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Supplementary Material S1: Solution to the equations describing the10

genetic diversities within a period of isolation or connection11

In this section, we derive the solution to the recurrence equations describing the dynamics of within-12

and between-population genetic diversities using the equations describing corresponding identities13

from [1] (p. 64) .14

From [1], within- and between-population genetic identities at generation P + 1, fs(P + 1) and15

fb(P + 1), follow:16


fs(P + 1) = (1− µ)2[a(c+ (1− c)fs(P )) + (1− a)fb(P )]

fb(P + 1) = (1− µ)2[b(c+ (1− c)fs(P )) + (1− b)fb(P )]

(S1.1)

where a, b and c are described in the main text (equations 3b-d). When m > 0 (resp. m = 0),17

equations S1.1 describe the dynamics of genetic identities during a connection period (resp. isola-18

tion period).19

20

From S1.1, we can write the equations describing the dynamics of genetic diversities during21

isolation and connection periods, using the relationship h = 1−f , hs(P ) = 1−fs(P ) and hb(P ) =22
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1 − fb(P ), and denoting Hc(P ) and Hi(P ) the genetic diversities vector H(P ) =

 hs(P )

hb(P )

23

during connection (m > 0) and isolation periods (m = 0), respectively. We obtain:24

Hc(P + 1) = AcHc(P ) + Bc (S1.2a)
25

Hi(P + 1) = AiHi(P ) + Bi (S1.2b)

where Bc = (1 − µ)2

 1− ac

1− bc

, Bi = (1 − µ)2

 1− c

1

 and Ac and Ai are defined in the26

main text (equations 3a and 4).27

Equations S1.2a and S1.2b are both inhomogenous matrix difference equations. As matrix28

(I − Ac) (resp. (I − Ai)) is invertible, equation S1.2a (resp. S1.2b) has an equilibrium value,29

Ĥc=(I − Ac)
−1Bc (resp. Ĥc=(I − Ac)

−1Bc). Also, equations S1.2a and S1.2b each have a30

solution, which are presented in the main text equation 2.31

Supplementary Material S2: The dynamics of genetic diversities across32

cycles under the panmictic connection periods approximation33

In this section, we derive dynamics of the genetic diversities under cycles of connection and isola-34

tion in the case where populations are panmictic during the connection periods (i.e., m = n−1
n

). We35

demonstrate that genetic diversity changes monotonically across cycles; in addition, we show that36

the relaxation time of genetic diversity when periods are short correspond to that under constant37

migration.38

In this case, matrix Ac simplifies to:39

Ac = (1− µ)2

 1
n
(1− c) n−1

n

1
n
(1− c) n−1

n

 (S2.1)

and its eigenvalues simplify to:40

λ1 = (1− µ)2(1− c′)

λ2 = 0

(S2.2)
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where c′ = 1/2nN is the rate of genetic drift in a panmictic population of size nN.41

Consequently,42

Γc = (1− µ)4P (1− c′)P−1

 1
n
(1− c)P+1 n−1

n

1
n
(1− c)P+1 n−1

n

 (S2.3)

with a first eigenvalue λc = (1−µ)4P (1−c′)P−1( 1
n
(1−c)P+1+ n−1

n
), and a second eigenvalue which43

is null. Therefore, the changes of genetic diversity across cycles are monotonic, and in particular,44

the successive peaks of genetic diversity generated by connection events have a monotonically45

changing size.46

So we have, for k ≥ 1:47

h(k)c,s = h
(k)
c,b = λkc (

1
n
(1− c)P+1h

(0)
s + n−1

n
h
(0)
b

1
n
(1− c)P+1 + n−1

n

− h∗c) + h∗c (S2.4)

where h∗c is the equilibrium value of the cycles both within- and between-population.48

Interestingly, when P tends to 0 the relaxation time of hc,s and hc, b, log(δ)/log(λc), tends to49

the expected relaxation time during connection, PC (equation 10). This demonstrates that when50

periods are short, the relaxation time is approximately the same as under constant migration.51

Supplementary Material S3: Dynamics of genetic diversity under52

stochastic cycles of isolation and connection53

We showed that values of P , PW and PI determine the behavior of genetic diversity under cycles54

of isolation and connection. In this section, we consider that each period P is a random variable.55

We study the two following quantities: the probabilities that the isolation period is shorter than56

PW , P(P < PW ), and the probability that it is longer than PI , P(P > PI). Two scenarios are57

considered. Scenario A assumes that the probability of an event of isolation (resp. connection)58

is the same for each generation (i.e. independent of the generation t) but follows a geometric59

distribution. Scenario B assumes that the length of isolation and connection periods are regular60

but have a Gaussian noise, generating variance around the mean period P (i.e. dependent of the61

generation t). Thus, Scenario A considers time-homogeneous stochastic changes and Scenario B62
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considers time-inhomogeneous stochastic changes (following [2]).63

Dynamics of genetic diversity under scenario A64

Under scenario A, we assume that the probability p to switch from isolation state to connection state65

at a given generation is independent of the current generation t. Thus, the sequence of isolation66

and connection events is modelled as a two states time-homogeneous Markov process. Under such67

a scenario, the duration of each period (corresponding to the waiting time until state switch), P ,68

follows a geometric distribution of parameter p, p being the probability of the occurrence of the69

isolation or connection event (so the mean period is P̄ = 1/p). Thus we have:70


P(P < PW ) = 1− (1− p)PW

P(P > PI) = (1− p)PI
(S3.1)

Which yields71 
P(P < PW ) > 1− εW ⇔ p > 1− ε1/PWW

P(P > PI) > 1− εI ⇔ p < 1− (1− εI)1/PI
(S3.2)

Where εW and εI correspond to the probability that a random period P is larger than PW and lower72

than PI , respectively. Values of εW and εI close to 0 lead to a behavior of genetic diversities that73

follows what is expected under the short-period and long-period domains, respectively.74

Using the expression of PW and PI from equations 10 and 11, we obtain the following approx-75

imation for conditions (S3.2):76


P(P < PW ) > 1− εW ⇔ p > (1/2N + 2µ)

log(εW )

log(1− α)

P(P > PI) > 1− εI ⇔ p < 2µ
log(1− εI)
log(α)

(S3.3)

Where α is a value that determines the difference between genetic diversity during the isolation77

period and the expected genetic diversity in equilibrium isolated populations (by default, we use78

α = 0.05).79

From equation S3.3, it is interesting to see that the values of probability p which determine80

the shape of the equilibrium trajectory are approximately linear functions of 1/2N and µ. Thus,81
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as population size, N , increases, the probability that the trajectories of genetic diversity belong82

to the short-period domain increases. Similarly, as mutation decreases, µ, the probability that the83

trajectories of genetic diversity belong to the short-period domain increase and the probability that84

they belong to the large-period domain decreases. Numerical simulations confirm that when con-85

ditions from equation S3.3 are met, under scenario A, the genetic diversity reaches the equilibrium86

trajectory predicted under deterministic periods of isolation and connection, even though periods87

are stochastic (see figure S3.1).88
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Figure S3.1 Illustration of the impact of stochastic period length (scenario A, geometric distribution of
parameter p) on the trajectories of within- (hs) and between-population (hb) genetic diversities during cycles
of isolation and connection considering (a) short and (b) long expected periods E[P ] = 1/p. The dashed
and dotted lines represent the expected equilibrium value when populations are connected and isolated,
respectively. In (a), p > 1 − ε

1/PW
W (expected short-periods) and both hs and hb tend to the connection

equilibrium (dashed line). In (b), p < 1− (1− εI)1/PI (expected long-periods) and genetic diversities reach
their expected equilibrium value at the end of each connection period and isolation period. Parameters are
M = 40, n = 10, N = 2, 000, µ = 2.5 × 10−5, εW=εI=0.05. (a) p = 0.02 (E[P ] = 50), (b) p = 5.10−7

(E[P ] = 2.106).

Dynamics of genetic diversity under scenario B89

Under scenario B, the period P follows a truncated normal distribution (between 0 and ∞). The90

period of the fluctuations P (i.e. the waiting time until a switch from one state to another) follows91
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a discretized normal distribution of mean P̄ and variance σ2:92

f(P = t) =


K

σ
√

2π
e−

(t−P̄ )2

2σ2 if t > 0

0 else
(S3.4)

where K =
∑+∞

t=0 f(P=t) is a normalization constant taking into account the truncation and dis-93

cretization of the distribution of P .94

We can show that this distribution of waiting time corresponds to a time-inhomogeneous Markov95

process with two states (isolation and connection), and derive the corresponding transition probabil-96

ities p(t) as a function of time t. Indeed, starting from a given state (either connection or isolation),97

the distribution of P is linked to the transition probabilities p(t) through the relation:98

f(P = t) = (1− p(1))(1− p(2))...(1− p(t− 1))p(t) (S3.5)

From equation S3.4 and S3.5, we have:99

p(0) = f(P = 0) =
K

σ
√

2π
e−

P̄2

2σ2 (S3.6)

In addition, from equations S3.4 and S3.5, we have:100

p(t+ 1)
1− p(t)
p(t)

=
f(P = t+ 1)

f(P = t)
= e

−2(t−P̄ )−1

2σ2 (S3.7)

which yields101

p(t+ 1) =
p(t)

1− p(t)
e

−2(t−P̄ )−1

2σ2 (S3.8)

Using equation S3.8 recursively, starting from the expression of p(0) given in equation S3.6, leads102

to all values of p(t).103

Assuming that the probabilities, εW and εI , that the period P is lower than PW and larger than104

PI are small, respectively (i.e., εW = εI = 0.05) and using the 5% and 95% quantiles of a normal105
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distribution of parameters P and σ (P − 1.64σ and P + 1.64σ, respectively) we have:106


P(P < PW ) > 1− εW ⇔ P + 1.64σ < PW

P(P > PI) > 1− εI ⇔ P − 1.64σ > PI

(S3.9)

Interestingly, we can see from equation S3.9 that for a given P , increasing σ decreases the probabil-107

ity to reach the short-period domain and the intermediate-period domain, as then P + 1.64σ (resp.108

P − 1.64σ) becomes closer and possibly larger than PW (resp. smaller than PI). The gaussian109

noise does not change the qualitative behavior of genetic diversity through the cycles of isolation110

and connection (including the equilibrium trajectory) when conditions from equation S3.9 are met111

(see figure S1).112
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(a) P + 1.64σ < PW
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Figure S3.2 Illustration of the impact of stochastic period length (scenario B, duration following a normal
distribution of mean P and standard deviation σ) on the within- (hs) and between-population (hb) genetic
diversities during cycles of isolation and connection. The dashed and dotted lines represent the expected
value at equilibrium when populations are connected and isolated, respectively. In (a), P + 1.64σ < PW

(expected short-periods), both hs and hb tend to the connection equilibrium (dashed line). In (b), P−1.64σ >
PI (expected long-periods), genetic diversities reach their expected equilibrium value at the end of each
connection period and isolation period. Parameters are M = 40, n = 10, N = 2, 000, µ = 2.5× 10−5. (a)
P = 100, σ = 50 (b) P = 65, 000, σ = 1, 000.
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Figure S1 Impact of the window size on the estimated range of diversification rates (shaded area), as a
function of the period length P , for species representative of the main animal orders experiencing environ-
mental cycles of period 100, 000 years. (a) Sliding windows of size 0.4 log10(years); (b) Sliding windows
of size 0.1 log10(years). Correlations between P and diversification rate are significant in both (a) and (b)
(Spearman’s test).
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