
Supplementary Information

1 Supplementary Figures

Supplementary Figure 1

Supplementary Figure 1: Comparison of -log10 p values obtained from GEMMA using both PX-EM
and NR, with those from MTMM (black) or those from GEMMA using only PX-EM (red), for all
paired traits in the HMDP data set.
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Supplementary Figure 2

Supplementary Figure 2: Quantile-quantile plots for the p values obtained from GEMMA, for all
paired traits in the HMDP data set.
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Supplementary Figure 3

Supplementary Figure 3: Quantile-quantile plots for the p values obtained from MTMM, for all
paired traits in the HMDP data set.
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Supplementary Figure 4

Supplementary Figure 4: GEMMA p values are similar compared with MTMM p values for the
NFBC data.
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Supplementary Figure 5

Supplementary Figure 5: Quantile-quantile plots for the p values obtained from GEMMA, for all
paired traits in the NFBC1966 data set.
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Supplementary Figure 6

(a) HMDP-based simulations (b) NFBC1966-based simulations

(c) HMDP-based simulations (d) NFBC1966-based simulations

Supplementary Figure 6: Power comparison between the four-phenotype analysis and the two-
phenotype analysis with GEMMA, using simulations based on the HMDP data (a, c) or the
NFBC1966 data (b, d). x-axis shows the proportion of phenotypic variance in the affected traits
explained (PVE) by the SNP. Symbol size and line type indicate the number of phenotypes affected
by the causal SNP. For four-phenotype analysis (red), the genome-wide significance threshold after
Bonferroni correction for the number of SNPs is used (4.6 × 10−7 for HMDP-based simulations
and 1.6 × 10−7 for NFBC1966-based simulations). For two-phenotype analysis, either the same
genome-wide significance threshold is used (black) (c, d), or a significance threshold further cor-
rected for the six tests performed by the two-trait analysis (7.6×10−8 for HMDP-based simulations
and 2.6× 10−8 for NFBC1966-based simulations) is used (blue) (a, b).
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Supplementary Figure 7

(a) univariate and four-phenotype analyses

(b) two-phenotype analyses

Supplementary Figure 7: GEMMA -log10 p values for SNPs from the univariate LMM analyses (a),
the two-phenotype mvLMM analyses (b) and the joint four-phenotype mvLMM analyses (a) in the
NFBC1966 data are plotted against their physical chromosomal positions. Chromosomes are shown
in alternate colors. The red horizontal line indicates the significance level of 0.05 after Bonferroni
correction for the number of SNPs (1.6× 10−7). Only SNPs with a p value below 1× 10−5 in any
of the eleven tests are displayed.
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Supplementary Figure 8

(a) Imputation vs Dropping (HMDP) (b) Imputation vs Dropping (NFBC1966)

Supplementary Figure 8: Power comparison of the two approaches to deal with missing phenotypes
in GEMMA, using simulations based on the HMDP data (a) or the NFBC1966 data (b). The first
approach use only individuals with fully observed phenotypes (dropping, blue). The second ap-
proach imputes phenotypes before association tests (imputation, red). x-axis shows the percentage
of individuals having one missing phenotype. the point symbol and line type indicate the SNP
effect direction (compared with its effect on the first phenotype) and size (quantified by PVE) on
the second phenotype (+: opposite direction, 0.8PVE; ×: opposite direction, 0.2PVE; o: same
direction, 0.8PVE; ∆: same direction, 0.2PVE).
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2 Supplementary Tables
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Supplementary Table 1: List of SNPs that exceed the significance of 0.05 after Bonferroni correction
for both the number of SNPs and the number of tests from either the four-phenotype mvLMM
analysis or the univariate LMM analysis in the NFBC1966 data set. λGC is the genomic control
inflation factor. p values in the four-phenotype analysis below the threshold (1.6 × 10−7), and p
values in the univariate analysis below the threshold (3.9× 10−8) are in bold font. SNPs that are
significant only in the four-phenotype analysis but not in the univariate analysis are highlighted
in red, while SNPs that are significant only in the univariate analysis are highlighted in blue.
SNPs that are more significant in the four-phenotype analysis than in the univariate analysis (after
correcting for the number of tests performed) are highlighted in magenta (in addition to red).

SNP Position
mvLMM (p value) LMM (p value)

Four Traits HDL LDL TG CRP
(λGC = 0.979) (λGC = 0.998) (λGC = 1.003) (λGC = 1.000) (λGC = 0.993)

CELSR2 chromosome 1

rs646776 109620053 1.54× 10−16 9.17× 10−12 1.23× 10−15 9.30× 10−1 6.32× 10−2

CRP chromosome 1

rs1811472 157908973 1.19× 10−13 7.05× 10−2 8.81× 10−1 4.90× 10−1 1.42× 10−15

rs12093699 157914612 4.71× 10−12 8.75× 10−1 5.77× 10−1 8.39× 10−1 3.39× 10−13

rs2592887 157919563 8.79× 10−16 4.99× 10−2 9.34× 10−1 3.17× 10−1 5.13× 10−18

rs2794520 157945440 9.29× 10−21 2.98× 10−1 7.34× 10−1 9.91× 10−1 2.84× 10−22

rs11265260 157966663 2.27× 10−10 5.85× 10−2 1.55× 10−1 6.90× 10−1 6.28× 10−11

APOB chromosome 2

rs6728178 21047434 7.37× 10−9 3.46× 10−6 7.57× 10−7 3.29× 10−6 3.62× 10−1

rs6754295 21059688 7.99× 10−9 3.83× 10−6 6.27× 10−7 5.25× 10−6 3.48× 10−1

rs676210 21085029 2.09× 10−8 2.74× 10−6 8.01× 10−6 1.79× 10−6 4.65× 10−1

rs693 21085700 9.50× 10−8 4.19× 10−2 1.05× 10−9 4.00× 10−3 3.48× 10−1

rs673548 21091049 1.36× 10−8 2.19× 10−6 6.71× 10−6 1.32× 10−6 4.79× 10−1

rs1429974 21154275 6.33× 10−7 8.02× 10−2 1.65× 10−8 1.84× 10−1 9.48× 10−1

rs754524 21165046 2.44× 10−8 9.44× 10−2 7.82× 10−10 1.57× 10−1 6.10× 10−1

rs754523 21165196 5.68× 10−7 8.55× 10−2 1.55× 10−8 1.93× 10−1 9.66× 10−1

GCKR chromosome 2

rs1260326 27584444 1.16× 10−8 1.58× 10−1 1.14× 10−1 2.21× 10−10 5.25× 10−2

rs780094 27594741 1.02× 10−7 3.38× 10−1 2.63× 10−1 3.50× 10−9 1.44× 10−1

PPP1R3B chromosome 8

rs983309 9215142 6.40× 10−9 5.99× 10−5 2.57× 10−3 7.57× 10−1 1.55× 10−3

rs2126259 9222556 1.19× 10−9 1.67× 10−5 5.79× 10−4 4.24× 10−1 5.93× 10−3

LPL chromosome 8

rs10096633 19875201 8.96× 10−10 8.23× 10−7 9.36× 10−1 1.01× 10−8 5.22× 10−1

FADS chromosome 11

rs174537 61309256 5.55× 10−8 3.41× 10−2 3.76× 10−6 2.45× 10−2 8.44× 10−1

rs102275 61314379 3.25× 10−8 2.22× 10−2 3.06× 10−6 2.27× 10−2 9.05× 10−1

rs174546 61326406 2.80× 10−8 3.99× 10−2 2.25× 10−6 2.03× 10−2 9.04× 10−1

rs174556 61337211 6.88× 10−8 1.67× 10−1 7.02× 10−7 5.44× 10−2 9.89× 10−1

rs1535 61354548 9.40× 10−8 4.76× 10−2 4.11× 10−6 2.77× 10−2 8.71× 10−1

HNF1A chromosome 12

rs2650000 119873345 1.48× 10−10 2.16× 10−1 9.36× 10−1 6.48× 10−1 1.44× 10−12

rs7953249 119888107 2.21× 10−10 1.43× 10−1 9.16× 10−1 6.10× 10−1 2.38× 10−12

rs1169300 119915608 5.29× 10−8 6.76× 10−1 4.05× 10−1 5.27× 10−1 4.28× 10−9

rs2464196 119919810 5.82× 10−8 5.95× 10−1 5.44× 10−1 5.74× 10−1 3.58× 10−9

rs735396 119923227 1.19× 10−7 7.17× 10−1 3.22× 10−1 3.18× 10−1 2.24× 10−8

LIPC chromosome 15

rs166358 56468097 3.66× 10−10 8.57× 10−8 3.80× 10−2 2.29× 10−1 5.43× 10−1

rs1532085 56470658 2.52× 10−16 8.33× 10−13 3.46× 10−1 6.05× 10−2 6.21× 10−1

rs415799 56478046 7.47× 10−10 2.32× 10−8 5.72× 10−1 1.13× 10−1 9.06× 10−1

rs16940213 56482629 5.51× 10−8 3.19× 10−6 2.67× 10−1 1.31× 10−1 4.29× 10−1

rs473224 56524633 6.54× 10−9 1.57× 10−3 5.30× 10−1 7.64× 10−5 1.73× 10−1

rs261336 56529710 2.29× 10−9 6.51× 10−4 2.30× 10−1 7.08× 10−5 3.00× 10−1

CETP chromosome 16

rs9989419 55542640 1.88× 10−9 5.79× 10−10 7.63× 10−1 9.62× 10−1 6.12× 10−1

rs3764261 55550825 1.85× 10−38 6.56× 10−37 7.09× 10−2 2.52× 10−1 2.06× 10−1

rs1532624 55562980 1.30× 10−26 3.15× 10−27 1.64× 10−1 1.20× 10−1 1.05× 10−1

rs7499892 55564091 4.01× 10−22 9.93× 10−20 8.36× 10−1 4.51× 10−1 8.09× 10−1

LCAT chromosome 16

rs255049 66570972 5.34× 10−8 6.86× 10−9 1.44× 10−1 1.60× 10−1 7.50× 10−1

rs255052 66582496 9.72× 10−8 5.98× 10−9 2.01× 10−1 2.36× 10−1 7.02× 10−1

LDLR chromosome 19

rs11668477 11056030 1.09× 10−6 5.95× 10−2 2.04× 10−8 1.66× 10−2 7.18× 10−1

APO cluster chromosome 19

rs157580 50087106 1.51× 10−8 9.82× 10−3 1.06× 10−8 1.18× 10−3 2.42× 10−1

rs2075650 50087459 1.21× 10−12 4.95× 10−2 8.54× 10−6 2.20× 10−5 1.01× 10−5

HNF4A chromosome 20

rs1800961 42475778 1.21× 10−7 1.15× 10−8 3.78× 10−1 4.59× 10−3 4.99× 10−1
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Supplementary Table 2: List of SNPs that exceed the significance of 0.05 after Bonferroni correction
for both the number of SNPs and the number of tests from either the four-phenotype mvLMM
analysis or the two-phenotype mvLMM analysis in the NFBC1966 data set. λGC is the genomic
control inflation factor. p values in the four-phenotype analysis below the threshold (1.6 × 10−7),
and p values in the two-phenotype analysis below the threshold (2.6×10−8) are in bold font. SNPs
that are significant only in the four-phenotype analysis but not in the two-phenotype analysis are
highlighted in red. No SNP is significant only in the two-phenotype analysis. SNPs that are more
significant in the four-phenotype analysis than in the two-phenotype analysis (after correcting for
the number of tests performed) are highlighted in magenta (in addition to red).

SNP Position
mvLMM (p value)

Four Traits HDL-LDL HDL-TG HDL-CRP LDL-TG LDL-CRP TG-CRP
(λGC = 0.979) (λGC = 0.989) (λGC = 0.991) (λGC = 0.992) (λGC = 0.993) (λGC = 0.998) (λGC = 0.994)

CELSR2 chromosome 1

rs646776 109620053 1.54× 10−16 1.1× 10−14 1.98× 10−1 1.92× 10−2 3.06× 10−16 3.84× 10−16 1.61× 10−1

CRP chromosome 1

rs1811472 157908973 1.19× 10−13 1.82× 10−1 2.04× 10−1 9.17× 10−15 7.18× 10−1 9.23× 10−15 7.87× 10−15

rs12093699 157914612 4.71× 10−12 8.28× 10−1 9.70× 10−1 3.82× 10−13 7.99× 10−1 3.17× 10−12 5.40× 10−13

rs2592887 157919563 8.79× 10−16 1.45× 10−1 1.49× 10−1 4.24× 10−17 5.80× 10−1 4.12× 10−17 3.97× 10−17

rs2794520 157945440 9.29× 10−21 5.20× 10−1 5.34× 10−1 1.77× 10−21 9.31× 10−1 1.47× 10−21 2.82× 10−22

rs11265260 157966663 2.27× 10−10 3.98× 10−2 7.62× 10−2 5.11× 10−10 3.68× 10−1 5.94× 10−11 6.07× 10−11

APOB chromosome 2

rs6728178 21047434 7.37× 10−9 1.48× 10−9 2.03× 10−7 2.63× 10−5 3.02× 10−8 4.92× 10−6 2.23× 10−5

rs6754295 21059688 7.99× 10−9 1.37× 10−9 2.98× 10−7 2.78× 10−5 3.61× 10−8 4.01× 10−6 3.40× 10−5

rs676210 21085029 2.09× 10−8 9.04× 10−9 1.11× 10−7 2.03× 10−5 1.07× 10−7 4.91× 10−5 1.18× 10−5

rs693 21085700 9.50× 10−8 3.95× 10−9 9.83× 10−3 1.26× 10−1 5.94× 10−9 9.09× 10−9 1.81× 10−2

rs673548 21091049 1.36× 10−8 6.45× 10−9 7.78× 10−8 1.64× 10−5 7.52× 10−8 4.18× 10−5 8.73× 10−6

rs754524 21165046 2.44× 10−8 4.15× 10−9 1.79× 10−1 1.63× 10−1 4.90× 10−9 3.01× 10−9 2.46× 10−1

GCKR chromosome 2

rs1260326 27584444 1.16× 10−8 1.38× 10−1 9.00× 10−10 8.54× 10−2 1.51× 10−9 5.77× 10−2 1.36× 10−9

rs780094 27594741 1.02× 10−7 3.83× 10−1 9.08× 10−9 2.61× 10−1 1.82× 10−8 2.11× 10−1 2.23× 10−8

PPP1R3B chromosome 8

rs983309 9215142 6.40× 10−9 5.04× 10−7 1.24× 10−4 7.54× 10−8 3.98× 10−3 1.71× 10−4 3.30× 10−3

rs2126259 9222556 1.19× 10−9 2.41× 10−8 6.04× 10−5 1.02× 10−7 3.11× 10−4 1.46× 10−4 6.95× 10−3

LPL chromosome 8

rs10096633 19875201 8.96× 10−10 4.38× 10−6 1.10× 10−9 2.53× 10−6 1.20× 10−8 8.12× 10−1 3.01× 10−8

FADS chromosome 11

rs174537 61309256 5.55× 10−8 5.10× 10−7 3.43× 10−2 8.73× 10−2 8.47× 10−9 2.32× 10−5 5.96× 10−2

rs102275 61314379 3.25× 10−8 2.54× 10−7 2.51× 10−2 6.23× 10−2 5.90× 10−9 1.85× 10−5 5.91× 10−2

rs174546 61326406 2.80× 10−8 3.6× 10−7 3.32× 10−2 1.06× 10−1 3.35× 10−9 1.38× 10−5 5.34× 10−2

rs174556 61337211 6.88× 10−8 5.58× 10−7 1.32× 10−1 3.84× 10−1 4.08× 10−9 4.04× 10−6 1.45× 10−1

rs1535 61354548 9.40× 10−8 8.18× 10−7 4.48× 10−2 1.21× 10−1 1.18× 10−8 2.50× 10−5 6.91× 10−2

HNF1A chromosome 12

rs2650000 119873345 1.48× 10−10 4.54× 10−1 4.53× 10−1 1.67× 10−11 8.76× 10−1 1.02× 10−11 4.90× 10−12

rs7953249 119888107 2.21× 10−10 3.31× 10−1 3.35× 10−1 2.45× 10−11 8.41× 10−1 1.67× 10−11 9.40× 10−12

rs1169300 119915608 5.29× 10−8 6.16× 10−1 6.20× 10−1 2.55× 10−8 6.81× 10−1 1.26× 10−8 3.13× 10−9

rs2464196 119919810 5.82× 10−8 6.90× 10−1 5.99× 10−1 2.31× 10−8 7.92× 10−1 1.44× 10−8 3.05× 10−9

rs735396 119923227 1.19× 10−7 5.45× 10−1 4.23× 10−1 1.17× 10−7 4.96× 10−1 5.24× 10−8 8.3× 10−9

LIPC chromosome 15

rs166358 56468097 3.66× 10−10 2.34× 10−7 8.28× 10−10 1.39× 10−7 1.58× 10−2 8.50× 10−2 4.45× 10−1

rs1532085 56470658 2.52× 10−16 1.21× 10−12 1.06× 10−17 1.21× 10−12 1.67× 10−1 5.87× 10−1 1.63× 10−1

rs415799 56478046 7.47× 10−10 7.02× 10−8 2.87× 10−11 1.03× 10−7 2.90× 10−1 8.39× 10−1 2.39× 10−1

rs16940213 56482629 5.51× 10−8 1.71× 10−5 2.37× 10−8 3.84× 10−6 7.46× 10−2 3.62× 10−1 2.85× 10−1

rs473224 56524633 6.54× 10−9 3.80× 10−3 7.00× 10−10 9.57× 10−4 3.09× 10−4 3.47× 10−1 2.80× 10−4

rs261336 56529710 2.29× 10−9 7.29× 10−4 1.33× 10−10 6.20× 10−4 3.68× 10−4 3.19× 10−1 3.35× 10−4

CETP chromosome 16

rs9989419 55542640 1.88× 10−9 4.05× 10−9 9.67× 10−11 2.94× 10−9 9.21× 10−1 8.41× 10−1 8.43× 10−1

rs3764261 55550825 1.85× 10−38 1.06× 10−35 1.19× 10−39 2.19× 10−36 1.64× 10−1 1.07× 10−1 3.02× 10−1

rs1532624 55562980 1.30× 10−26 4.42× 10−26 4.79× 10−28 2.04× 10−26 1.89× 10−1 1.25× 10−1 1.22× 10−1

rs7499892 55564091 4.01× 10−22 3.88× 10−19 1.13× 10−23 2.25× 10−19 7.52× 10−1 9.44× 10−1 6.62× 10−1

LCAT chromosome 16

rs255049 66570972 5.34× 10−8 4.07× 10−9 3.25× 10−8 2.85× 10−8 4.75× 10−2 3.29× 10−1 3.32× 10−1

rs255052 66582496 9.72× 10−8 5.24× 10−9 2.10× 10−8 4.58× 10−8 1.06× 10−1 3.81× 10−1 5.12× 10−1

APO cluster chromosome 19

rs157580 50087106 1.51× 10−8 1.42× 10−8 1.95× 10−3 7.83× 10−3 2.57× 10−8 1.60× 10−8 7.35× 10−4

rs2075650 50087459 1.21× 10−12 1.93× 10−5 1.17× 10−4 7.21× 10−7 6.24× 10−7 2.88× 10−10 2.27× 10−11

HNF4A chromosome 20

rs1800961 42475778 1.21× 10−7 8.41× 10−8 7.61× 10−8 1.05× 10−8 1.81× 10−2 5.05× 10−1 6.03× 10−3
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3 Supplementary Note

3.1 Multivariate Linear Mixed Model

We consider the multivariate linear mixed model1,

Ỹ = AW̃ + βx̃T + G̃ + Ẽ; G̃ ∼ MNd×n(0,Vg,K), Ẽ ∼ MNd×n(0,Ve, In×n), (1)

where n is the number of individuals, d is the number of phenotypes, Ỹ is a d by n matrix of

phenotypes, W̃ is a c by n matrix of covariates including a row of 1s as intercept and A is a d

by c matrix of corresponding coefficients, x̃ is a n-vector of genotype for a particular marker and

β is a d-vector of its effect sizes for the d phenotypes, G̃ is a d by n matrix of random effects, Ẽ

is a d by n matrix of residual errors, K is a known n by n relatedness matrix, In×n is a n by n

identity matrix, Vg is a d by d symmetric matrix of genetic variance component, Ve is a d by d

symmetric matrix of environmental variance component and MNd×n(0,V1,V2) denotes the d× n
matrix normal distribution with mean 0, row covariance matrix V1 (d by d), and column covariance

matrix V2 (n by n).

We group all covariates together into a (c+1) by n matrix X̃ =

(
W̃

x̃T

)
, and group all coefficients

together into a d by (c+ 1) matrix B = (A,β).

Following2,3,4, we perform an eigen-decomposition of the relatedness matrix K = UkDkU
T
k ,

where Uk is a n by n orthogonal matrix of eigen vectors and Dk is a diagonal n by n matrix filled

with the corresponding eigen values, or diag(δ1, · · · , δn). We then obtain transformed phenotype

matrix Y = ỸUk and transformed covariate matrix X = X̃Uk. We further denote G = G̃Uk

as the transformed random effect matrix, and E = ẼUk as the transformed residual error matrix.

Now, the transformed phenotypes given the transformed covariates follow

Y = BX + G + E; G ∼ MN(0,Vg,Dk), E ∼ MN(0,Ve, In×n), (2)

which is equivalent to

y = XT ⊗ Id×db + g + e; g ∼ MVN(0,Dk ⊗Vg), e ∼ MVN(0, In×n ⊗Ve), (3)

where y = vec(Y), b = vec(B), g = vec(G), e = vec(E), vec denotes vectorization (i.e. stacking

columns), MVN denotes multivariate normal distribution and ⊗ denotes Kronecker product.

Therefore, for each individual l, the transformed phenotypes given the transformed covariates

follow independent (but not identical) multivariate normal distributions

yl = Bxl + gl + el; gl ∼ MVN(0, δlVg), el ∼ MVN(0,Ve), (4)

12



with variance Vl = δlVg + Ve, where yl is the lth column vector of Y, xl is lth column vector of

X, gl is lth column vector of G, el is lth column vector of E, ∀l = 1, · · · , n.

3.2 Optimization Method Overview

We are interested in obtaining parameter estimates from this model, which are used further to obtain

statistics and p values to test the null hypothesis that the marker effect sizes for all phenotypes are

zero, H0 : β = 0, where 0 is a d-vector of zeros, against the general alternative H1 : β 6= 0. This

test, in the bivariate case, corresponds to the “full test” in MTMM. We do not consider either the

“interaction test” or the “common test” in MTMM here.

Parameter estimation in a mvLMM presents substantial computational challenges, in part be-

cause it requires multi-dimensional optimization for a potentially non-convex function. Procedures

for multi-dimensional optimization can be classified into two categories based on whether or not

they use derivatives. Derivative-free methods evaluate the (restricted) likelihood function for ev-

ery combination of parameters along a searching path5,6,7. They are easy to implement, but are

often computationally inefficient: their time complexity grows exponentially with the number of

parameters, making them impractical for a reasonably large number of phenotypes8. (For instance,

the original paper on the derivative-free method for mvLMM only showed examples for two phe-

notypes7.) The derivative-based methods include the expectation maximization (EM) algorithm9

and its accelerated version using parameter expansion (PX-EM)10,11; and the Newton-Raphson

(NR) algorithm12,13 and its variant, the average information (AI) algorithm14. Because of the

stability of EM-type algorithms (each iteration is guaranteed to increase the likelihood), and the

faster convergence rate of NR-type algorithms, the two are often combined to gain the benefits of

both (e.g. PX-AI algorithm)15. This strategy is used in many existing software packages, including

the free packages GCTA16,17, and WOMBAT18, and the commercial package ASREML14.

Unfortunately, even with the PX-AI algorithm, the per-iteration computation time for fitting a

mvLMM still increases cubically, or worse, both with the number of individuals (n) and with the

number of phenotypes (d) (the computational complexity is O(n3d3) for EM and O(n3d7) for AI).

This is because existing method require repeated “inversion” (actually, solving a system of linear

equations) of an nd × nd matrix, in every iteration of the EM-like algorithm, and for evaluating

every element inside the average information matrix (which is a d(d+1) by d(d+1) matrix) during

each iteration of the NR-like algorithm, a computationally expensive procedure which increases

cubically with both n and d (O(n3d3)). This becomes especially problematic in GWASs where the

optimizations are performed for every SNP in turn. To address this issue,19 recently introduced the

multi-trait mixed model (MTMM) method19, implemented in the MTMM software, to use an ap-

proximation strategy20,21,22 to reduce computation time from cubic to quadratic in n. Specifically,

the approximation avoids repeatedly re-optimizing the variance components under the alternative

model for each SNP, by re-using part of the pre-estimated variance components under the null
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model (fit using the software ASREML) to approximate the likelihood ratio statistic. However, the

approximated likelihood ratio statistic 2l1(β̃1, θ̃
′
1, θ̂0)−2l0(θ̂

′
0, θ̂0) is guaranteed to be less than the

true likelihood ratio statistic 2l1(β̂1, θ̂
′
1, θ̂1)−2l0(θ̂

′
0, θ̂0), since l1(β̃1, θ̃

′
1, θ̂0) < l1(β̂1, θ̂

′
1, θ̂1), where

θ are part of the variance component parameters to be fixed from H0, θ
′ are part of the variance

component parameters to be estimated from H1, θ̂, θ̂
′

and β̂ are MLE estimates, while θ̃
′
1 and β̃

are conditional MLE estimates given θ̂0.

Here, we present novel algorithms that substantially reduce the computation burden. Our

algorithms combine recently described univariate LMM tricks2,3,4, with the simultaneous diagonal-

ization (known as the canonical transformation in animal breeding literatures7,23) for the PX-EM

algorithm, and with a few block-diagonal matrix and sparse matrix properties for the NR algorithm.

In effect, our algorithms provide the multivariate analogue of the univariate algorithms EMMA24,

and FaSTLMM/GEMMA/CM2,3,4. Specifically, with one O(n3) operation upfront,

1. The EMMA algorithm reduced the computational cost per iteration for a single univariate

LMM (d = 1) from O(n3) to O(n); in the multivariate case our algorithms reduce O(n3d3)

to O(nd2) for EM and reduce O(n3d7) to O(nd6) for NR .

2. FaSTLMM/GEMMA/CM reduced the computation cost per SNP for univariate LMMs from

O(n3) to O(n2) (or O(n) if K has low rank2,25); in the multivariate case our algorithms reduce

O(n3d3) per SNP to O(n2) (or O(n) if K has low rank).

Our algorithms also obviate the need for the widely used AI algorithm14 because our imple-

mentation of the NR algorithm has the same time complexity and practical computation time.

For numerical optimization in the null model, we initialize the two variance components to

be both diagonal matrices, with diagonal elements estimated from the corresponding univariate

LMMs. We then perform the PX-EM algorithm, as described in details below, for 10,000 iterations

or until the log likelihood increase between two consecutive iterations is below 10−4. Afterwards,

we perform the NR algorithm, as described in details below, using variance component estimates

from the previous PX-EM algorithm, for another 100 iterations or until the log likelihood increase

between two consecutive iterations is below 10−4. For GWAS applications, for each SNP tested, we

use the variance components estimated from the null model as initial values. Because for moderate d

the PX-EM algorithm is considerably faster than the NR algorithm, we perform the NR algorithm

only for markers where the p value after the PX-EM algorithm is below 1.0 × 10−3. With the

above thresholds, it often takes hundreds to thousands PX-EM iterations followed by a dozen NR

iterations to optimize the null model, and often takes a few dozen PX-EM iterations followed by a

couple NR iterations to optimize the alternative model for each SNP. Notice that all the precision

thresholds and maximal iterations listed above can be adjusted in GEMMA.

In our experience, both the PX-EM and NR algorithms are required for optimization, consistent

with previous observations (e.g.14,15,18,16,17). On one hand, although the PX-EM algorithm is

14



stable (each iteration is guaranteed to increase the likelihood), it is often too slow to converge. For

example, in many data sets we have worked on, even thousands of PX-EM iterations may not be

sufficient to maximize the null model (e.g. the difference between the resulting log likelihood and

the true maximal value can be as large as one). And in many GWAS applications, using the PX-EM

algorithm alone will fail to optimize the alternative model in a large fraction of SNPs (an average

of 83% of the p values from the pairwise analyses using PX-EM alone are closer to the MTMM p

values than to the p values obtained by the PX-EM plus NR algorithms in the HMDP data set;

Supplementary Figure 1). On the other hand, the NR algorithm is fast to converge given a good

initial value (only takes a few iterations), but can easily fail to do so given a bad starting point.

Therefore, we follow previous approaches14,15,18,16,17 and combine the two algorithms together,

with the PX-EM algorithm providing a good starting value for the following NR algorithm. In

addition, for moderate d the PX-EM algorithm is considerably faster than the NR algorithm, and

so for GWAS applications, we perform the NR algorithm only for markers where the p value after

the PX-EM algorithm is < 1.0× 10−3 (or a user adjusted threshold). This strategy makes GWAS

analysis a few times faster than using NR algorithm for every marker, without noticeable loss of

accuracy.

3.3 PX-EM Algorithms

Here, we describe an expectation conditional maximization (ECM) algorithm26 for finding maxi-

mum likelihood estimates (MLE) in mvLMM, an expectation maximization (EM) algorithm9 for

finding restricted maximum likelihood estimates (REMLE) in mvLMM, parameter expansion (PX)

versions10,11 of the two, and their efficient computations.

3.3.1 An ECM Algorithm for MLE

We view G as missing values, and we have the joint likelihood function as

log l(Y,G|B,Vg,Ve) =

n∑
l=1

{−d log(2π)− 1

2
log |Ve| −

1

2
log |δlVg| −

1

2
eTl V−1e el−

1

2
gTl (δlVg)

−1gl}.

(5)

The conditional distribution of G given Y and the current values of B(t), V
(t)
g , V

(t)
e follows

gl|yl,B(t),V(t)
g ,V(t)

e ∼ MVN(ĝ
(t)
l , Σ̂

(t)
l ), (6)

where V
(t)
l = δlV

(t)
g + V

(t)
e , ĝ

(t)
l = δlV

(t)
g (V

(t)
l )−1(yl −B(t)xl) and Σ̂

(t)
l = δlV

(t)
g (V

(t)
l )−1V

(t)
e .

The expected value of the log likelihood function, with respect to the conditional distribution
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of G given Y and the current values of B(t), V
(t)
g , V

(t)
e , is

E
G|Y,B(t),V

(t)
g ,V

(t)
e

[log l(Y,G|B,Vg,Ve)]

=

n∑
l=1

{−d log(2π)− 1

2
log |δlVg| −

1

2
log |Ve| −

1

2
(yl −Bxl)

TV−1e (yl −Bxl)

− 1

2
(ĝ

(t)
l )T ((δlVg)

−1 + V−1e )−1ĝ
(t)
l −

1

2
trace(((δlVg)

−1 + V−1e )−1Σ̂
(t)
l ) + ĝ

(t)
l V−1e (yl −Bxl)}.

(7)

We optimize the above expectation using two conditional maximization steps, in which B(t+1) is

updated conditional on V
(t)
g and V

(t)
e , and V

(t+1)
g , V

(t+1)
e are updated conditional on B(t+1), V

(t)
g

and V
(t)
e , or

B(t+1) = (Y − Ĝ(t))X(XXT )−1, (8)

V(t+1)
g =

1

n

n∑
l=1

δ−1l (ĝ
(t)
l (ĝ

(t)
l )T + Σ̂

(t)
l ), (9)

V(t+1)
e =

1

n

n∑
l=1

(ê
(t)
l (ê

(t)
l )T + Σ̂

(t)
l ), (10)

where Ĝ(t) is a d by n matrix with lth column ĝ
(t)
l , ê

(t)
l = yl − B(t+1)xl − ĝ

(t)
l . We note that

the derivation of the last two equations requires obtaining the partial derivatives with respect to

vec(Vg) and vec(Ve) based on a few matrix calculus properties listed in3.

3.3.2 An EM Algorithm for REMLE

We view both B and G as missing values. The joint likelihood function remains the same as in

equation 5, and the joint conditional distribution of B, G given Y and the current values of V
(t)
g ,

V
(t)
e is(

b

g

)
|Y,V(t)

g ,V(t)
e ∼ MVN(

(
Σ̂

(t)
bb Σ̂

(t)
bg

Σ̂
(t)
gb Σ̂

(t)
gg

)(
(X⊗ (V

(t)
e )−1)y

(In×n ⊗ (V
(t)
e )−1)y

)
,

(
Σ̂

(t)
bb Σ̂

(t)
bg

Σ̂
(t)
gb Σ̂

(t)
gg

)
), (11)

where (
Σ̂

(t)
bb Σ̂

(t)
bg

Σ̂
(t)
gb Σ̂

(t)
gg

)
=

(
XXT ⊗ (V

(t)
e )−1 X⊗ (V

(t)
e )−1

XT ⊗ (V
(t)
e )−1 D−1k ⊗ (V

(t)
g )−1 + In×n ⊗ (V

(t)
e )−1

)−1
. (12)
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Therefore,

gl|Y,V(t)
g ,V(t)

e ∼ MVN(ĝ
(t)
l , Σ̂

(t)
l,gg), (13)

el = yl −Bxl − gl|Y,V(t)
g ,V(t)

e ∼ MVN(ê
(t)
l , Σ̂

(t)
l,ee), (14)

where

b̂(t) = Σ̂
(t)
bb

n∑
l=1

xk ⊗ (V
(t)
l )−1yl, (15)

ĝ
(t)
l =

n∑
l=1

δlV
(t)
g (V

(t)
l )−1(yl − B̂(t)xl), (16)

ê
(t)
l = yl − B̂(t)xl − ĝ

(t)
l , (17)

Σ̂
(t)
bb =

n∑
l=1

xlx
T
l ⊗ (V

(t)
l )−1, (18)

Σ̂
(t)
l,gg = δlV

(t)
g (V

(t)
l )−1 + (xTl ⊗ δlV(t)

g (V
(t)
l )−1)(

n∑
l=1

xlx
T
l ⊗ δlV(t)

g (V
(t)
l )−1)−1(xl ⊗ δlV(t)

g (V
(t)
l )−1),

(19)

Σ̂
(t)
l,ee = δlV

(t)
g (V

(t)
l )−1 + (xTl ⊗ (V

(t)
l )−1)(

n∑
l=1

xlx
T
l ⊗ δlV(t)

g (V
(t)
l )−1)−1(xl ⊗ (V

(t)
l )−1), (20)

and B̂(t) is the matrix satisfies vec(B̂(t)) = b̂(t).

The expected value of the log likelihood function, with respect to the conditional distribution

of B, G given Y and the current values of V
(t)
g , V

(t)
e , is

E
B,G|Y,V(t)

g ,V
(t)
e

[log l(Y,G,B|Vg,Ve)]

=
n∑
l=1

{−d log(2π)− 1

2
log |Ve| −

1

2
log |δlVg| −

1

2
(ê

(t)
l )TV−1e ê

(t)
l −

1

2
trace(V−1e Σ̂

(t)
l,ee)

− 1

2
(ĝ

(t)
l )T (δlVg)

−1ĝ
(t)
l −

1

2
trace((δlVg)

−1Σ̂
(t)
l,gg)}. (21)

We update V
(t+1)
g and V

(t+1)
e to maximize the above expectation

V(t+1)
g =

1

n

n∑
l=1

δ−1l (ĝ
(t)
l (ĝ

(t)
l )T + Σ̂

(t)
l,gg), (22)

V(t+1)
e =

1

n

n∑
l=1

(ê
(t)
l (ê

(t)
l )T + Σ̂

(t)
l,ee). (23)
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3.3.3 PX versions of ECM and EM

We introduce a latent parameter Va as a d by d matrix to ensure Vg = VaV
∗
gVa. The mvLMM

with the new parameterization becomes

yl = Bxl + Vag
∗
l + el g∗l ∼ MVN(0, δlV

∗
g) el ∼ MVN(0,Ve), (24)

The expectation of the log likelihood function in the ECM or the EM algorithm is taken at V
(t)
a =

Id×d. The updates for V∗g, Ve (and B for ECM) remain the same, and the update for Va is

V(t+1)
a = (

1

n

n∑
l=1

E((yl −Bxl)(g
∗
l )
T ))(

1

n

n∑
l=1

E(g∗l (g
∗
l )
T ))−1. (25)

where the expectations are taken with respect to the conditional distribution of G∗ (and B for EM)

given Y and the current values of V
(t)
g , V

(t)
e (and B(t+1) for ECM).

3.3.4 Efficient computation

The most computationally expensive part of the ECM/EM algorithm is the evaluation of each V−1l
and further the calculation of quantities that involve these inverses. A naive brute force approach

will make the computation cubic in the number of traits, which can be avoided, by performing

a transformation that further converts correlated traits into uncorrelated ones (in addition to the

transformation that we have already performed to convert correlated individuals into uncorrelated

ones). The idea behind this is commonly referred to as the canonical transformation in animal

breeding literatures (e.g.7,23 and references there in), or as the simultaneous diagonalization in

linear algebra.

More specifically, for each value of Vg and Ve, we perform an eigen decomposition of the matrix

V
− 1

2
e VgV

− 1
2

e = UλDλU
T
λ , and we transform each phenotype vector yl and each covariate vector

xl by multiplying UT
λV
− 1

2
e . After that, for each individual, the transformed phenotypes given

the transformed genotypes will follow independent univariate normal distributions (rather than

multivariate normal distributions). Subsequently, each V−1l = V
− 1

2
e Uλ(Dλ + Id×d)

−1UT
λV
− 1

2
e and

quantities involving V−1l can be calculated efficiently.

Therefore, the computation complexity for each iteration in the (PX) ECM/EM algorithm is

O(nc2d2).

3.4 Newton-Raphson’s Algorithms

Here, we describe Newton-Raphson’s algorithms for MLE and REMLE estimation in mvLMM.

Although an average-information algorithm14 has often been used in place of a standard Newton-

Raphson’s algorithm, we found it unnecessary when we use the efficient algorithms described below.
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3.4.1 Target functions and partial derivatives

Both the log-likelihood function and the log-restricted likelihood function can be expressed as

functions for Vg and Ve only:

l(Vg,Ve) = −nd
2

log(2π)− 1

2
log |H| − 1

2
yTPy, (26)

lr(Vg,Ve) = −(n− c− 1)d

2
log(2π) +

d

2
log |XXT | − 1

2
log |H|

− 1

2
log |(X⊗ Id×d)H

−1(XT ⊗ Id×d)| −
1

2
yTPy, (27)

where

H = Dk ⊗Vg + In×n ⊗Ve = diag(Vl), (28)

P = H−1 −H−1(XT ⊗ Id×d)((X⊗ Id×d)H
−1(XT ⊗ Id×d))

−1(X⊗ Id×d)H
−1. (29)

With a slight abuse of notation, we denote vg,ij as the ijth element of Vg, ve,ij as the ijth element

of Ve, Ii as a d-vector with ith element 1 and other elements 0, and Iij = IiI
T
j as a d by d matrix

with ijth element 1 and other elements 0. We have

∂vec(Dk ⊗Vg)

∂vg,ij
= vec(Dk ⊗ (Iij + Iji))

1

1 + 1i=j
, (30)

∂vec(In×n ⊗Ve)

∂ve,ij
= vec(In×n ⊗ (Iij + Iji))

1

1 + 1i=j
, (31)

where 1i=j is an indicator function that takes value 1 when i equals j and 0 otherwise.

With a few matrix calculus properties listed in3, we obtain the first order partial derivatives

for the log-likelihood and the log-restricted likelihood functions

∂l

∂vg,ij
=

1

1 + 1i=j
{−1

2
trace(H−1(Dk ⊗ (Iij + Iji))) +

1

2
yTP(Dk ⊗ (Iij + Iji))Py}, (32)

∂l

∂ve,ij
=

1

1 + 1i=j
{−1

2
trace(H−1(In×n ⊗ (Iij + Iji))) +

1

2
yTP(In×n ⊗ (Iij + Iji))Py}, (33)

∂lr
∂vg,ij

=
1

1 + 1i=j
{−1

2
trace(P(Dk ⊗ (Iij + Iji))) +

1

2
yTP(Dk ⊗ (Iij + Iji))Py}, (34)

∂lr
∂ve,ij

=
1

1 + 1i=j
{−1

2
trace(P(In×n ⊗ (Iij + Iji))) +

1

2
yTP(In×n ⊗ (Iij + Iji))Py}, (35)
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and the second order partial derivatives for the log-likelihood function

∂l2

∂vg,ij∂vg,i′j′
=

1

(1 + 1i=j)(1 + 1i′=j′)
{1

2
trace(H−1(Dk ⊗ (Iij + Iji))H

−1(Dk ⊗ (Ii′j′ + Ij′i′)))

− yTP(Dk ⊗ (Iij + Iji))P(Dk ⊗ (Ii′j′ + Ij′i′))Py}, (36)

∂l2

∂vg,ij∂ve,i′j′
=

1

(1 + 1i=j)(1 + 1i′=j′)
{1

2
trace(H−1(Dk ⊗ (Iij + Iji))H

−1(In×n ⊗ (Ii′j′ + Ij′i′)))

− yTP(Dk ⊗ (Iij + Iji))P(In×n ⊗ (Ii′j′ + Ij′i′))Py}, (37)

∂l2

∂ve,ij∂ve,i′j′
=

1

(1 + 1i=j)(1 + 1i′=j′)
{1

2
trace(H−1(In×n ⊗ (Iij + Iji))H

−1(In×n ⊗ (Ii′j′ + Ij′i′)))

− yTP(In×n ⊗ (Iij + Iji))P(In×n ⊗ (Ii′j′ + Ij′i′))Py}, (38)

and second order partial derivatives for the log-restricted likelihood function

∂l2r
∂vg,ij∂vg,i′j′

=
1

(1 + 1i=j)(1 + 1i′=j′)
{1

2
trace(P(Dk ⊗ (Iij + Iji))P(Dk ⊗ (Ii′j′ + Ij′i′)))

− yTP(Dk ⊗ (Iij + Iji))P(Dk ⊗ (Ii′j′ + Ij′i′))Py}, (39)

∂l2r
∂vg,ij∂ve,i′j′

=
1

(1 + 1i=j)(1 + 1i′=j′)
{1

2
trace(P(Dk ⊗ (Iij + Iji))P(In×n ⊗ (Ii′j′ + Ij′i′)))

− yTP(Dk ⊗ (Iij + Iji))P(In×n ⊗ (Ii′j′ + Ij′i′))Py}, (40)

∂l2r
∂ve,ij∂ve,i′j′

=
1

(1 + 1i=j)(1 + 1i′=j′)
{1

2
trace(P(In×n ⊗ (Iij + Iji))P(In×n ⊗ (Ii′j′ + Ij′i′)))

− yTP(In×n ⊗ (Iij + Iji))P(In×n ⊗ (Ii′j′ + Ij′i′))Py}. (41)

3.4.2 Efficient computation

We describe in this section the efficient calculations of the target functions, the first-order partial

derivatives with respect to vg,ij , and the second-order partial derivatives with respect to vg,ij and

vg,i′j′ . The first-order and second-order partial derivatives with respect to other parameters can

be calculated in a similar fashion. The calculations described here use basic properties of block

diagonal matrices and sparse matrices.

We denote Q = (X ⊗ Id×d)H
−1(XT ⊗ Id×d), q = (X ⊗ Id×d)H

−1y, q = yTH−1y, and with a
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slight abuse of notation, denote

Qg
ij = (X⊗ Id×d)H

−1(Dk ⊗ Iij)H
−1(XT ⊗ Id×d), (42)

qgij = (X⊗ Id×d)H
−1(Dk ⊗ Iij)H

−1y, (43)

qgij = yTH−1(Dk ⊗ Iij)H
−1y, (44)

Qgg
ij,i′j′ = (X⊗ Id×d)H

−1(Dk ⊗ Iij)H
−1(Dk ⊗ Ii′j′)H

−1(XT ⊗ Id×d), (45)

qggij,i′j′ = (X⊗ Id×d)H
−1(Dk ⊗ Iij)H

−1(Dk ⊗ Ii′j′)H
−1y, (46)

qggij,i′j′ = yTH−1(Dk ⊗ Iij)H
−1(Dk ⊗ Ii′j′)H

−1y. (47)

For the trace terms, we have

trace(P(Dk ⊗ Iij)) = trace(H−1(Dk ⊗ Iij))− trace(Q−1Qg
ij), (48)

trace(P(Dk ⊗ Iij)P(Dk ⊗ Ii′j′)) = trace(H−1(Dk ⊗ Iij)H
−1(Dk ⊗ Ii′j′))

− trace(Q−1Qgg
ij,i′j′)− trace(Q−1Qgg

i′j′,ij) + trace(Q−1Qg
ijQ
−1Qg

i′j′). (49)

For the vector-matrix-vector product terms, we have

yTPy =q − qTQ−1q, (50)

yTP(Dk ⊗ Iij)Py = qgij − qTQ−1qgij − (qgij)
TQ−1q + qTQ−1Qg

ijQ
−1q, (51)

yTP(Dk ⊗ Iij)P(Dk ⊗ Ii′j′)Py = qggij,i′j′ − qTQ−1qggij,i′j′ − (qggj′i′,ji)
TQ−1q− (qgji)

TQ−1qgi′j′

+ qTQ−1Qg
ijQ
−1qgi′j′ + (qgji)

TQ−1Qg
i′j′Q

−1q + qTQ−1Qgg
ij,i′j′q

− qTQ−1Qg
ijQ
−1Qg

i′j′Q
−1q. (52)

Therefore, it suffices to efficiently evaluate

|H| =
n∑
l=1

|Vl|, (53)

trace(H−1(Dk ⊗ Iij)) =

n∑
l=1

δl(I
T
j V−1l Ii), (54)

trace(H−1(Dk ⊗ Iij)H
−1(Dk ⊗ Ii′j′)) =

n∑
l=1

δ2l (I
T
j′V
−1
l Ii)(I

T
j V−1l Ii′), (55)
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and

Q =
n∑
l=1

(xlx
T
l )⊗V−1l , (56)

q =
n∑
l=1

xl ⊗ (V−1l yl), (57)

q =
n∑
l=1

yTl V−1l yl, (58)

and

Qg
ij =

n∑
l=1

δl(xlx
T
l )⊗ (V−1l IijV

−1
l ), (59)

qgij =
n∑
l=1

δlxl ⊗ (V−1l IijV
−1
l yl), (60)

qgij =
n∑
l=1

δly
T
l V−1l IijV

−1
l yl, (61)

Qgg
ij,i′j′ =

n∑
l=1

δ2l (xlx
T
l )⊗ (V−1l IijV

−1
l Ii′j′V

−1
l ), (62)

qggij,i′j′ =
n∑
l=1

δ2l xl ⊗ (V−1l IijV
−1
l Ii′j′V

−1
l yl), (63)

qggij,i′j′ =
n∑
l=1

δ2l y
T
l V−1l IijV

−1
l Ii′j′V

−1
l yl. (64)

Notice that one key trick for calculating all the above quantities is observing that Iij = IiI
T
j . In this

way, many of the above quantities only involve scalar multiplications or rank one matrix updates.

The most time consuming part is the calculation of Qgg
ij,i′j′ , each requiring O(nc2d2) computa-

tion time. The computation complexity for each iteration in the Newton-Raphson’s algorithm is

therefore O(nc2d6).

3.5 Test Statistics and p Values

3.5.1 Test Statistics

We consider three common tests for mvLMMs: the likelihood ratio test, the Wald test and the

score test.

The likelihood ratio test calculates the maximum log likelihoods for both the alternative (l̂1(V̂g,1, V̂e,1))

and the null (l̂0(V̂g,0, V̂e,0)) models. It computes a test statistics based on the difference between

the two: zLR = 2(l̂1(V̂g,1, V̂e,1)− l̂1(V̂g,0, V̂e,0)).
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The Wald estimates the effect size

β̂ =
n∑
l=1

xlV̂
−1
l yl − (

n∑
l=1

(xlwl)⊗ V̂−1l )(
n∑
l=1

(wlw
T
l )⊗ V̂−1l )−1(

n∑
l=1

wl ⊗ (V̂−1l yl)), (65)

and its precision V (β̂)−1

V (β̂)−1 =
n∑
l=1

x2l V̂
−1
l − (

n∑
l=1

(xlwl)⊗ V̂−1l )(
n∑
l=1

(wlw
T
l )⊗ V̂−1l )−1(

n∑
l=1

(xlwl)⊗ V̂−1l ), (66)

with the variance component estimates V̂g and V̂e (V̂l = δlV̂g,1 + V̂e,1) obtained under the

alternative. Above, xl is the lth element of the transformed genotype vector x and wl is the

lth column vector of the transformed covariance matrix W. Afterwards, it computes zWald =√
β̂
T
V (β̂)−1β̂.

The score test computes the score, a d(d + 1) vector ŝ, with each element equals to the cor-

responding first order partial derivate described in the previous sections, and the observed infor-

mation matrix, a d(d + 1) by d(d + 1) matrix Î, whose formula is also described above. These

values are evaluated with parameter estimates obtained under the null, and are used to compute

zScore =
√

ŝT Î−1ŝ.

3.5.2 p Value Calibration

Under the null hypothesis, all three test statistics follow a χ2(d) distribution asymptotically. How-

ever, when the sample size is small or the relatedness structure is strong, then the test statistics

will not follow the asymptotic distribution exactly, and p values calculated from the asymptotic

distribution will not be be calibrated (see, e.g.27,28). To correct for this, we follow28 and use

Edgeworth-corrected critical values for the three tests. Specifically, the corrected z scores from the

three tests for a given marker is

zcLR = zLR/(1 +
â

2d
), (67)

zcWald =
−(2d+ â+ b̂)(d+ 2) +

√
(2d+ â+ b̂)2(d+ 2)2 + 8d(d+ 2)ĉzWald

2ĉ
, (68)

zcScore =
(2d+ â− b̂)(d+ 2)−

√
(2d+ â− b̂)2(d+ 2)2 − 8d(d+ 2)ĉzScore

2ĉ
, (69)
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where

â = 2b̂− ĉ, (70)

b̂ = 2
∑
i<j

∑
i′<j′

Λ̂ij,i′j′trace((RQ̂−1Q̂ij,i′j′Q̂
−1RT −RQ̂−1Q̂ijQ̂

−1Q̂i′j′Q̂
−1RT )(RQ̂−1RT )−1),

(71)

ĉ =
∑
i<j

∑
i′<j′

Λ̂ij,i′j′(trace((RQ̂−1Q̂ijQ̂
−1RT )(RQ̂−1RT )−1(RQ̂−1Q̂i′j′Q̂

−1RT )(RQ̂−1RT )−1),

+
1

2
trace((RQ̂−1Q̂ijQ̂

−1RT )(RQ̂−1RT )−1)trace((RQ̂−1Q̂i′j′Q̂
−1RT )(RQ̂−1RT )−1)) (72)

are evaluated with the variance component estimates from the alternative model. Λ is the inverse

of the Hessian matrix and Λij is its ijth element, and R is a d by cd matrix with right most d by

d matrix a diagonal matrix and all other elements 0.

Notice that the corrections are marker-specific, and require estimates and partial derivatives

from the alternative model. In our experience, without the corrections, the score test is often too

conservative, the Wald test is often too anti-conservative, while the likelihood ratio test behaves

between the two and has the correct control for type I error.

3.6 Phenotype Imputation

The tricks used in our mvLMM algorithms require complete or imputed phenotypes. Since in a

typical study many individuals may have partially missing phenotypes, removing all such individuals

could substantially reduce power. To address this we developed a phenotype imputation scheme for

mvLMMs, which can be applied to impute missing phenotypes before applying our LRT methods.

The imputation method first estimates parameters of the mvLMM under the null model us-

ing individuals with fully observed phenotypes, and then, conditional on these estimates and the

observed phenotype data, imputes missing phenotypes using their conditional means.

Specifically, we first estimate b̂, V̂g and V̂e in the null model using individuals with completely

observed phenotypes. Afterwards, we impute missing phenotype values using the conditional mean

given observed phenotypes and estimated parameters. Denote no as the number of observed values,

nm as the number of missing values (no + nm = nd), yo as a no vector of observed values and Xo

as a no by dc matrix of corresponding covariates, ym as a nm vector of missing values and Xm as

a nm by dc matrix of corresponding covariates. Under the null mvLMM, y = [yTo ,y
T
m]T follows a

multivariate normal distribution with covariance matrix Ĥ = K ⊗ V̂g + I ⊗ V̂e. Let Ĥoo be the

no by no sub-matrix of H that corresponds to the no observed values, and Ĥmo be the nm by no

sub-matrix of Ĥ that corresponds to the nm missing values and no observed values. We use the
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conditional mean of ym given yo and estimated parameters as an estimate for the missing values

ŷm = XT
mb̂ + ĤmoĤ

−1
oo (yo −XT

o b̂). (73)

Supplementary Figure 8 shows the results of simulations, based on both HMDP and NFBC1966

data, comparing the power of this imputation-based approach with the alternative approach of

dropping individuals with partially missing phenotypes. For the HMDP simulations, because of

the high relatedness, both methods achieve almost identical power as if all phenotypes are fully

observed. For the NFBC1966 data, phenotype imputation achieves consistently greater power than

dropping individuals, and in many simulation scenarios achieves power similar to that achieved if

all phenotypes are observed (0% missingness in Supplementary Figure 8).
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