Table S2: Model parameters

Category	Parameter	Definition	Unit	Value (Mouse)	Ref.	Value (Human)	Ref.
	N _A	Avogadro's constant	mol ⁻¹	6.02×10^{23}	N/A	6.02×10^{23}	N/A
Therapeutic	ka _{,Ag}	absorption rate constant from injection site to plasma	Day ⁻¹	Ag-specific	N/A	Ag-specific	N/A
	k _{el}	elimation rate	Day ⁻¹	Ag-specific	N/A	Ag-specific	N/A
	k ₁₂	distribution rate constant from plasma to extra central compartment	Day ⁻¹	Ag-specific	N/A	Ag-specific	N/A
	k ₂₁	distribution rate constant for antigenic protein, from extra central compartment to plasma	Day ⁻¹	Ag-specific	N/A	Ag-specific	N/A
protein i K	k ₁₃	distribution rate constant for antigenic protein, from plasma to peripheral tissues	Day ⁻¹	Ag-specific	N/A	Ag-specific	N/A
	k ₃₁	distribution rate constant for antigenic protein, from peripheral tissues to plasma	Day ⁻¹	Ag-specific	N/A	Ag-specific	N/A
	V _P	Plasma volume	L	1.46×10^{-3}	N/A	2.75	N/A
	V_{ec}	Extra volume (other than plasma) in the central compartment	L	Ag-specific	N/A	Ag-specific	N/A
T-epitope	Ν	Number of T-epitopes	dimensionl	Ag-specific	N/A	Ag-specific	N/A
characteristics of therapeutic	k _{on}	On rate for T-epitope- MHC-II binding	pM ⁻¹ day ⁻¹	$8.64\times10^{\text{-3}}$	(1)	8.64×10^{-3}	(1)
proteins	$\mathbf{k}_{\mathrm{off}}$	Off rate for T-epitope- MHC-II binding	day ⁻¹	Ag-specific	N/A	Ag-specific	N/A
	β_{MS}	Elimination rate for maturation signal (LPS)	Day ⁻¹	1.8480	(2)	0.3696	(3)
	β_{ID}	Death rate for immature DCs	Day ⁻¹	0.0924	(4)	0.0924	(4)
Dendritic cells	δ_{ID}	Maximum activation rate for immature DCs	Day ⁻¹	1.5	(5)	1.5	(5)
Dendritic cens	K _{MS}	LPS concentration at which immature DC activation rate is 50% maximum.	ng/L	9.852×10^3	(6)	9.852×10^{3}	(6)
	β_{MD}	Death rate for mature DCs	Day ⁻¹	0.2310	(7)	0.2310	(7)
Antigen presentation	cp ₀	amount of endogenous competing protein in the plasma	pmole	3.025×10^{8}	(8)	3.025×10^8	(8)
	k _{on,c}	On rate for competing peptide-MHC-II binding	pM ⁻¹ day ⁻¹	8.64×10^{-3}	(1)	8.64 × 10 ⁻³	(1)
	$k_{\text{off,c}}$	Off rate for competing peptide-MHC-II binding	day ⁻¹	34560	(8)	34560	(8)
	α_{AgE}	Internalization rate fo antigenic protein (Ag^E) into endosome	Day ⁻¹	14.4	(8)	14.4	(8)
	β_{AgE}	Degradation rate for Ag^E in endosome	Day ⁻¹	17.28	(8)	17.28	(8)
	β_p	Degradation rate for epitope peptide	Day ⁻¹	144	(8)	144	(8)
	β_{M}	Degradation rate for MHC-II	Day ⁻¹	1.663	(9)	1.663	(9)
	β_{PM}	Degradation rate for MHC-peptide	Day ⁻¹	0.1663	(9)	0.1663	(9)

	k _{ext}	exocytosis rate for MHC-peptide complex in endosomes internalization rate for	Day ⁻¹	28.8	(8)	28.8	(8)
	k _{in}	MHC-peptide complex on DC membrane, and for antigen-bound BCR complex	Day ⁻¹	14.4	(8)	14.4	(8)
	K _{pM,N}	number of T-epitope- MHC-II to achieve 50% activation rate of naïve helper T cells	dimensionl ess	400	(10)	400	(10)
	K _{pM,M}	number of T-epitope- MHC-II to achieve 50% activation rate of memory helper T cells	dimensionl ess	40	(10)	40	(10)
	V_D	Volume of a dendritic cell	L	$2.54\times10^{\text{-12}}$	(8)	2.54×10^{-12}	(8)
	$V_{\rm E}$	Volume of endosomes in a dendritic cell	L	4×10^{16}	(8)	4×10^{16}	(8)
	β_{NT}	Death rate of naive helper T cells	Day ⁻¹	0.0056	(11)	0.0029	(12)
	δ_{NT}	Maximum activation rate of naive helper T cells	Day ⁻¹	1.5	(5)	1.5	(5)
	ρ_{AT}	maximum proliferation rate for AT	Day ⁻¹	2.3998	(13, 14)	0.5973	(14, 15)
T helper cells	β_{AT}	Death rate of activated helper T cells	Day ⁻¹	0.18	(16)	0.18	(16)
i neiper cens	δ_{MT}	Maximum activation rate of memory helper T cells	Day ⁻¹	1.5	(5)	1.5	(5)
	β_{MT}	Death rate of memory helper T cells	Day ⁻¹	0.0012	(16)	$2.7397\times10^{\text{-}4}$	(17)
	β_{FT}	Death rate of functional helper T cells	Day ⁻¹	0.18	(5)	0.18	(5)
	f1	Percentage for ATs to differentiate to MTs	dimension1 ess	0.5	(18)	0.5	(18)
	J	Number of B cell subclones	dimension1 ess	17	(18)	17	(18)
	K _a ¹	Association rate constant for Ag- BCR/Ab binding ¹	pM ⁻¹	$\begin{array}{c} 3.91 \times 10^{-9} \text{ - } 2.56 \\ \times 10^{-4} \end{array}$	(18)	$\begin{array}{c} 3.91 \times 10^{-9} \text{ - } 2.56 \\ \times 10^{-4} \end{array}$	(18)
	BRN	BCR number on each B cell	dimension1 ess	$1.2 imes 10^5$	(19)	75000	(20)
	K _R	occupied BCR number to achieve 50% activation rate of naïve B cells	dimensionl ess	1	(18)	1	(18)
	$\delta_{\rm NB}$	Maximum activation rate of naive B cells	Day ⁻¹	3	(5)	3	(5)
B cells	CC _N	the carrying capacity for 1 FT cell to stimulate the activation and proliferation of target NBs	dimensionl ess	10	Data fitting	10	Data fitting
	CC _M	the carrying capacity for 1 FT cell to stimulate the activation and proliferation of target MBs	dimensionl ess	100	(21)	100	(21)
	ρ_{AB_N}	Maximum proliferation rate for activated B cells from naïve B cells	Day ⁻¹	1.3	(5, 22)	0.3333	(22, 23)
	ρ_{AB_M}	Maximum proliferation rate for activated B cells from memory B cells	Day ⁻¹	2.6	(5, 22)	0.7273	(22, 23)
	β_{AB}	Death rate of activated B cells	Day ⁻¹	0.9	(5)	0.2518	(5, 23)

	g1	Percentage for ABs to differentiate to MBs	dimensionl	0.5	(18)	0.5	(18)
	g2	Percentage for ABs to differentiate to SPs	dimensionl	0.4	Data fitting	0.4	Data fitting
	δ_{MB}	Maximum activation rate of memory B cells	Day ⁻¹	3	(5)	3	(5)
	$\beta_{\rm MB}$	Death rate of memory B cells	Day ⁻¹	0.005	(24)	$7.83\times10^{\text{-5}}$	(25)
	β_{SP}	Death rate of short-lived plasma cells	Day ⁻¹	0.2310	(26)	0.2310	(26)
	β_{LP}	Death rate of long-lived plasma cells	Day ⁻¹	0.0050	(27)	0.0050	(27)
	$\alpha_{\rm A}$	Secretion rate of antibody by plasma cells	Day ⁻¹	1.68×10^8	(18)	8.64×10^8	(28, 29)
Ab and	$\beta_{\rm A}$	Elimination rate for Ab	Day ⁻¹	0.099	(30)	0.0301	(26)
immune complex	$\beta_{\rm C}$	Elimination rate for Ag- Ab complex	Day ⁻¹	Ag-specific	N/A	Ag-specific	N/A
	AgIS ₀	Initial amount of Ag in the injection site	pmole	Ag-specific	N/A	Ag-specific	N/A
	Ag_0	Initial amount of Ag in the plasma	pmole	Ag-specific	N/A	Ag-specific	N/A
	$Agec_0$	initial amount of Ag in the extra central compartment	pmole	0	N/A	0	N/A
	Agp_0	initial amount of Ag in the peripheral tissues	pmole	0	N/A	0	N/A
	MS_0	Initial amount of maturation signal (LPS)	ng	Ag-specific	N/A	Ag-specific	N/A
	ID_0	Initial immature DC number	cells	8000	N/A	$5 imes 10^7$	(26)
	MD_0	Initial mature DC number	cells	0	N/A	0	N/A
Initial conditions	cp^{E}_{0}	Initial amount of endogenous competing protein in endosome	pmole	0	N/A	0	N/A
	cpt_0^E	Initial amount of endogenous competing peptide in endosome	pmole	0	N/A	0	N/A
	cptM ^E ₀	Initial amount of endogenous competing peptide-MHC complex in endosome	pmole	0	N/A	0	N/A
	cptM ₀	Initial amount of endogenous competing peptide-MHC complex on dendritic cell membrane	pmole	0	N/A	0	N/A
	Ag^{E}_{0}	Initial amount of Ag in endosome	pmole	0	N/A	0	N/A
	p^{E}_{0}	Initial amount of T- epitope peptides from Ag digestion in endosome	pmole	0	N/A	0	N/A
	M^{E}_{0}	Initial amount of MHC- II molecule in a single mature dendritic cell	pmole	0	N/A	0	N/A
	pM_{0}^{E}	Initial amount of T- epitope-MHC-II complex in endosome	pmole	0	N/A	0	N/A
	pM_0	Initial amount of T- epitope-MHC-II complex on dendritic cell membrane	pmole	0	N/A	0	N/A
	M_0	Free MHC-II molecule on dendritic cell membrane	pmole	0	N/A	0	N/A
	NT ₀	Initial naïve T cell number	cells	16	(31)	1.445×10^{3}	(26, 32)

AT_N ₀	Initial number for activated T cells derived from naïve T cells	cells	0	N/A	0	N/A
AT_M ₀	Initial number for activated T cells derived from memory T cells	cells	0	N/A	0	N/A
MT_0	Initial memory T cell number	cells	0	N/A	0	N/A
FT_0	Initial functional T cell number	cells	0	N/A	0	N/A
${\rm NB_0}^2$	Initial naïve B cell number (total number of 17 clones)	cells	760	(33)	5200	(26, 33)
AB_N ₀	Initial number for activated B cells derived from naïve B cells	cells	0	N/A	0	N/A
AB_M ₀	Initial number for activated B cells derived from memory B cells	cells	0	N/A	0	N/A
SP_0	Initial number of short- lived plasma cells	cells	0	N/A	0	N/A
LP ₀	Initial number of long- lived plasma cells	cells	0	N/A	0	N/A
MB_0	Initial memory B cell number	cells	0	N/A	0	N/A
A_0	Initial amount of antibody	pmole	0	N/A	0	N/A

1. The initial binding affinity (K_a) of BCR and ADA to antigenic protein. It is assumed that the 17 sub-groups have binding affinities that are 2 fold different in adjacent groups.

$$K_{a,i} = 1 \times 10^{-6} \times 2^{[J - \frac{17+1}{2}]}, J = 1, 2, ..., 17$$

By setting up the binding affinities by this equation, the K_a for the middle group is $1 \cdot 10^{-6} \text{ pM}^{-1}$, and the affinities span a physiologically plausible range (18).

2. Initial naïve B cell number (NB₀). B cells and ADA are assumed to be heterogeneous and contain 17 sub-groups (18). It is assumed that the naïve B cell number distributes normally among the 17 clones.

Note: Parameters that are listed as "Ag-specific" will have specific values depending on the antigenic proteins. These parameters include PK parameters (e.g., $k_{a, Ag}$, k_{el}), antigen properties (e.g., N (number of T-epitope), k_{off} (MHC binding affinity of T-epitope)), and immune challenge conditions (e.g., Ag_0 (amount of injected antigen)).

1. Foote J, Eisen HN. Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci U S A. 1995;92(5):1254-6. Epub 1995/02/28.

2. Shi CS, Shi GY, Hsiao SM, Kao YC, Kuo KL, Ma CY, et al. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008;112(9):3661-70. Epub 2008/08/20.

3. Rossignol DP, Wasan KM, Choo E, Yau E, Wong N, Rose J, et al. Safety, pharmacokinetics, pharmacodynamics, and plasma lipoprotein distribution of eritoran (E5564) during continuous intravenous infusion into healthy volunteers. Antimicrobial agents and chemotherapy. 2004;48(9):3233-40. Epub 2004/08/26.

4. Merad M, Manz MG. Dendritic cell homeostasis. Blood. 2009;113(15):3418-27.

5. Lee HY, Topham DJ, Park SY, Hollenbaugh J, Treanor J, Mosmann TR, et al. Simulation and prediction of the adaptive immune response to influenza A virus infection. Journal of virology. 2009;83(14):7151-65. Epub 2009/05/15.

6. Saito Y, Yanagawa Y, Kikuchi K, Iijima N, Iwabuchi K, Onoe K. Low-dose lipopolysaccharide modifies the production of IL-12 by dendritic cells in response to various cytokines. Journal of clinical and experimental hematopathology : JCEH. 2006;46(1):31-6. Epub 2006/10/25.

7. Diao J, Winter E, Cantin C, Chen W, Xu L, Kelvin D, et al. In situ replication of immediate dendritic cell (DC) precursors contributes to conventional DC homeostasis in lymphoid tissue. J Immunol. 2006;176(12):7196-206. Epub 2006/06/06.

8. Agrawal NG, Linderman JJ. Mathematical modeling of helper T lymphocyte/antigen-presenting cell interactions: analysis of methods for modifying antigen processing and presentation. J Theor Biol. 1996;182(4):487-504. Epub 1996/10/21.

9. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature. 1997;388(6644):782-7.

10. Kimachi K, Croft M, Grey HM. The minimal number of antigen-major histocompatibility complex class II complexes required for activation of naive and primed T cells. Eur J Immunol. 1997;27(12):3310-7.

11. Hataye J, Moon JJ, Khoruts A, Reilly C, Jenkins MK. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science. 2006;312(5770):114-6.

12. McCune JM, Hanley MB, Cesar D, Halvorsen R, Hoh R, Schmidt D, et al. Factors influencing T-cell turnover in HIV-1-seropositive patients. The Journal of clinical investigation. 2000;105(5):R1-8. Epub 2000/03/11.

13. Lanzavecchia A, Sallusto F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science. 2000;290(5489):92-7.

14. Croft M, Bradley LM, Swain SL. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol. 1994;152(6):2675-85. Epub 1994/03/15.

15. Sundrud MS, Torres VJ, Unutmaz D, Cover TL. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc Natl Acad Sci U S A. 2004;101(20):7727-32. Epub 2004/05/07.

16. Kohler B. Mathematically modeling dynamics of T cell responses: predictions concerning the generation of memory cells. J Theor Biol. 2007;245(4):669-76.

17. Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, et al. Duration of antiviral immunity after smallpox vaccination. Nature medicine. 2003;9(9):1131-7. Epub 2003/08/20.

18. Bell GI. Mathematical model of clonal selection and antibody production. J Theor Biol. 1970;29(2):191-232. Epub 1970/11/01.

19. Yang J, Reth M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature. 2010;467(7314):465-9. Epub 2010/09/08.

20. In: Greer JP, Foerster J, Rodgers GM, Paraskevas F, Glader B, Arber DA, et al., editors. Wintrobe's Clinical Hematology2004. p. 453–6.

21. Yefenof E, Sanders VM, Uhr JW, Vitetta ES. In vitro activation of murine antigen-specific memory B cells by a T-dependent antigen. J Immunol. 1986;137(1):85-90. Epub 1986/07/01.

22. Tangye SG, Avery DT, Deenick EK, Hodgkin PD. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J Immunol. 2003;170(2):686-94. Epub 2003/01/09.

23. Fecteau JF, Roy A, Neron S. Peripheral blood CD27+ IgG+ B cells rapidly proliferate and differentiate into immunoglobulin-secreting cells after exposure to low CD154 interaction. Immunology. 2009;128(1 Suppl):e353-65. Epub 2008/11/20.

24. Schittek B, Rajewsky K. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature. 1990;346(6286):749-51.

25. Crotty S, Ahmed R. Immunological memory in humans. Seminars in immunology. 2004;16(3):197-203. Epub 2004/05/08.

26. Castiglione F, Toschi F, Bernaschi M, Succi S, Benedetti R, Falini B, et al. Computational modeling of the immune response to tumor antigens. J Theor Biol. 2005;237(4):390-400.

27. Slifka MK, Ahmed R. Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr Opin Immunol. 1998;10(3):252-8.

28. Auner HW, Beham-Schmid C, Dillon N, Sabbattini P. The life span of short-lived plasma cells is partly determined by a block on activation of apoptotic caspases acting in combination with endoplasmic reticulum stress. Blood.116(18):3445-55.

29. Hibi T, Dosch HM. Limiting dilution analysis of the B cell compartment in human bone marrow. Eur J Immunol. 1986;16(2):139-45. Epub 1986/02/01.

30. Vieira P, Rajewsky K. The half-lives of serum immunoglobulins in adult mice. Eur J Immunol. 1988;18(2):313-6. Epub 1988/02/01.

31. Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, et al. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity. 2007;27(2):203-13. Epub 2007/08/21.

32. Delluc S, Ravot G, Maillere B. Quantitative analysis of the CD4 T-cell repertoire specific to therapeutic antibodies in healthy donors. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2011;25(6):2040-8. Epub 2011/03/04.

33. Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol. 2003;171(10):4969-73. Epub 2003/11/11.