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Taxon Sampling. We sampled 114 accessions representing two
outgroup species (Paspalum malacophyllum and Plagiantha tenella),
two species of Arundinella, and 100 species of Andropogoneae in
40 genera. Plant material came from our own collections, the US
Department of Agriculture (USDA) Germplasm Resources In-
formation Network (GRIN), the Kew Millenium Seed Bank, and
material sent by colleagues. All plants acquired as seeds (e.g., those
from USDA and from Kew) were grown to flowering in the
greenhouse at the University of Missouri-St. Louis to verify iden-
tification. Vouchers are listed in Table S1.

Sequencing and Processing. Total genomic DNA was extracted
using a modified cetyl triethylammonium bromide (CTAB)
procedure (1) or Qiagen DNeasy kits, following the manu-
facturer’s protocol (Qiagen) (2). Five regions of four loci were
PCR amplified following Estep et al. (3). The loci are Aberrant
panicle organization1 (apo1), Dwarf8 (d8), two exons of Erect
panicle2 (ep2), and Retarded palea1 (rep1). In sorghum (a dip-
loid) apo1 and d8 are on chromosomes 1 and 10, respectively.
ep2 and rep1 are on chromosome 2, 14.5 Mbp apart; based on
estimated recombination frequency in euchromatic regions, this
distance could be ca. 50 cM (4). Thus, the four markers are
unlinked. Each marker has homologs on two chromosomes in
maize, as expected in a tetraploid. Importantly for this study, we
found no evidence that these loci are lost after polyploidization;
in known polyploids, paralogues are found consistently as long as
sequence depth is sufficient.
PCR products were gel purified, cloned using pGEM-T easy

kits, and transformed into JM109 high-efficiency competent cells,
following the manufacturers’ protocols (Promega) or using
a Topo-4 cloning vector and transformed into One Shot Top 10
cells (Invitrogen). At least eight positive clones for each PCR
product were sequenced in both directions using universal pri-
mers (M13, Sp6, or T7) on an ABI3730 DNA sequencer at the
Penn State Huck Institute of the Life Sciences or Beckman
Coulter Genomics. Chromatogram files were trimmed of vector
and low quality sequences manually or using Geneious Pro-5.5.6
(BioMatters), and reverse and forward sequences for each clone
were assembled. Only clones with 80% or more double-stranded
sequence were used for downstream analyses. Internal primers
were designed as necessary for loci over 1,000 bp long (D8 and
Ep2 exon7). All good quality contigs for each sample were then
aligned using Geneious, and primer sequences were removed.
Recombinants were initially identified by eye and then con-
firmed with networks in SplitsTree (5), and removed from the
alignment. Use of computational methods alone missed many
recombinant sequences that were readily identifiable by eye.
Occasionally, it was difficult to determine which sequences were
genomic and which were PCR recombinants; in these cases, we
compared the problematic sequences with unambiguous se-
quences from other species to determine the nonrecombined
sequences. Singletons were identified with MEGA (6) and were
interpreted as PCR errors. Sequences were translated and
aligned using MUSCLE, as implemented in Geneious Pro-5.5.6.

Data Matrix Assembly. The dataset for each locus consisted of
numerous redundant clones. To reduce the number of sequences
to one per paralogue per locus, preliminary phylogenetic analyses
were conducted for each marker in RAxML (7) including all
clones for all taxa. Clones that formed a clade in preliminary
analyses and that differed by fewer than five nucleotides were

inferred to represent a single locus and were combined into
a majority-rule consensus sequence. Clones that did not meet
these criteria were kept separate through another round of
RAxML analyses. We identified clades with a bootstrap value ≥
50 that comprised the same accession for each locus. Accessions
in these clades were reduced to a single majority-rule consensus
sequence using the perl script clone_reducer (github.com/
mrmckain).
Gene trees were estimated using RAxML v.7.3.0 with the

GTR + Γ model and 500 bootstrap replicates for each locus.
We used individual gene-tree topologies as a guide to identify and
concatenate paralogues from the same genome for each acces-
sion. If a polyploid had two paralogues in each gene tree, and one
paralogue was always sister to a particular diploid or other poly-
ploid, then we inferred that those paralogues represented the
same genome and used them to create a concatenated sequence.
If a locus did not have a sequence congruent to the topology, then
the locus was marked as missing data. Five datasets were assem-
bled. One included only accessions with full sampling of all loci for
all genomes, a second included accessions that had four out of five
markers, a third, three out of five, and so forth. Preliminary trees
for all datasets were congruent, but those trees in which some
genomes of some taxa were represented by only one or two se-
quences were less well supported. The results presented here are
based on the dataset with a minimum of three out of five loci for
each taxon, which maximized species inclusion while still pro-
viding enough information for robust results. All five datasets are
deposited at Dryad (datadryad.org).

Phylogenetic Analysis, Divergence Time, and Diversification Estimates.
Concatenated trees were reconstructed using both maximum
likelihood (ML) and Bayesian approaches and rooted at Paspalum.
The ML tree was estimated with RAxML using the GTR + Γ
model and 500 bootstrap replicates. The Bayesian tree was esti-
mated using MrBayes v.3.2.1 (8) using a gamma model with six
discrete categories. Two independent runs with 50 million gen-
erations each were sampled every 1,000 generations. Convergence
of the separate runs was verified using AWTY (9).
Divergence times were estimated using BEAST 1.7.5 (10) on

the CIPRES Science Gateway (11). The concatenated analysis
was run for 100 million generations sampling every 1,000 under
the GTR + Γ model with six gamma categories. The tree prior
used the birth-death with incomplete sampling model (12), with
the starting tree being estimated using unweighted pair group
method with arithmetic mean (UPGMA). The site model fol-
lowed an uncorrelated lognormal relaxed clock (13). The anal-
ysis was rooted to Paspalum, with the age of the root estimated
as a normal distribution describing an age of 25.5 ± 5 million y
(14). Convergence statistics were estimated using Tracer v.1.5
(15) after a burn-in of 50,000 sampled generations. Chain con-
vergence was estimated to have been met when the effective
sample size was greater than 200 for all statistics. Ultimately,
10,000 trees were used in TreeAnnotator v.1.7.5 to produce
the maximum clade credibility tree and to determine the
95% highest posterior density (HPD) for each node. The final
tree was drawn using FigTree v.1.4.0 (tree.bio.ed.ac.uk/software/
figtree/).
Tests for shifts in the underlying model of diversification were

conducted using Bayesian Analysis of Macroevolutionary Mix-
tures (BAMM) (16); priors were chosen as recommended using
the function setBAMMpriors. Analyses were conducted on a tree
constructed by pruning the BEAST tree to leave only a single
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paralogue (genome) per species, as well as on the unpruned trees.
Analyses were run for 10 million and 100 million generations;
10 million provided an adequate effective sample size for both
rate shifts and log-likelihoods (>>500), and additional generations
did not change the results. Incomplete taxon sampling was ac-
commodated by assigning a backbone sampling fraction of 0.5,
corresponding to our sample of 50% of the genera, and assigning
specific fractions for the sample for each clade. Preliminary
analyses using a backbone sample of 0.08 or using a global esti-
mate of sampling intensity produced largely similar results.
Differences in speciation rate for polyploids versus diploids

were estimated using the Binary State Speciation and Extinction
(BiSSE) model (17) as implemented in Mesquite (18) and di-
versitree (19). Species were coded as allopolyploid or diploid,
and the characters were mapped on the pruned BEAST tree.
Adjustment for incomplete sampling was implemented in di-
versitree, using a sample of 0.08 and also 0.5 to correspond to the
analyses in BAMM. Analyses were run for 100,000 generations.
Values from an unconstrained analysis were compared with
those of an analysis in which speciation rates were constrained to
be equal.

Genome-Size Estimation. Genome size was measured by flow
cytometry at the Flow Cytometry and Imaging Core laboratory
at the Benaroya Research Institute, Virginia Mason Research
Center. Genome sizes were measured a minimum of four times

using standard methods, and the values were averaged (20). Pi-
cograms of DNA/2C cell were converted to megabasepairs
(Mbp)/1C by multiplying the average experimental value by
980 Mbp per 1 picogram of DNA and dividing by two.

Estimating the Number of Allopolyploidization Events. To obtain
a minimum estimate of the number of allopolyploidy events, we
looked for a clear phylogenetic signal of allopolyploidy, in the
form of a multiple-labeled gene tree (Fig. S1). This method
provides unambiguous evidence of allopolyploidy, but will
overlook genetic and taxonomic autopolyploidy, allopolyploidy
between two very similar species or populations of the same
species, and allopolyploidy for which our sequencing was not
sufficiently deep to retrieve paralogues. Thus, the number of
events estimated here is a robust minimum estimate. We also
report genome size for many of the sequenced specimens (Figs. S2
and S3). Although genome size gives a rough approximation of
ploidy, it cannot distinguish between polyploids and plants whose
genomes have expanded via transposon amplification (21). We
did not use published data on chromosome numbers because the
literature on these numbers is unreliable; many counts lack
photodocumentation or voucher specimens and thus cannot be
verified as to number or species identity. In addition, many
species have several numbers reported; these may represent real
variation or errors.
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Fig. S1. Gene-tree patterns resulting from hybridization and polyploidy (genetic allopolyploidy). (Left) The actual evolutionary history of divergent evolution
at the diploid level, followed by hybridization between taxon A and taxon E (reticulation) and formation of a tetraploid. Subsequent speciation may (Lower) or
may not (Upper) occur. (Center) The double-labeled gene trees that will be produced by each pattern of evolution. Tetraploids appear twice in the tree; the A
genome (AE) will appear with its A genome progenitor and the E genome (AE) with its E genome progenitor. (Right) Some of the many possible gene trees
that will result from incomplete taxon sampling. In this study, any of these patterns were taken as indication of allopolyploidy.
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Fig. S3. Bayesian phylogeny of core Andropogoneae. Branch numbers, colors, and genome sizes are as in Fig. S2.
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Fig. S4. Phylorate tree from BAMM (16), with species sample frequency adjusted for each clade, and backbone sampling of 0.5. Models of rate shifts with the
highest posterior probability indicate either no shifts or one. The marginal probabilities of a shift are similar across much of the tree; in other words, the
position of the shift cannot be assigned with certainty.
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Fig. S5. Net diversification rates (speciation minus extinction) for diploids (blue) and polyploids (yellow), calculated using BiSSE, as implemented in diversitree
(19). ML estimates of the rates are significantly different (P < 0.02) compared with a model in which speciation rates are constrained to be equal. Analysis
assumes a species sample of 8%.
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