so we excluded them from our analysis. The breast cancer distribution
was then compared to the various expected distributions using a violin plot.
Error bar violin curves denoting the bottom 5th and top 95th percentile of the
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observed distribution were generated by creating 10,000 violin plots from 10,000
bootstrapped resamplings of the observed distribution.

These analyses were repeated for the 11 cancer subtypes that currently have
≥ 100 sequenced exomes. Using a Kolmogorov-Smirnov test for quality-of-fit, we
compared each observed distribution to our simulated distributions for various
sd ∈ { 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 } and identified the best-fitting value of sd. We
then repeated these quality-of-fit tests for the driver-only model and identified
the values of k that best explain the observed distributions (Fig. S3, Table
S4). In general, our model explains the observed distributions more accurately
than the driver-only model, with sd ≈ 0.1−0.6, while the driver-only model leads
to unrealistically small values of k (between 1 and 2). In fact, for many caner
subtypes, our model explains the observed distribution to statistical resolution.
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Figure S1 (preceding page): Age-incidence curves in our model depend
primarily on sd and match observed age-incidence curves well at
mid/late life. A Mean waiting time to cancer tcancer(x) decreases as ini-
tial population size x = N0/N∗ increases. tcancer(x) was solved from Eq. 5
using two methods: (1) stochastic ‘hybrid’ Gillespie simulations (Eq. 9), and
(2) an analytical approximation (Eq. 10, labeled ’theory’). Agreement between
these two estimates suggests that our solution is accurate and a simplified an-
alytical treatment of dynamics is possible (see Estimating the mean time
to progression for details). These results demonstrate that the shape of our
predicted age-incidence cures (below) should depend almost entirely on sd and
not x when x < 1, thereby simplifying interpretation of age-incidence curves.
B Incidence rate verses age for the 25 most common cancers in the SEERs
database [52]. Nearly all cancers show incidence rates that rise rapidly at mid-
life, but then plateau at old-age. Leukemias have flatter curves, suggesting
that they need fewer drivers for carcinogenesis. Only colorectal cancer does
not plateau. Instead, it exhibits a power-law relationship for all ages. Some
incidence curves flatten at young ages, which has been linked to germ-line pre-
dispositions to cancer that expedite progression. Neither our model nor the
traditional neutral-model of attempt to explain these childhood occurrences. C
The predicted age-incidence curves derived from simulations match observed
age-incidence curves in most cancer subtypes when proper parameters are cho-
sen. The slope of predicted age-incidence curves is described by sd: a larger
sd causes the slope of age-incidence curves to decrease. The location in the
plateau of age-incidence curves is described by the success rate of cancer pro-
gression P∞ multiplied by the lesion formation rate r. These two parameters
introduce, essentially, a Gauge freedom into our comparison of simulations with
theory. Hence, it is most useful to simply think of only one additional parameter
(after sd): a overall height of the plateau. This effective Gauge freedom is evi-
dent by the fact that the incidence curves with the same sd look approximately
the same, irregardless of their success rate. Only their overall height changes
(as predicted in A). For the predicted age-incidence curves plotted, r = 5. Of
course this value, and the success rate, presumably vary considerably between
cancer types. D The actual initial population size (N0) needed to obtain var-
ious success rates of cancer progression from various sd. Values were obtained
by iteratively simulating various initial sizes until converging to an initial popu-
lation size that led to the desired success rate. These values differed only mildly
from the predictions of our analytical theory.
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Figure S2: Somatic Nonsynonymous Mutations (SNMs) and Somatic
Copy Number Alterations (SCNAs) exhibit similar positive linear
relationships among cancer subtypes. A A positive linear relationship
is observed between driver and passenger SNMs in all cancer subtypes studied
here. This suggests that additional SNM passengers are being counterbalanced
by additional drivers, and is consistent with our conclusions in the main text.
Slope, y-intercepts, and the statistical significance of each best-fit line can be
found in Table S3. B Positive linear relationship is also observed in SCNAs.
The similar slopes and y-intercepts of SCNAs to SNMs supports our assumption
that SCNAs and SNMs can be aggregated in analysis and modeling.
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Figure S3: Distribution of mutation totals in cancers is highly dispersed
and positively skewed. 11 cancer subtypes have 100 or more tumors se-
quenced via TCGA [6]. These subtypes all had widely-different distributions
of mutation totals; however, the all appear to have a large degree of variance
within their subtype and positive skew. Violin plots of each distribution are
shown. In Table S4, we compared our model of cancer progression, for various
sd, alongside a traditional, neutral-passenger model of cancer progression (see
A traditional model of cancer progression with drivers and neutral
passengers.) to these distributions.
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Figure S4 (preceding page): Analytical framework predicts probability of
cancer across parameter space. The probability of progression, determined
from the outcome of 3,000 simulations (for each data-square) propagated until
extinction or rapid growth, across the parameter range of our model. In sim-
ulations, we observe parameters where progression occurs, fails, and is rare. A
sophisticated analytical framework incorporating selection against passengers,
hitchhiking of passengers onto driver mutations, and stochasticity in popula-
tion size predicts observations well (black lines). This sophisticated analytical
model uses two solutions for Muller’s Ratchet in various parameter regimes (see
Selection against passengers.), an estimate of the quantity of hitchhiking
passengers (see Effects of passengers on driver fixation), and a stochastic
differential equation of the population size to estimate probabilities of progres-
sion (see Estimating the probability of cancer). A simplified framework,
which offers a closed-form solution, is possible and works reasonably well (ma-
genta). This solution differs from the more precise solution in two ways: (1) a
novel, simplified estimate of Muller’s ratchet is used (Eq. 12), and (2) we neglect
hitchhikers that accumulate after a new driver clone arises (i.e. δpS = 0). A-
A′′′ Pcancer increases for all parameters, as the relative target size of drivers Td
verses passengers Tp increases. B-B′′′ and A′′′ Pcancer exhibits a local minimum
verses the selection against passengers sp. When selection against passengers
is very weak, passengers are effectively neutral. When selection against pas-
sengers is too strong, natural selection prevents passengers from accumulating.
Deleterious passengers are most effective at preventing cancer when moderate in
effect size. The local minimum suggests that there may be two types of cancers:
those existing in an environment or genetic context where passengers are weak,
perhaps buffered by an activated UPR; and those that succeed by exacerbating
passengers’ deleterious effects, perhaps by decreasing their mutation rate (see
B’). C, C′, A′′, B′′ The probability of cancer always increases with sd. This
parameter has a profound affect on cancer progression as it increases the benefit
of drivers and their probability of fixation. Hence, the boundary between suc-
cess and failure appears to be almost independent of the other parameters. D
and A′ An increasing mutation rate affects the probability of cancer very little
at first; however, once it exceeds a critical value (µ∗ = sd/Tp), the probability
of cancer drops precipitously.
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Figure S5: Simulations exhibit path independence. A The 12 tra-
jectories from Figure 1A, initiated at N0 = {500, 1000, 2000}. B An ad-
ditional 12 trajectories, initiated at various N0, but plotted once they cross
N = {500, 1000, 2000}. Populations that crossed N = 500 and N = 2000 were
initiated at N0 = 1000, while populations that crossed N = 1000 were initiated
at N0 = 500. Dynamics in A and B appear identical, demonstrating that pop-
ulations beginning at different initial sizes N0 will behave similarly, if they have
the same current size. Thus, populations exhibit path independence and can be
fully described by one state variable: x = N/N0.
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Figure S6: Combination treatments that increase mutation rate and
selection against passengers work best. A Using the analytical theory
describe in An analytical model of dynamics and Fig. S4, we plotted the
critical population size N∗ across evolutionary parameters as a contour plot.
Optimal therapy, from an evolutionary perspective, should increase N∗ along
its gradient of steepest ascent (blue lines). From this 3-Dimensional perspective
the interplay between µ and sp is evident. For cancers with low mutation
rates, only weak passengers (low sp) can fixate. Thus, these cancers should
be more immune to drugs that increase sp. Cancers with high mutation rates
fixate all passengers, making passenger-targeted therapies highly effective. At
intermediate mutation rates, the most effective treatment would moderately
increase both the mutation rate and sp. B Via simulations, we tested our
prediction that the gradient of steepest ascent is optimal for the magenta-colored
vector in A. 50 cancers with µ = 10−8, sp = 0.001 grown to 106 cells were treated
with combinations of mutagenic and sp increasing therapy. Indeed, moderate
increases in both parameters were more effective than would be expected from
the lone treatments, thus confirming our prediction. These results underscore
the importance of combinatorial therapies and evolutionary modeling for cancer
treatment.
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Figure S7: A two-hit driver model with deleterious passengers also ex-
periences a population size-dependent barrier to progression. A We
extended our original model to consider cancers where the first driver mutation
confers no fitness benefit, the second driver confers a fitness benefit of 2sd, and
all remaining drivers confer a fitness benefit of sd. All other properties of the
model, including deleterious passengers and a dynamic population size, remain
intact (see A two-hit model of cancer progression for details). For this
figure sd = 0.2, sp = 0.001, µd = 1.4 × 10−5, and µp = 0.1. Trajectories ex-
hibit a period of stasis where the first driver accumulates (according to neutral
dynamics) before the second driver arrives. After this period of stasis, most
trajectories progress to cancer. Passengers continue to accumulate and cause
extinction in this model. B Like the original model, we observed a population
size-dependent barrier to progression in the two-hit model. However, because
of the long and variable period of stasis where passengers continue to accumu-
late, the critical population size N∗,two−hit is larger and the transition from the
extinction and growth regimes is slower. This is more-or-less equivalent to our
model with a larger value of sd and smaller value of Td. See A two-hit model
of cancer progression for a explanation of these findings using our analytical
model of progression.

36



Table S1: Evolutionary parameters explored in this study.

Parameter Symbol Estimate Range Citation
Mutation rate µ 10−8 10−10 - 10−7 [53]
Driver loci Td 700 70 - 7,000 [17,18,54]
Passenger loci Tp 5 · 106 5 · 105-5 · 107 [13, 19]
Driver strength sd 0.1 0.001 - 1 [18,55]
Passenger strength sp 0.001 10−4 - 10−1 [12]
Initial population size N0 1000* 100 -10,000 [56]
*Estimated from labeled populations in mice colonic crypts 2 weeks
after an initiating APC deletion was induced.

We explored our evolutionary model incorporating driver and passenger mu-
tations across a broad range of parameters. The ranges were motivated by
literature estimates discussed previously [2] and in Parameter range inves-
tigated. Note that in simulations µd = µTd and µp = µTp, hence the entire
phase space can be explored by only altering µ and Td/Tp, as altering all three
parameters is redundant. In Figure 2 we compare our model to epidemiological
and genomic data and affirm that these prior published estimates explain the
new data well.
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Table S2: Average number of driver and passenger mutations by tumor
type.

NSM NSM SCNA SCNA
Cancer Drivers Passengers Drivers Passengers
breast 1.7 70.8 1.0 34.6
lung 2.3 348.6 8.4 89.5
colon, MIN− 8.8 114.0 14.1 583.5
colon, MIN+ 28.8 489.0 12.7 235.1
melanoma 7.0 379.6 12.6 324.7
all 9.1 272.8 8.8 258.9
Max 28.8 489.0 14.1 583.5
Min 1.7 70.8 1.0 34.6

The total number of identified Somatic Nonsynonymous Mutations (SNMs) and
Somatic Copy Number Alterations (SCNAs) for various tumor-normal paired
sequences from various tissues of origin: 100 breast [49], 183 lung [50], 159
Colon without Micro-satellite INstability (MIN−), 64 Colon with Micro-Satellite
Instability (MIN+) [16], and 121 melanomas [51].
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Table S3: Linear relationship between drivers and passengers cannot
be explained by other tumor properties.

Cancer Pearson’s r p-value* N† Spearman’s ρ slope‡ y-intercept

Drivers verses Passengers
breast 0.423 < 10−4 100 0.413 0.006 2.02
lung 0.368 0.08 24 0.998 0.005 8.63
colon, MIN− 0.624 < 10−4 49 0.985 0.009 17.11
colon, MIN+ 0.916 < 10−5 14 0.999 0.047 6.50
melanoma 0.749 < 10−5 29 0.995 0.015 3.69
All 0.937 < 10−99 217 0.992 0.042 -3.81

SNM drivers versus SNM passengers
breast 0.390 < 10−4 100 0.178 0.005 1.34
lung 0.587 < 10−17 183 0.579 0.002 1.56
colon, MIN− 0.990 < 10−134 159 0.569 0.054 2.65
colon, MIN+ 0.994 < 10−60 64 0.918 0.056 1.56
melanoma 0.878 < 10−9 29 0.974 0.012 2.59
All 0.924 < 10−223 536 0.592 0.050 -4.45

SCNA drivers verses SCNA passengers
breast 0.443 < 10−5 100 0.433 0.024 0.17
lung 0.253 0.23 24 0.998 0.028 5.94
colon, MIN− 0.770 < 10−9 49 0.984 0.008 9.44
colon, MIN+ 0.424 0.13 14 0.994 0.029 6.01
melanoma 0.559 < 10−10 121 0.663 0.023 5.23
All 0.573 < 10−27 309 0.962 0.012 5.76

SNMs versus SCNAs
breast 0.052 0.61 100 0.149 0.237 64
lung 0.169 0.43 24 -0.548 1.268 334
colon, MIN− -0.080 0.58 49 -0.068 -0.021 137
colon, MIN+ -0.265 0.36 14 0.045 -0.981 838
melanoma -0.114 0.56 29 0.176 -0.183 431
All 0.331 < 10−6 217 -0.089 0.631 133

Drivers verses Pathological Grade
breast 0.163 0.10 100 0.113 0.067 2.25
lung -0.048 0.83 22 0.024 0.006 2.13
colon, MIN− -0.187 0.20 48 0.072 0.012 2.67
colon, MIN+ -0.121 0.68 14 -0.338 0.004 3.09
melanoma 0.221 0.35 20 0.120 0.025 1.83
All 0.018 0.80 204 0.054 0.001 2.37

SNMs versus Pathological Grade
breast 0.217 0.03 100 0.444 0.001 2.33
lung 0.193 0.02 158 0.235 0.000 1.79
colon, MIN− -0.084 0.30 156 0.039 0.000 2.51
colon, MIN+ -0.045 0.73 63 -0.023 0.000 2.50
melanoma 0.119 0.62 20 0.114 0.000 2.06
All -0.012 0.80 497 0.147 0.000 2.28

SCNAs versus Pathological Grade
breast 0.248 0.01 100 0.235 0.007 2.18
lung 0.170 0.45 22 0.026 0.002 1.85
colon, MIN− -0.166 0.26 48 0.081 0.000 2.48
colon, MIN+ -0.054 0.85 14 -0.333 0.000 2.99
melanoma 0.109 0.31 88 -0.253 0.000 2.06
All -0.067 0.27 272 -0.112 0.000 2.38
Negative values are in gray.
*Statistically significant (p < 0.05) relationship are in bold
† Number of samples compared
‡ Denotes sp/sd when comparing drivers to passengers
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Table S3 (preceding page): We observe a linear relationship between drivers and
passengers, predicted by our model. Above the thick black line are relation-
ships that robustly covary, while the bottom half contains relationships that
are generally insignificant. In our model, driver’s and passenger’s linear rela-
tionship results from their competing effect (additional deleterious passengers
must be overcome by additional drivers), however alternate factors might have
explained this relationship. In particular, we were concerned that the mutation
type, mutation rate, or aggressiveness of the tumor could also explain the ob-
served relationship. Thus, we used the analyses above to test these possibilities
and found that the data does not support these competing hypotheses. Our ra-
tional for the other competing hypotheses and why we reject them: (a) SCNAs
and SNMs might have drastically different effects on cancer progression and un-
dermine our model. The slope and y-intercept between drivers and passengers is
approximately equal in SCNAs and SNMs, suggesting the relative fitness effects
of these mutations is similar. (b) Some cancers might progress via CIN, while
others progress via an elevated point mutation rate. If so, a negative correlation
between SCNAs and SNMs within tumor subtypes would be expected, which has
been observed previously in a pan-cancer study [57] and within the aggregate
colorectal dataset. However, this does not appear to be so in other tumor types,
nor in colorectal cancer after segregation according to MIN phenotype. Thus,
the observed patterns are not explicable by varying mutational mechanisms. (c)
The relationship between drivers and passengers might be a result of variation in
mutation rate. Variation in the mutation rate should only alter the waiting time
to cancer in the neutral-passenger model, and not alter mutation totals. Never-
theless, if variation in the mutation rate could explain the correlation between
drivers and passengers, then stratifying tumors by their mutation rate should
reduce the correlation. Because the relationship between drivers and passen-
gers is persistent and strong within the MIN+ and MIN−subtypes—expected to
have and not-have a mutator phenotype—we reject this hypothesis. (d) Tumors
with more drivers and passengers might simply be more evolutionarily advance.
Suppose some cancers are detected and sequenced later than others. These late
cancers would not only possess additional drivers, but also additional passen-
gers, even if passengers were neutral; thus, retaining the correlation between
drivers and passengers. However, late-detected tumors with additional drivers
should also be more advanced and more aggressive. We find that a tumor’s
pathological grade is uncorrelated with the number of drivers, refuting this pos-
sibility. Pathological grade was quantified by converting roman numerals into
a linear scale (i.e. A Stage IV tumor corresponds to an aggressiveness of 4).
Many tumors had intermediate grades that were given corresponding fractional
values (e.g. a Stage IIIa tumor was translated into a 3.0, a Stage IIIb was given
3.3, and a Stage IIIc was given 3.7). Because this quantification of tumor grade
may distort the scale of aggressiveness, Spearman’s Rank correlations are pro-
vided. For completeness, we have also show the relationship between SNMs and
Pathological Grade and SCNAs and Pathological Grade.
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Table S4: Kolmogorov-Smirnov goodness of fit estimates of sd (our
model) and k (traditional model) for sequenced cancer subtypes.

Our model Traditional model
Tissue N sd p-value* k p-value*
Acute myeloid leukemia 132 0.8 0.802 1 0.072
Breast 120 0.6 0.860 1 0.045
Colorectal 230 0.2 0.956 2 0.011
Glioblastoma multiforme 219 0.1 0.070 3 0.187
Head and neck 178 0.8 0.120 1 0.077
Kidney clear cell 214 0.2 0.485 2 0.066
Lung adenocarcinoma 333 0.8 3.71× 10−5 1 4.35× 10−7

Lung squamous cell 178 0.4 0.752 1 1.10× 10−3

Melanoma 121 0.8 0.267 1 0.073
Ovarian 385 0.4 0.833 1 4.54× 10−6

Prostate 221 0.4 0.134 1 0.018
*Two-sided p-value that the observed and expected distributions are identical

11 cancer subtypes have 100 or more tumors sequenced via TCGA [6]. These
subtypes all had widely-different and broad distributions of mutation totals
(Fig. S3). We then compared our model of cancer progression for various
sd ∈ { 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 } and A traditional model of cancer
progression with drivers and neutral passengers to these distributions.
For comparison, we divided all predicted and observed mutation totals by their
median and discarded outliers ≥4 times the median, as various confounding
factors affect the distributions by a multiplicative constant (see Supplemental
Methods). We then selected our best fitting model, and the best fitting tradi-
tional model (largest D statistic) using a Kolmogorov-Smirnov goodness of fit
test and displayed the best fitting estimates of sd or k alongside their quality of
fit. From Fig. S3, note that Acute myeloid leukemia and Glioblastoma multi-
forme have extremely dispersed distributions that are unlike the other subtypes.
We note several observations from this data: (1) our model explains most cancer
subtypes well and outperforms the traditional model for all subtypes examined,
excluding Glioblastoma multiforme; (2) sd ≈ 0.2− 0.6 for most subtypes exam-
ined; (3) the best fitting traditional models assume that an unrealistically-low
number of drivers are needed for progression (∼ 1− 2).
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