Supplementary Information

for

Calculations of the Electric Fields in Liquid Solutions

Stephen D. Fried¹, Lee-Ping Wang¹, Steven G. Boxer¹, Pengyu Ren², Vijay S. Pande^{1*}

^{1.} Department of Chemistry, Stanford University; Stanford, California ^{2.} Department of Biomedical Engineering, University of Texas; Austin, Texas

I.	Supplementary Figures	
	1.1 Sample electric field trajectories	.2
	1.2 Sample electric field histograms	.4
	1.3 Ab initio field-frequency curve for acetopheone	6
II.	Supplementary Tables	
	2.1 Electric field data from the short trajectories	.7
	2.2 Electric field data from the long trajectories	.8
	2.3 Electric fields calculated by solving PB with pdie(sys) = 1, pdie(ref) = 1, and	
	sdie(ref) = 1	.9
	2.4 Electric fields calculated by solving PB with pdie(sys) = 2, pdie(ref) = 2, and	
	sdie(ref) = 2	.9
	2.5 Electric fields calculated by solving PB with CHELPG charges1	0
	2.6 Electric fields calculated by solving PB with PCM/CHELPG charges1	0
	2.7 Electric fields calculated by solving PB with a cubic-spline smoothed dielectric	ïC
	boundary1	1
	2.8 Electric fields calculated by solving PB with 0.1 Å grid spacing1	1
III.	Supplementary Methods	
	3.1 Modifications to and compilation of TINKER1	2
	3.2 Settings for running production runs1	6
	3.3 Python script to calculate electric fields1	7
IV.	Supplementary Discussion on the local field correction2	22
V.	Parameters	
	5.1 Acetonitrile	25
	5.2 Dibutyl Ether	26
	5.3 Dimethyl Sulfoxide2	29
	5.4 Hexane	0
	5.5 Valeronitrile	32
	5.6 Tetrahydrofuran	35
	5.7 Acetophenone	7

I. Supplementary Figures

Figure S1. Segments of the electric field trajectories for long (right side) and short (left side) simulations of acetonitrile (top half) and dibutyl ether (bottom half). 50-ps segments were selected from the short trajectory and 500-ps segments from the long trajectories.

Inspection of acetonitrile's trajectories (top) shows that the electric field displays slight memory on the picosecond timescale, but little memory on the tens or hundreds of picoseconds timescales, in agreement with the time constants from the autocorrelation functions. Acetonitrile's field trajectory is representative of all the other solvents studied, except for dibutyl ether (bottom), which alone displayed slow dynamics on the tens (or even hundreds) of picoseconds timescales.

The 50-ps segment (bottom left) shows a close-up of one of the slow process, of which there are a number examples in the 500-ps segment. These types of dynamics imply

that dibutyl ether would require longer equilibration in order to reach the equilibrium ensemble, and longer production dynamics to converge ensemble-average properties.

Figure S2: Sample electric field histograms

Figure S2. Electric field histograms (bottom half) and cumulative distribution functions (top half) for the long simulations of water (left side) and tetrahydrofuran (right side). The vertical axis of the histograms use a linear scale to illustrate the preponderance of the probability mass, whereas the cumulative distribution functions use a logarithmic scale to illustrate how far out the tails extend.

Tetrahydrofuran is representative of most of the solvents examined. Its electric field distribution is described almost perfectly by the normal distribution. The electric field is positive (the overall interaction between the solvent and C=O is unfavorable) about 1% of the time.

Water's electric field distribution is different – it conforms to the normal distribution less strictly. The histogram shows a larger-than-expected tail on the negative end (to more favorable electric fields), and the positive end has a sharper drop-off. Non-normal

behavior is evinced clearly by the non-linearity in the log cumulative plot (top). Hexane was the only other solvent that displayed this skew to its distribution.

Due to water's skew toward negative electric fields, it very infrequently sampled electric fields greater than zero (< 0.1%) and was capable of appreciably sampling electric fields more than twice its mean (~ 1%).

Figure S3: Ab initio field-frequency curve for acetophenone

The linear sensitivity term (corresponding to the difference dipole in cm⁻¹/(MV/cm)) is within the estimated range for the microscopic Stark tuning rate (0.58 – 0.75 cm⁻¹ /(MV/cm)) assuming a local field correction factor, 1.4 < f < 1.8. The quadratic sensitivity term corresponds to one half the difference polarizability in cm⁻¹/(MV/cm)².

Although the parabolic shape of the curve is slightly apparent at high electric fields, in the range of electric fields accessible to solvents (between –10 and –70 MV/cm) the trend is essentially linear (a least squares regression line in this range has an R^2 of 0.999), consistent with the strong linear trends in Figure 1A from the main text. In Stark spectroscopy, small external fields are applied relative to the solid solution's environment field, implying the Stark tuning rate is well described by the derivative expression: $|\Delta \vec{\mu}| = d\vec{v} / dF = 0.668 - 0.00266F$, where the first term corresponds to $\Delta \vec{\mu}_M$ and the second to $\Delta \vec{\mu}_{ind}$ using the notation from the main text. At the large environment fields present in a cold organic glass (–50 to –70 MV/cm), the induced term would contribute an additional 20–30 % of the intrinsic difference dipole to the total difference dipole.

II. Supplementary Tables

solvent		aceto-	DMSO	hexane	valero-	THF	water	dibutyl
		nitrile			nitrile			ether
n^{b}		24050	17184	18140	18159	15098	11069	10619
$F^{C c}$	mean	-23.56 ±	-29.60 ±	-7.42 ±	-24.14 ±	-21.37 ±	-43.56 ±	-15.86 ±
		0.69	1.13	0.27	0.71	0.81	1.18	1.57
std.		10.82	11.36	3.42	9.45	9.21	17.82	8.88
$ F^{O} ^{c}$	mean	-48.66 ±	-56.10 ±	-14.40 ±	-47.31 ±	-39.90 ±	-95.44 ±	-32.46 ±
		0.98	1.67	0.47	2.42	2.43	4.97	2.08
	std.	16.82	17.58	7.08	17.42	12.99	36.87	14.2
$F_{,ih}$ c	c mean -3		-42.85 ±	-10.91 ±	-35.73 ±	-30.63 ±	-69.5 ±	-24.16 ±
, vib		0.82	1.38	0.37	1.54	1.47	3.04	1.74
std.		12.69	13.39	4.91	12.49	9.95	26.12	10.49
ΔF_{vih}	Mean	-25.1 ±	-26.49 ±	-6.98 ±	-23.16 ±	-18.53 ±	-51.88 ±	-16.60 ±
C		0.45	0.70	0.21	1.76	2.13	3.89	1.25
	std.	12.49	12.60	5.20	12.72	10.56	25.00	10.98

Table S1: Electric field data from the short trajectories^a

^a Some of these data also appeared in Table 1. They are reproduced here to ease comparisons. ^b The number of electric field data points recorded for this trajectory, each taken 10 fs after one another. ^c $|F^{C}|$ and $|F^{O}|$ are abbreviations for $\vec{F}^{C} \cdot \hat{u}_{CO}$ and $\vec{F}^{O} \cdot \hat{u}_{CO}$ respectively. $|F_{vib}|$ and $|\Delta F_{vib}|$ are the electric field experienced by the C=O vibration and the electric field drop along C=O respecitively, as defined by Eq. 5 and Eq. 6 in methods section 2.4. All electric fields are in units of MV/cm.

solvent		aceto-	DMSO	hexane	valero-	THF	water	dibutyl
		nitrile			nitrile			ether
n ^b		189489	136069	100767	98631	124246	69979	140186
$ F^C $ c	mean	-19.98 ±	-26.28 ±	-5.34 ±	-20.08 ±	-17.72 ±	-40.65 ±	-16.62 ±
-		0.34	0.37	0.19	0.35	0.39	1.57	0.81
std.		9.97	10.60	3.44	9.88	9.23	17.77	8.98
F ^o c mean		-42.28 ±	-51.75 ±	-11.35 ±	-42.61 ±	-34.54 ±	-88.41 ±	-31.65 ±
		0.45	0.56	0.28	0.85	0.69	2.82	1.39
	std.	16.38	15.86	6.87	17.93	12.92	37.66	14.85
$ F_{,,ih} ^{c}$	mean	-31.13 ±	-39.02 ±	-8.34 ±	-31.35 ±	-26.13 ±	-64.53 ±	-24.13 ±
		0.38	0.41	0.23	0.56	0.51	2.18	1.08
std.		12.28	11.95	4.83	13.07	10.07	26.62	11.16
ΔF_{iih}	Mean	-22.30 ±	-25.47 ±	-6.01 ±	-22.53 ±	-16.82 ±	-47.76 ±	-15.03 ±
C C		0.27	0.48	0.12	0.66	0.44	1.35	0.68
	std.	11.51	12.52	4.97	12.44	9.91	25.14	10.16

Table S2: Electric field data from the long trajectories ^a

^a Electric fields from the longer trajectories, simulated with the settings described in methods section II.C. ^b The number of electric field data points recorded for this trajectory, each taken 10 fs after one another. ^c $|F^{C}|$ and $|F^{O}|$ are abbreviations for $\vec{F}^{C} \cdot \hat{u}_{CO}$ and $\vec{F}^{O} \cdot \hat{u}_{CO}$ respectively. $|F_{vib}|$ and $|\Delta F_{vib}|$ are the electric field experienced by the C=O vibration and the electric field drop along C=O respecitively, as defined by Eq. 5 and Eq. 6 in methods section 2.4. All electric fields are in units of MV/cm.

The following tables present electric fields calculated by solving the PB equation with different dielectric constants than that used in the main text (Table 2). Using the conventions in APBS, 'pdie' refers to the internal dielectric of the solute, and 'sdie' refers to the external dielectric of the solvent continuum. 'sys' refers to the calculation in which sdie is set equal to the static dielectric constant of the solvent under consideration, and 'ref' refers to the reference calculation designed to represent the solute in the gas phase. Note that the setting in the main text is pdie(sys) = 2, pdie(ref) = 2, and sdie(ref) = 1.

Solvent (static dielectric)	$\left F_{_{vib}} ight $ / (MV/cm)	$\left \Delta F_{_{vib}} ight $ / (MV/cm)
Hexane (1.78)	-14.88	-0.02
Dibutyl Ether (3.08)	-25.33	0.66
Tetrahydrofuran (7.43)	-36.13	2.49
Valeronitrile (20.04)	-42.69	5.03
Acetonitrile (37.50)	-45.32	6.42
Dimethyl Sulfoxide	-46.16	6.73
(46.84)		
Water (78.54)	-48.15	6.79

Table S3: Electric fields calculated by solving PB with pdie(sys) = 1, pdie(ref) = 1, and $sdie(ref) = 1^{a}$

^a Solvent fields in which the internal dielectric is set to 1. While this setting produces an estimate for water's electric field that is closer to that of the all-atom models (which is perhaps why it was recommended by Swanson et al.), the electric fields are on the whole too large, leading to a field-frequency slope of 0.329 cm⁻¹/(MV/cm) and overall worse agreement with the all-atom models.

Table S4: Electric fields calculated by solving PB with pdie(sys) = 2, pdie(ref) = 2, and sdie(ref) = 2^{a}

Solvent (static dielectric)	$\left F_{_{vib}} ight $ / (MV/cm)	$\left \Delta F_{_{vib}} ight $ / (MV/cm)
Hexane (1.78)	1.76	0.08
Dibutyl Ether (3.08)	-5.77	-0.06
Tetrahydrofuran (7.43)	-14.09	0.50
Valeronitrile (20.04)	-19.28	1.61
Acetonitrile (37.50)	-21.18	2.43
Dimethyl Sulfoxide	-21.70	2.71
(46.84)		
Water (78.54)	-22.75	3.25

^a Solvent fields in which the reference calculation is carried out on a homogeneous dielectric (as per custom) with pdie = sdie = 2. This setting produces the same *relative* fields as the setting in the main text, but in absolute terms, the fields are all shifted up by ca. 12 MV/cm. As hexane is assigned a positive (unfavorable) solvation field, this reference state is clearly unphysical.

The following tables present electric fields calculated by solving the PB equation with a different charge assignment for the solute than that used in the main text (Table 2). To ease comparisons, we kept the dielectric settings (pdie(sys) = 2, pdie(ref) = 2, sdie(ref) = 1) and the radius parameters (ref. 54 from main text) the same.

Solvent (static dielectric)	$\left F_{_{vib}} ight $ / (MV/cm) $^{ m b}$	$\left \Delta F_{_{vib}} ight $ / (MV/cm) ^c
Hexane (1.78)	-8.30	-2.80
Dibutyl Ether (3.08)	-14.64	-4.53
Tetrahydrofuran (7.43)	-21.71	-5.97
Valeronitrile (20.04)	-26.39	-6.73
Acetonitrile (37.50)	-28.27	-7.11
Dimethyl Sulfoxide	-28.80	-7.23
(46.84)		
Water (78.54)	-29.85	-7.51

Table S5: Electric fields calculated by solving PB with CHELPG charges^a

^a The charges for acetophenone were obtained by optimizing acetophenone by DFT at the B3LYP/6-311+G(d,p) level, and utilizing the CHELPG population scheme of Breneman and Wiberg. ^b The electric fields are overall 15% smaller, which is consistent with the charges' magnitudes being 6–72% smaller than GAFF (36% on average). The fact that GAFF charges give results that agree better with MD attests to the importance of weighting polarization effects into the charges. ^c The electric field drops are significantly different from those found with GAFF charges, which were all close to zero. This demonstrates that GAFF charges produce unusually smooth reaction fields, which is not intrinsic to PB methods in general.

Solvent (static dielectric)	$\left F_{_{vib}} ight $ / (MV/cm) ^b	$\left \Delta F_{_{vib}} ight $ / (MV/cm) ^c
Hexane (1.78)	-15.63	-23.39
Dibutyl Ether (3.08)	-27.24	-38.33
Tetrahydrofuran (7.43)	-41.46	-55.58
Valeronitrile (20.04)	-50.58	-66.35
Acetonitrile (37.50)	-53.36	-68.28
Dimethyl Sulfoxide	-54.30	-69.21
(46.84)		
Water (78.54)	-55.92	-70.53

Table S6: Electric fields calculated by solving PB with PCM/CHELPG charges^a

^a The charges were assigned in a way designed to reflect self-polarization effects. For each solvent, solvent-induced CHELPG charges were obtained by running a DFT optimization in the presence of a PCM with a dielectric constant equal to that of the solvent. The charges put into the PB model were the gas-phase CHELPG charges (from above) plus one half the polarization charge for each atom, defined as the difference between the gas-phase charge and the PCM charge for that atom. During the reference calculation, the gas-phase CHELPG charges were used. ^b Including explicit solute polarization results in larger fields, resulting in better agreement for water, but worse overall agreement. ^c The large field drops suggest that artifacts may result from not conserving the solute charges in the reference state.

Solvent (static dielectric)	$\left F_{\scriptscriptstyle vib} ight $ / (MV/cm)	$\left \Delta F_{_{vib}} ight $ / (MV/cm)
Hexane (1.78)	-9.78	-0.92
Dibutyl Ether (3.08)	-17.37	-1.05
Tetrahydrofuran (7.43)	-26.09	-0.50
Valeronitrile (20.04)	-32.12	0.13
Acetonitrile (37.50)	-34.78	0.06
Dimethyl Sulfoxide	-35.60	-0.08
(46.84)		
Water (78.54)	-37.32	-0.65

Table S7: Electric fields calculated by solving PB with a cubic-spline smoothed dielectric boundary^a

^a Dielectric settings are pdie(sys) = 2, pdie(ref) = 2, sdie(ref) = 1, same as the main text. The only difference is the method for smoothing the dielectric boundary (srfm) is set to be the same as that used by Swanson et al. For the electric fields, the difference is negligible; however, the cubic-spline smoothed boundary produces electric field drops that are closer to zero.

Solvent (static dielectric)	$\left F_{_{vib}} ight $ / (MV/cm)	$\left \Delta F_{_{vib}} ight $ / (MV/cm)
Hexane (1.78)	-9.87	-0.93
Dibutyl Ether (3.08)	-17.39	-1.04
Tetrahydrofuran (7.43)	-25.75	-0.55
Valeronitrile (20.04)	-31.21	0.04
Acetonitrile (37.50)	-33.33	0.29
Dimethyl Sulfoxide	-33.92	0.35
(46.84)		
Water (78.54)	-35.05	0.49

Table S8: Electric fields calculated by solving PB with 0.1 Å grid spacings^a

^a Dielectric settings are pdie(sys) = 2, pdie(ref) = 2, sdie(ref) = 1, same as the main text. The only difference is finer grid spacings are used.

III. Supplementary Methods

The following sections are designed to help readers carry out electric field calculations in TINKER according to the methods section 2.4 from the main text. To understand conceptually what is going on, please refer to the main text; the following sections are focused on walking through the implementation.

Some initial notes:

- The following source code modifications were made on TINKER version 6.2, available online at <u>http://dasher.wustl.edu/ffe/</u>, and released in February 2013. Although it is probable the same modifications will work on future versions of TINKER, we cannot predict the future.
- 2. The electric field calculations described in the following are designed to be used in conjunction with a polarizable force field using a site-based point inducible dipole model (such as AMOEBA). Otherwise, the methods described below will not work.
- 3. The modified TINKER source code is also available online at <u>http://www.stanford.edu/~sdfried/take-aways/tinker-</u> <u>2_src.tar.gz</u>

1. Modifications to and compilation of TINKER.

Download the TINKER source code from dasher as a GNU zip, and un-tar. cd into the source directory. Here you will find a large number of files ending in f – these are FORTRAN 95 programs. At this point, either make the following changes to the source code by hand (*vide infra*), OR rm the source directory and replace it with the one available from my website, which has the modified source code files. This modified version of TINKER is later referred to as tinker-2. The changes are each given a brief explanation.

(1) dyanamic.f - electric field calculations require the ability to evaluate the induced dipoles on atoms of interest for particular configurations without running dynamics. We introduce the 0-time-step flag to indicate this option. These induced dipole evaluations are done snapshot-by-snapshot, and therefore automation is handled at the scripting level. Setting nstep to 0, calls verlet, supplying it with istep = 0 (the flag for the further subroutines), and an infinitesimally small time-step (10 attoseconds).

```
10 continue
      if (query) then
        write (iout,20)
         format (/, ' Enter the Number of Dynamics Steps to be',
   20
    &
                    ' Taken (0 to perform single-pt rerun): ',$)
        read (input,30) nstep
  30
        format (i10)
С
      flag to perform a single-point force evaluation of a given input
С
      snapshot (added by SDF)
С
С
```

```
if (nstep .eq. 0) goto 500
      end if
. . .
С
     perform a single-pt force evaluation (added by SDF)
С
С
  500 continue
      call verlet (0,0.001d0)
С
      perform any final tasks before program exit
С
С
  510 continue
      call final
      end
```

(2) verlet.f – verlet proceeds as usual, altering coordinates infinitesimally from the snapshot, calls mdsave, and then quits. Skipping Verlet recursion entirely (as opposed to performing it with an infinitesimal time-step) appeared to produce artifacts.

```
С
С
      store the current atom positions, then find half-step
С
      velocities and full-step positions via Verlet recursion
С
      do i = 1, n
         if (use(i)) then
            do j = 1, 3
               v(j,i) = v(j,i) + a(j,i)*dt_2
            end do
            xold(i) = x(i)
            yold(i) = y(i)
            zold(i) = z(i)
С
      THIS ONLY HAPPENS IF ISTEP NEQ 0 (added by SDF)
С
С
            if (istep .ne. 0) then
               x(i) = x(i) + v(1,i)*dt
               y(i) = y(i) + v(2,i)*dt
               z(i) = z(i) + v(3,i)*dt
            end if
         end if
      end do
. . .
С
      if performing a single-pt force evaluation, skip over mdstat and
С
      mdrest (added by SDF)
С
С
      if (istep .eq. 0) then
```

```
call mdsave (istep,dt,epot)
  goto 500
end if
c
c compute statistics and save trajectory for this step
c
c call mdstat (istep,dt,etot,epot,eksum,temp,pres)
  call mdsave (istep,dt,epot)
  call mdrest (istep)
500 continue
  return
  end
```

(3) mdsave.f – at the beginning, mdsave checks to see if we are performing a single-point induced dipole evaluation. If so, it immediately runs the code that would normally be run if the save-induced option were included in the key file. The format has been altered so that higher floating-point precision is recorded.

```
С
С
С
      send data via external socket communication if desired
С
      if (.not.skt_init .or. use_socket) call sktdyn (istep,dt,epot)
С
      if performing a single-pt induced dipole evaluation, output high-
С
С
      precision dipoles and quit (added by SDF)
С
       if (istep .eq. 0) then
         iind = freeunit ()
         indfile = filename(1:leng)//'.u'
         call version (indfile,'new')
         open (unit=iind,file=indfile,status='new')
         write (iind,540) n,title(1:ltitle)
  540
         format (i6,2x,a)
         do i = 1, npole
            if (polarity(i) .ne. 0.0d0) then
               k = ipole(i)
               write (iind,550) k,name(k),(debye*uind(j,i),j=1,3)
c 550
               format (i6,2x,a3,3f12.6)
  550
               format (i6,2x,a3,3f18.12)
            end if
         end do
         close (unit=iind)
         goto 560
      end if
. . .
  560 continue
      return
      end
```

(4) **archive.f** – the archive program is invoked a number of times in the electric field calculations in order to extract snapshots from archives (as noted in (1) the rerun is done one snapshot at a time) and to automate the creation of the solute-only

reference trajectory. In particular, the latter task involves executing archive with the trim option. Natively, trim is designed to remove only a few atoms, so a few variables must be altered so that trim can remove 1000's of atoms (i.e., the whole solvent).

```
integer freeunit
      integer list(20000)
      real*8 xr,yr,zr
. . .
      character*120 record
      character*100000 trimrecord
      character*120 string
• • •
С
      decide whether atoms are to be removed from each frame
С
С
      if (modtyp .eq. 'TRIM') then
         call active
         if (nuse .eq. n) then
            do i = 1, 20000
. . .
  140
            format (/, ' Numbers of the Atoms to be Removed : ',$)
            read (input, 150) trimrecord
  150
            format (a100000)
            read (trimrecord,*,err=160,end=160) (list(i),i=1,20000)
  160
            continue
```

For installation, we used the intel-13 FORTRAN compilers configured for the linux architecture. Using a bash command line, cp the .make files from /linux/intel into /source. You will also need to acquire the relevant FFTW3 libraries for your system's architecture and make sure they are in the /source directory as well. If all goes well, it should be as simple as:

./compile.make ./library.make ./link.make mkdir ../bin ./rename.make

2. Settings for running production runs

A typical production run would be initiated with files with names such as acp_hex_md.xyz and acp_hex_md.key, where the naming convention goes solute_solvent_md.fileType. The naming convention is not of paramount importance, but should be maintained if the reader desires to use the electric field calculation script as is without modification.

The file solute_solvent_md.xyz is a standard xyz starting coordinates file, except the solute molecule must come first before the entries corresponding to solvent atoms.

The file solute_solvent_md.key defines the functional form of the force field, simulation control settings, and (in our case) all the force field parameters as well. The control settings were as follows:

# Electrostatics	and	vdW				
ewald						
vdw-correction						
ewald-cutoff		10.0				
vdw-cutoff		10.0				
polar-eps		0.00001				
# Dynamics						
integrator		beeman				
thermostat	bussi					
barostat		montecarlo				
friction		1.0				
volume-scale		molecular				
# Output						
archive						
openmp-threads		8				
mpole-list						

where the options in red are essential.

save-induced

3. Python script to calculate electric fields

```
#!/usr/bin/env python
#This is a script that obtains the electric fields from a TINKER
trajectory
#stored in the format of an arc file. Created by SDF 20121030.
#Prerequisites:
# -1- A flat-text trajectory with fn format solute solvent.arc (no
numbers)
# -2- A key file with the same base filename as the arc file
# -3- A flat-text uind file
#Call the script as:
# python get fields.py system.arc system.key system.uind
import sys
import re
import numpy as np
import os
def create perturbed key(old kn, new kn, dq, delbox=False):
    old key = open(old kn)
    new key = open(new kn, 'w')
    omp_flag = False
    for line in old key:
        if delbox and 'a-axis' in line: continue
        if delbox and 'b-axis' in line: continue
        if delbox and 'c-axis' in line: continue
        if re.search(r'multipole\s+%s' %(atomTypeC), line) or
re.search(r'multipole\s+%s' %(atomTypeO), line):
            atomInfo = line.split()
            whitespace = re.split(r'S+', line)
            newline = ''
            atomInfo[-1] = str( float(atomInfo[-1]) + dq)
            for i in range( len(atomInfo) ):
                newline += whitespace[i]
                newline += atomInfo[i]
            newline += ' \ '
            new_key.write( newline )
        else:
            new key.write( line )
        if "openmp-threads" in line:
            new_key.write("openmp-threads 1")
            omp_flag = True
    if not omp flag:
        new key.write("openmp-threads 1")
    new key.close()
    old key.close()
def getInfo(arc_fn):
    solute = arc_fn.split('.')[0].split('_')[0]
    solvent = arc fn.split('.')[0].split(' ')[1]
    return solute, solvent
def getSystemInfo(arc fn):
    arc_file = open( arc_fn, 'r' )
    first_line = arc_file.next()
```

```
numAtoms = int( first_line.split()[0] )
    numLines = sum(1 for line in arc file)
    numSnapshots = (numLines/numAtoms)
    arc file.close()
    return numSnapshots, numAtoms
def getSoluteInfo(solute):
    if solute == 'acp':
        return 17, 5, 6
    else:
        print "How many solute atoms are there?"
        numSoluteAtoms = raw input()
        print "What is the index of the C atom?"
        indexC = raw_input()
        print "What is the index of the O atom?"
        index0 = raw input()
        return int(numSoluteAtoms), int(indexC), int(indexO)
def getAtomTypes(solute fn):
    solute file = open( solute fn, 'r')
    for line in solute file:
        infoInLine = line.split()
        if len(infoInLine) >= 6:
            if infoInLine[0] == str(indexC):
                atomTypeC = infoInLine[5]
            if infoInLine[0] == str(index0):
                atomTypeO = infoInLine[5]
    solute file.close()
    return atomTypeC, atomTypeO
def whichSnapshot(filename):
    ss = int( (re.search(r'\d+', filename)).group() )
    return ss
def convert(x):
    try:
        float(x)
        return float(x)
    except ValueError:
       mantissa = float( x.split('D')[0] )
        expo = int( x.split('D')[1] )
        return mantissa * 10**expo
#MAIN STARTS HERE
#Get the filenames from the command
arc fn = sys.argv[1]
key fn = sys.argv[2]
uind fn = sys.argv[3]
#find out the identity of the solute and solvent
solute, solvent = getInfo(arc_fn)
#find out the number of snapshots and the number of atoms by peeking
into the arc file
numSnapshots, numAtoms = getSystemInfo(arc fn)
numSoluteAtoms, indexC, indexO = getSoluteInfo(solute)
#create solute-only archive
```

```
trim = open('trim.in', 'w')
trim.write( '%s \n' %(arc_fn) )
trim.write( '3 \n' )
trim.write( ' .join(str(n) for n in range(numSoluteAtoms+1,
numAtoms+1)) + ' n')
trim.write( '1 %d 1 \n' %(numSnapshots) )
trim.close()
command = 'cat trim.in | ~/Programs/tinker-2/bin/archive'
os.system(command)
os.rename('%s_2' %(arc_fn) , '%s.arc' %(solute) )
#extract solute-only snapshots, place in a temp dir
os.mkdir('%s xyzs' %(solute))
os.chdir('./%s xyzs' %(solute)) #qo into solute xyzs
extract = open('extract.in', 'w')
extract.write( '../%s.arc \n' %(solute) )
extract.write( '2 \n' )
extract.write( '1 %d 1 \n' %(numSnapshots) )
extract.close()
command = 'cat extract.in | ~/Programs/tinker-2/bin/archive'
os.system(command)
for fn in os.listdir('.'):
    if fn != 'extract.in':
        fn new = fn.translate(None, '.') + '.xyz'
        os.rename(fn, fn new)
#Get the atom-types for the probeC and probeO atoms
atomTypeC, atomTypeO = getAtomTypes( '%s001.xyz' %(solute) )
#Make a kew file for the single-pt uind evaluations for the solute
solutekey fn = '%s.key' %(solute)
create_perturbed_key('../%s' %(key_fn), solutekey_fn, 0, delbox=True)
#perform single-pt uind evaluations on the solute snapshots
for fn in os.listdir('.'):
    if fn.endswith('.xyz'):
        print "getting induced dipoles from %s" %(fn)
        command = '~/Programs/tinker-2/bin/dynamic %s %s 0' %
(fn, solutekey fn)
        os.system(command)
#copy all of the data from files into an array
#rawData[i,j,k,l] stores
      #for the i^th snapshot (0 to numSnapshots-1)
      #for the j<sup>th</sup> atom (C=0, O=1)
    #for the k^th component (x=0, y=1, z=2)
      # the l^th information (coord=0, uindTot=1, uindRef=2)
rawData = np.zeros( (numSnapshots, 2, 3, 3) )
#we're still in solute xyzs
for fn in os.listdir('.'): #loop thru all files in this directory,
garnering the relevant data
    if fn.endswith('.xyz'): #if an xyz file, grab coordinates, l=0
        ss = whichSnapshot( fn )
        xyz = open(fn, 'r')
        for line in xyz:
```

```
infoInLine = line.split()
            if len(infoInLine) >= 6:
                if infoInLine[0] == str(indexC):
                    rawData[ss-1,0,0:3,0] = [convert(x) for x in
infoInLine[2:5]]
                if infoInLine[0] == str(index0):
                    rawData[ss-1,1,0:3,0] = [convert(x) for x in
infoInLine[2:5]]
        xyz.close()
    elif fn.endswith('.u'): #if an u file, grab reference induced
dipoles, 1=2
        ss = whichSnapshot( fn )
        u = open(fn, 'r')
        for line in u:
            infoInLine = line.split()
            if len(infoInLine) >= 5:
                if infoInLine[0] == str(indexC):
                    rawData[ss-1,0,0:3,2] = [convert(x) for x in
infoInLine[2:5]]
                if infoInLine[0] == str(index0):
                    rawData[ss-1,1,0:3,2] = [convert(x) for x in]
infoInLine[2:5]]
        u.close()
    else:
        pass
#now go into the original uind archive file
os.chdir('..')
uind = open( uind_fn , 'r')
ss = 0
for line in uind:
    infoInLine = line.split()
    if len(infoInLine) < 5:
        ss += 1
    else:
        if infoInLine[0] == str(indexC):
            rawData[ss-1,0,0:3,1] = [convert(x) for x in
infoInLine[2:5]]
        if infoInLine[0] == str(index0):
            rawData[ss-1,1,0:3,1] = [convert(x) for x in
infoInLine[2:5]]
uind.close()
#now we are going to process rawData into procData
#procData[i,j,k,l] stores
      #for the i^th snapshot (0 to numSnapshots-1)
      #for the j^th atom (C=0, O=1)
    #for the k<sup>th</sup> component (x=0, y=1, z=2)
      # the l^th information (field)
polarizaC = 1.3340
polarizaO = 0.8370
procData = np.zeros( (numSnapshots, 2, 3, 1) )
procData[:,0,:,0] = ((rawData[:,0,:,1] - rawData[:,0,:,2])) * 0.2082 *
1439 / polarizaC
procData[:,1,:,0] = ((rawData[:,1,:,1] - rawData[:,1,:,2])) * 0.2082 *
1439 / polarizaO
```

```
#now we are going to finalize procData into finalData
#finalData[i,j] stores
      #for the i^th snapshot (0 to numSnapshots-1)
      # the j^th field (field@C=0, field@O=1, fieldAve=2, fieldDrop=3)
finalData = np.zeros( (numSnapshots, 4) )
for i in range(numSnapshots): #for each snapshot
    #get the C & O coordinates
    #calculate the CO bond length and CO unit vector
    x C = rawData[i,0,:,0]
    x 0 = rawData[i,1,:,0]
    COvec = x O - x C
    COlen = np.linalg.norm( COvec )
    COunitvec = COvec / COlen
    #project the electric field onto the bond vector
    field C = procData[i,0,:,0]
    field_0 = procData[i,1,:,0]
    fieldproj_C = np.dot( field_C , COunitvec )
    fieldproj 0 = np.dot( field 0 , COunitvec )
    #calculate the average field and field drop
    fieldproj_ave = (fieldproj_C + fieldproj_0)/2
    fieldproj drop = (fieldproj 0 - fieldproj C)
    #fill into finalData
    finalData[i,:] = fieldproj C, fieldproj 0, fieldproj ave,
fieldproj drop
#save finalData to file
print rawData
print procData
print finalData
np.savetxt( '%s %s FIELDS.txt' %(solute, solvent) , finalData )
print "calculation of fields for %s_%s completed." %(solute,solvent)
print "Terminating normally."
```

IV. Supplementary Discussion on the local field correction

When an *external* (Maxwell) field, \vec{F}_{ext} , is applied to a dielectric material, the *local* field, \vec{F}_{loc} , at a given position inside the dielectric is not necessarily the same as \vec{F}_{ext} . The differences arise from the polarization of the dielectric by the field. A number of strategies have been devised to evaluate the local field factor, *f*, defined as

$$\vec{F}_{loc} = f \, \vec{F}_{ext} \tag{S1}$$

where *f* is formally a tensor-quantity and position-dependent, although it is generally assumed to be scalar and constant for isotropic systems.⁶⁸ The local field effect impinges on a large range of experiments in which external fields are applied to condensed phase systems; it is relevant to the present discussion on vibrational Stark spectroscopy, since *f* affects the absolute magnitude of the difference dipole, $|\Delta \vec{\mu}|$, which in turn affects the scale of the electric fields assigned to vibrational frequency shifts. Beginning with early work on photosynthetic pigments,⁸⁰ a tentative value of 1.2 was assigned to *f* by Lockhart and Boxer, and in general the range of 1.1–1.4 has been assumed in following work.¹⁸

In light of recent results, a brief review of the local field factor, its derivation, and evaluation is merited. The most common equation used to model the local field factor is given by the spherical cavity approximation⁶⁸

$$\vec{F}_{loc} = \left(\frac{3\varepsilon}{2\varepsilon + 1}\right)\vec{F}_{ext}$$
(S2)

where ε is the static dielectric constant (relative permittivity) of the prevailing medium. The spherical cavity approximation is a special case of a classic problem in electrostatic theory concerning a sphere of dielectric ε_2 embedded in a second medium (of dielectric constant ε) extending to infinity. When an external field is applied to this system, the electric field *inside* the sphere is $3\varepsilon/(2\varepsilon + \varepsilon_2)$ times the external field.⁶⁸ Eq. S2 follows from setting $\varepsilon_2 = 1$, which effectively makes the sphere a cavity. Note that if $\varepsilon_2 < \varepsilon$, the electric field inside the sphere will be larger than that in the prevailing medium.

To evaluate *f* from Eq. S2, one must choose a value for the dielectric constant for organic glasses, the medium in which Stark spectroscopy was obtained on acetophenone²³ as well as on many small molecules.^{14,18,19,21,22,78} A typical range that is suggested for this is 2–4.^{18,80} Organic glasses evince rich dielectric phenomena near their glass-transitions,⁸¹ such as sharp reduction of the dielectric constant at the freezing point and hysteresis upon thawing and re-vitrifying. Nevertheless, in the cold limit (*T* << *T*_g) most non-hydrogen-bonding organic glasses have a non-hysteretic dielectric constants between 2–4,⁸¹ and the value is generally higher (5–6) for glasses made of hydrogen bonding molecules such as glucose or glycerol.⁸² By combining the range 2 < $\varepsilon_{glass} < 5$ with Eq. S2, one obtains 1.2 < *f* < 1.4, the range that has been reported in most work by Boxer and coworkers.

The principal conceptual problem with the spherical cavity approximation for the local field correction is that it assumes the cavity is empty; i.e., it ignores the solute. When an external field is applied, Eq. S2 accounts for the additional field in the cavity due to the polarization of the dielectric environment around the cavity, but does not consider the additional field due to the polarization of the solute (inside the cavity). In this case, the

Lorentz local field approximation provides a different approach based on a hypothetical virtual cavity and the field induced by apparent charges on the boundary of the cavity.^{68,75}

$$\vec{F}_{loc} = \left(\frac{2+\varepsilon}{3}\right)\vec{F}_{ext}$$
(S3)

For the same range of glass dielectric ($2 < \varepsilon_{glass} < 5$), with Eq. S3 we now obtain 1.3 < f < 2.3, a much larger range. It has long been known however that the Lorentz local field is inappropriate when the system consists of polar molecules possessing permanent dipole moments⁸³; indeed, it was derived prior to Debye's pioneering work that demonstrated molecules could even possess permanent dipoles.

It is apparent then that a new equation for the local field correction is needed that both accounts for the presence of a solute in the cavity and applies to polar molecules; we shall derive an expression for such in the following. To begin, we consider a solute (which is modeled as a polarizable point-dipole with polarizability, α) in a spherical cavity (of radius, *a*) in a dielectric medium (with dielectric constant, ε). We take the approach that Onsager took¹ of breaking down the total field in the cavity, \vec{F} , into two components: the cavity field, \vec{F}_c , and the reaction field, \vec{R} :

$$\vec{F} = \vec{F}_C + \vec{R} \tag{S4}$$

The cavity field is the portion of the total field that is present even when there is no pointdipole (solute) present, but requires an external field (amplified as according to Eq. S2). The reaction field is the portion of the total field that is present even when no external field is applied, but requires the presence of a point-dipole. The reaction field is analogous to what was referred to as the solvent field in this paper, and it can be calculated according to Eq. 7 from the main text. It is important to point out that in a model where reaction fields are included, the *local* field must be carefully defined as the *difference* in the total electric field at a point upon applying an external field.⁷⁵

When an external field is turned on, \vec{F} will change in two ways. First, the cavity field will change from zero to $3\varepsilon / (2\varepsilon + 1) \times \vec{F}_{ext}$. Secondly, the reaction field will change because the solute is polarizable and also responds to the external field. Mathematically, this is:

$$\vec{F}_{loc} = \Delta \vec{F} = \vec{F}_{ext \, field \, on} - \vec{F}_{ext \, field \, off} = \left(\vec{F}_{C} + \vec{R}_{ext \, field \, on}\right) - \vec{R}_{ext \, field \, off}$$

$$= \vec{F}_{C} + \Delta \vec{R}$$
(S5)

 $\Delta \vec{R}$ can be evaluated according to the following:

$$\Delta \vec{R} = \left(\frac{1}{a^3} \frac{2(\varepsilon - 1)}{2\varepsilon + 1}\right) (dipole \ due \ to \ ext \ field)$$

= $f\left(\alpha \vec{F}_c + \alpha \Delta \vec{R}\right)$ (S6)

The first factor is the Onsager factor¹ which when multiplied by a molecule's dipole gives the reaction field. It is traditionally abbreviated f; note that it is not the same as the local field factor, f. The second factor is the total dipole moment induced by the external field, which depends on the molecule's polarizability, the cavity field, and also on the reaction field itself (which additionally induces the dipole moment). The permanent dipole does

not appear in Eq. S6, since we are only interested in the *change* in reaction field upon applying an external field. The self-consistent equation can be solved for $\Delta \vec{R}$ to give

$$\Delta \vec{R} = \vec{F}_{c} \left(\frac{f\alpha}{1 - f\alpha} \right).$$

Inserting this result back into Eq. S5, we obtain:

$$\begin{split} \Delta \vec{F} &= \vec{F}_{C} + \Delta \vec{R} = \vec{F}_{C} \left(\frac{1}{1 - f\alpha} \right) \\ &= \left(\frac{3\varepsilon}{2\varepsilon + 1} \right) \vec{F}_{ext} \left(\frac{1}{1 - \frac{\alpha}{a^{3}} \frac{2(\varepsilon - 1)}{2\varepsilon + 1}} \right) \\ &= \left(\frac{3\varepsilon}{2\varepsilon + 1 - 2\alpha(\varepsilon - 1)/a^{3}} \right) \vec{F}_{ext} \end{split}$$

In the second line, we have inserted the expression for the cavity field in terms of the external field (Eq. S2) and the Onsager factor (Eq. S6). The quantity in parentheses on the final line corresponds is the local field factor. We can remove the microscopic parameters (polarizability and molecular volume) by invoking the Lorentz-Lorenz equation (which relates polarizability to refractive index) and Onsager's ansatz that molecular volume is trivially related to formula weight and density, to give the final result:

$$\vec{F}_{loc} = \left(\frac{3\varepsilon}{2\varepsilon + 1 - 2\left(\frac{n^2 - 1}{n^2 + 2}\right)(\varepsilon - 1)/a^3}\right)\vec{F}_{ext}$$
(S7)

where one must be careful to note that *n* is the refractive index of the solute. Using Eq. S7 with *n* for acetophenone and the same range of glass dielectric ($2 < \varepsilon_{glass} < 5$), we obtain 1.4 < *f* < 1.8. This range is consistent with the span of values calculated for the diagonal components of the local field tensor of crystalline durene and naphthalene.⁸⁴

In summary, Eq. S7 provides an expression for the local field correction that accounts for a polarizable solute that can respond to an external field as well as the polar environment surrounding the solute. Moreover, the upper value allowed to *f* by Eq. S7 is quite close to that implied by the AMOEBA-calculated solvent fields. Nevertheless, Eq. S7 suffers from the same underlying assumptions of dielectric continuum theory, which neglect the microsopic structure of matter and local interactions.

(80) Lockhart, D. J.; Boxer, S. G. Biochemistry 1987, 26, 664–668.

(81) Baker, W. O.; Smyth, C. P. Ann. N. Y. Acad. Sci. 1940, 40, 447–481.

(82) Thomas, S. B. J. Phys. Chem. 1931, 35, 2103–2111.

(83) Kirkwood, J. G. Ann. N. Y. Acad. Sci. 1940, 40, 315–320.

(84) Chen, F. P.; Hanson, D. M.; Fox, D. J. Chem. Phys 1975, 63, 3878–3885.

V. Parameters

5.1 Acetonitrile

atom	210	79	С	"Acet	conitril	e CN"	6	5	12.02	L1 2
atom	211	80	N	"Acet	conitril	e CN"	7	7	14.00	07 1
atom	212	82	С	"Acet	conitril	e CH3"	6	5	12.02	L1 4
atom	213	83	Η	"Acet	conitril	е НЗС"	1	L	1.00	08 1
vdw	79			3.820	0 0	.1010				
vdw	80			3.580	0 0	.1100				
vdw	82			3.820	0 0	.1010				
vdw	83			2.910	00 0	.0330	0.9	900		
bond	79	80		1195.0	00 1	.1700				
bond	79	82		380.0	00 1	.4570				
bond	82	83		390.0	00 1	.0873				
angle	80	79	82	65.0	00 1	80.00				
angle	79	82	83	45.0	0 1	09.92				
angle	83	82	83	40.0	00 1	09.02				
strbnd	80	79	82	18.7	70	18.70				
strbnd	79	82	83	11.5	50	11.50				
torsion 0.0 3	80	79	82	83	0.000	0.0 1	0.000	180	.02	0.000
multipole	210	211	0		0.	50893				
					0.	00000	0.000	000	0.0	0838
					0.	04512				
					0.	00000	0.045	512		
					0.	00000	0.000	000	-0.0	09024
multipole	211	210	0		-0.	64934				
					0.	00000	0.000	000	-0.4	11663
					0.	40285				
					0.	00000	0.402	285		
					0.	00000	0.000	000	-0.8	30570
multipole	212	210	0		-0.	16118				
					0.	00000	0.000	000	0.1	L7034
					-0.	03526				
					0.	00000	-0.035	526		
					0.	00000	0.000	000	0.0	07052
multipole	213	212	210		0.	10053				
					0.	00543	0.000	000	-0.1	L2249
					0.	11906				
					0.	00000	0.009	913		
					0.	02813	0.000	000	-0.1	L2819
	010		-	2240			010			
polarize	210		1.	3340	0.3900	211	212			
polarize	211		1.	2240	0.3900	210	212			
polarize	212		1.	4060	0.3900	210	213			
polarize	213		0.	4900	0.3900	212				

5.2 Dibutyl Ether

atom	29	27	С	"Alkar	ie CH3	- "		(5 1	12.01	1	4
atom	30	28	н	"Alkar	ie H3C	- "			1	1.00	8	1
atom	31	29	С	"Alkar	ie -CH	[2–"		(5 1	12.01	1	4
atom	32	30	Н	"Alkar	ne -H2	C-"			1	1.00	8	1
atom	58	36	0	"Methy	/l Eth	er ()"	8	3 1	15.99	9	2
atom	59	40	С	"Methy	7] Eth	er (сн3"	(5 1	12.01	1	4
atom	60	44	н	"Methy	71 Eth	er F	13C"		1	1.00	8	1
	00			neeny	т цен		150		-	1.00	0	-
vdw	27			3.8200)	0.10	010					
vdw	28			2.9600)	0.02	240	0.9	920			
vdw	29			3.8200)	0.10)10					
vdw	30			2,9800)	0.02	240	0.9	940			
vdw	36			3,4050)	0.11	0.0					
vdw	40			3.8200)	0.10)10					
vdw	44			2.8900)	0.02	240	0.0	910			
· un	••			2.0500								
bond	27	28		341.00)	1.10	020					
bond	27	29		323.00)	1.52	247					
bond	29	29		323.00)	1.52	247					
bond	29	30		341.00)	1.11	L20					
bond	29	40		453.00)	1.52	247					
bond	36	40		465.10)	1.41	30					
bond	40	44		378.00)	1.11	20					
Donia	10			0,0000								
angle	28	27	28	39.57	1	107.	.60	107	.80	10	9.47	
angle	28	27	29	42.44	Ł	109.	.80	109	.31	11	0.70	
angle	27	29	29	48.20)	109.	.50	110	.20	11	1.00	
angle	29	29	29	48.20)	109.	.50	110	.20	11	1.00	
angle	27	29	30	42.44	ł	109.	80	109	.31	11	0.70	
angle	29	29	30	42.44	ł	109.	80	109	.31	11	0.70	
angle	30	2.9	30	39.57	,	107.	.60	107	.80	10	9.47	
angle	40	36	40	88.50)	106.	.00					
angle	36	40	29	65 71		107	50	107	0.0	10	7 90	
angle	36	40	11	70 00)	110	00	108	• • • •	10	8 70	
angle	11	40	11	13 57	,	107	60	107	80	10	0.70	
angle	20	20	40	40.00	`	107.	50	110	20	11	1 00	
angle	29	29	40	40.20	,	109.		100	• 2 0 2 1	11	0 70	
angle	20	29	40	42.44	<i>:</i>	109.	. 00	109	• 5 I 2 1	11	0.70	
angle	29	40	44	42.44	:	109.	.80	109	• 31	11	0.70	
strbnd	2.8	27	29	11.50)	11.	.50					
strbnd	27	29	29	18.70)	18.	.70					
strbnd	29	29	29	18.70)	18	70					
strbnd	27	29	30	11 50)	11	50					
strbnd	20	20	30	11.50	, ,	11	50					
strbnd	2.5	26	40	20 00	, ,	20	00					
stiblid	40	10	40	20.00	, ,	. JO.	.00					
stubud	20	40	29	30.00	,	JO.	.00					
strond	30	40	44	38.00)	-4.	.50					
torsion	28	27	29	27	0.000	0.0) 1	0.000	180.0) 2	0.34	11
0.0.3				- ·			-					
torsion	28	27	29	29	0.000	0.0) 1	0.000	180.0) 2	0.34	11
0 0 3	20	21	27		5.000	0.0	· 1	0.000	100.0		0.0	
torsion	28	27	29	30	0 000	0 0) 1	0 000	180 0	1 2	0 20	20
0 0 3	20	21	29	50	5.000	0.0	, т	0.000	100.0		0.23	צ ו
torsion	27	29	29	27	0.854	0.0) 1	-0.374	180.0) 2	0.10	28
0.0 3							-	,1			'	

torsion 0.0 3	27	29	29	29	0.854 0.0 1	-0.374 180.	0 2 0.108
torsion 0.0 3	27	29	29	30	0.000 0.0 1	0.000 180.	0 2 0.341
torsion 0.0 3	29	29	29	29	0.854 0.0 1	-0.374 180.	0 2 0.108
torsion 0.0 3	29	29	29	30	0.000 0.0 1	0.000 180.	0 2 0.108
torsion 0.0 3	30	29	29	30	0.000 0.0 1	0.000 180.	0 2 0.299
torsion 0.0 3	40	36	40	44	0.000 0.0 1	0.000 180.	0 2 0.597
torsion 0.0 3	36	40	40	40	-1.150 0.0 1	0.000 180.	0 2 1.280
torsion 0.0 3	27	29	29	40	0.854 0.0 1	-0.374 180.	0 2 0.108
torsion 0.0 3	29	29	40	44	0.000 0.0 1	0.000 180.	0 2 0.108
torsion 0.0 3	29	29	40	36	-1.150 0.0 1	0.000 180.	0 2 1.280
torsion 0.0 3	29	40	36	40	0.000 0.0 1	-0.837 180.	0 2 3.204
torsion 0.0 3	30	29	29	40	0.000 0.0 1	0.000 180.	0 2 0.108
torsion 0.0 3	30	29	40	44	0.000 0.0 1	0.000 180.	0 2 0.340
torsion 0.0 3	30	29	40	36	0.000 0.0 1	0.000 180.	0 2 0.300
	2.0	2.1	2.0		0 10000		
шиттроте	29	31	30		-0.16638	0.00000	0.25069
					0.00000	-0.24574	0 40149
multipole	30	29	31		0.05546	0.00000	0.49140
					0.00247	0.01006	-0.10399
	21	2.1	20		0.00852	0.00000	0.01659
шитстроте	21	21	29		0.33700	0.00000	0.22666
					0.00000	-0.72407	0 29216
multipole	31	-31	-31		-0.12028	0.00000	0.27522
					0.47728	0.25202	0.27522
	22	2.1	2.1		0.00000	0.00000	-0.12426
шитстроте	32	21	51		0.00606	0.00000	-0.08554
					0.00000	-0.01833	
multipole	58	59	59		0.00546 -0.32494	0.00000	0.02203
					0.53657 0.44076	0.00000	0.37202

				0.0000	0 7	-0.87825 0.00000	0.43749
multipole	59	58	59	0.1161	5		
				-0.1992	3	0.00000	0.19298
				-0.2368	1		
				0.0000	0	-0.41373	
				-0.1089	9	0.00000	0.65054
multipole	60	59	58	0.0231	6		
				0.0423	1	0.00000	-0.02407
				-0.0158	7		
				0.0000	0	-0.05904	
				0.0366	8	0.00000	0.07491
polarize	29		1.3340	0.3900	30		
polarize	30		0.4960	0.3900	29		
polarize	31		1.3340	0.3900	32		
polarize	32		0.4960	0.3900	31		
polarize	58		0.8370	0.3900	59		
polarize	59		1.3340	0.3900	58	60	
polarize	60		0.4960	0.3900	59		

5.3. Dimethyl Sulfoxide

atom atom atom	189 190 191	72 73 74	s O C	" [" [" [Dimethyl Dimethyl Dimethyl	Sul Sul Sul	foxi foxi foxi	.de .de .de	S=O" S=O" CH3"	16 8 6	5	32 15 12	2.00 .999 .011	56 9 1	3 1 4
atom	192	75	Н	" [Dimethyl	Sul	foxi	.de	H3C"	1		1	.008	В	1
vdw	72			3	3.9100	0	.385	ō 0							
vdw	73			3	3.5200	0	.112	20							
vdw	74			3	3.8200	0	.101	.0							
vdw	75			2	2.9100	0	.024	5		0.9	€10				
bond	72	73		4	194.20	1	.510	0							
bond	72	74		1	L97.20	1	.806	52							
bond	74	75		3	388.20	1	.089)3							
angle	73	72	74		57.25	1	06.8	88							
angle	74	72	74		87.39		92.9	8							
angle	72	74	75		44.07	1	07.0)6							
angle	75	74	75		38.95	1	10.0)7							
strbnd	73	72	74		-5.75		-5.7	5							
strbnd	74	72	74		-5.75		-5.7	5							
strbnd	72	74	75		11.50		11.5	50							
torsion 0.0 3	73	72	74	75	0.	000	0.0	1	0.0	00	180	.0	2	0.5	00
torsion 0.0 3	74	72	74	75	0.	000	0.0	1	0.0	00	180	.0	2	0.5	00
multipolo	190	100	101	101		0	2076	1							
multipole	109	190	-191	-191		0.	2070	3 1	0	مەر	000		0 0	07/6/	
						-0.	6910)1	0.	000	000		0.1	97404	
						0.	0000	0	0.	853	372				
						-0.	2378	33	0.	000	000	-	-0.	16271	
multipole	190	189	-191	-191		-0.	6342	23							
L						-0.	0343	35	0.	000	000		0.2	26755	j -
						-0.	6003	84							
						0.	0000	0	-0.	573	370				
						0.	0967	8 8	0.	000	000		1.1	17404	:
multipole	191	189	190			-0.	0535	5							
						-0.	0878	39	0.	000	000		0.5	54241	
						-0.	2821	.9							
						0.	0000	00	-0.	59()75				
	100	101	100			-0.	2035	8	0.	000	000		0.8	87294	:
multipole	192	191	189			0.	0/50	2	0	~ ~ ^			۰ م	1 = < = <	
						-0.	0129	, / 5	0.	000	000	-	-0.1	12020	1
						0.	0000	0	0	073	286				
						0.	0177	6	0.	000	000	-	-0.1	16051	-
polarize	189		·	3.3000) ().	3900		190	19	1					
polarize	190			.8370) 0.	3900		189		-					
polarize	191			L.3340) 0.	3900		189	19	2					
- polarize	192		(.4960) 0.	3900		191							

5.4. Hexanes

atom	29	27	С	"Al	kane CH3	_ "		(5	12.0	11	4
atom	30	28	Н	"Al	kane H3C	_ "			L	1.0	08	1
atom	31	29	С	"Al	kane -CH	2-"		(5	L2.0	11	4
atom	32	30	Н	"Al	kane -H2	C-"			L	1.0	8 0	1
vdw	27			3.8	200	0.101	0					
vdw	28			2.9	600	0.024	10	0.9	920			
vdw	29			3.8	200	0.101	0					
vdw	30			2.9	800	0.024	10	0.9	940			
bond	27	28		341	.00	1.102	20					
bond	27	29		323	.00	1.524	17					
bond	29	29		323	.00	1.524	17					
bond	29	30		341	.00	1.112	20					
angle	28	27	28	39	.57	107.6	50	107	.80	1	09.47	
angle	28	27	29	42	.44	109.8	30	109	.31	1	10.70	
angle	27	29	29	48	.20	109.5	50	110	.20	1	11.00	
angle	29	29	29	48	.20	109.5	50	110	.20	1	11.00	
angle	27	29	30	42	.44	109.8	30	109	.31	1	10.70	
angle	29	29	30	42	.44	109.8	30	109	.31	1	10.70	
angle	30	29	30	39	.57	107.6	50	107	.80	1	09.47	
strbnd	28	27	29	11	.50	11.5	50					
strbnd	27	29	29	18	.70	18.7	0					
strbnd	29	29	29	18	.70	18.7	0					
strbnd	27	29	30	11	.50	11.5	50					
strbnd	29	29	30	11	.50	11.5	50					
torsion	28	27	29	27	0.000	0.0	1	0.000	180.0) 2	0.34	1
0.0 3	20	27	20	20	0 000	0 0	1	0 000	100 0) 2	0 24	1
0.0 3	20	21	29	29	0.000	0.0	T	0.000	100.0) 2	0.54	: 1
torsion 0.0 3	28	27	29	30	0.000	0.0	1	0.000	180.0) 2	0.29	9
torsion 0.0 3	27	29	29	27	0.854	0.0	1	-0.374	180.0) 2	0.10	8
torsion 0.0 3	27	29	29	29	0.854	0.0	1	-0.374	180.0) 2	0.10	8
torsion 0.0 3	27	29	29	30	0.000	0.0	1	0.000	180.0) 2	0.34	1
torsion 0.0 3	29	29	29	29	0.854	0.0	1	-0.374	180.0) 2	0.10	8
torsion 0.0 3	29	29	29	79	0.854	0.0	1	-0.374	180.0) 2	0.10	8
torsion 0.0 3	29	29	29	30	0.000	0.0	1	0.000	180.0) 2	0.10	8
torsion 0.0 3	30	29	29	30	0.000	0.0	1	0.000	180.0) 2	0.29	9
multipole	29	31	30		-0 0 -0	.1663 .0000 .2457	38)0 74	0.000	000	0.	25069	
multipole	30	29	31		0 0 0	.0000 .0000)0)0 [6	-0.245	574 000	0.	49148	
-												

				0.01102	0.00000	-0.10399
				0.00247		
				0.00000	-0.01906	
				0.00852	0.00000	0.01659
multipole	31	31	29	-0.12028		
-				0.33700	0.00000	0.22666
				0.34191		
				0.00000	-0.72407	
				-0.04985	0.00000	0.38216
multipole	31	-31	-31	-0.12028		
_				0.00000	0.00000	0.27522
				0.47728		
				0.00000	-0.35302	
				0.00000	0.00000	-0.12426
multipole	32	31	31	0.06014		
				0.00606	0.00000	-0.08554
				-0.00370		
				0.00000	-0.01833	
				0.00546	0.00000	0.02203
polarize	29		1.3340	0.3900	30	
- polarize	30		0.4960	0.3900	29	
polarize	31		1.3340	0.3900	32	
polarize	32		0.4960	0.3900	31	
-						

5.5. Valeronitrile

atom	29	27	С	"Alkan	е СН3-"		6	12.011	4
atom	30	28	Н	"Alkan	e H3C-"		1	1.008	1
atom	31	29	С	"Alkan	e -CH2-"		6	12.011	4
atom	32	30	н	"Alkan	е -H2C-"		1	1.008	1
atom	33	29	С	"Alkane	e -CH2- next	to CN"	6	12.011	4
atom	34	30	н	"Alkane	-H2C- next	to CN"	1	1.008	1
atom	210	79	 C	"Aceto	nitrile CN"		6	12.011	2
atom	210	80	N	"Aceto	nitrile CN"		7	14 007	1
	211	00	11	neeco	MICIFIC ON		,	11.007	-
vdw	27			3.8200	0.1010				
vdw	28			2.9600	0.0240	0	.920		
vdw	29			3.8200	0.1010				
vdw	30			2.9800	0.0240	0	940		
vdw	79			3.8200	0.1010				
vdw	80			3.5800	0.1100				
bond	27	28		341.00	1.1020				
bond	27	29		323.00	1.5247				
bond	29	29		323.00	1.5247				
bond	29	30		341.00	1.1120				
bond	79	80		1195.00	1.1700				
bond	79	29		380.00	1.4570				
1 -	2.0	0.7	2.0	20 57	107.00	1.07	7 0 0	100	4 7
angle	28	27	28	39.57	107.60	10	1.80	109.	4/
angle	28	27	29	42.44	109.80	109	9.31	110.	70
angle	27	29	29	48.20	109.50	110	0.20	111.	00
angle	29	29	29	48.20	109.50	110	0.20	111.	00
angle	27	29	30	42.44	109.80	109	9.31	110.	70
angle	29	29	30	42.44	109.80	109	9.31	110.	70
angle	30	29	30	39.57	107.60	107	7.80	109.	47
angle	80	79	29	65.00	180.00				
angle	79	29	30	45.00	109.92				
angle	29	29	79	45.71	111.59				
s+rhnd	28	27	20	11 50	11 50				
atrbnd	20	27	20	10 70	10 70				
stiblid	27	29	29	10.70	10.70				
stiblid	29	29	29	10.70	10.70				
strond	27	29	30	11.50	11.50				
strbnd	29	29	30	11.50	11.50				
strbnd	80	79	29	18.70	18.70				
strbnd	79	29	30	11.50	11.50				
1	~ ~ ~	07	2.0	0.7	0 000 0 0 1	0 00	100	0 0 0	
torsion	28	27	29	27	0.000 0.0 1	0.000	0 T 8 0	.020	.341
torsion	28	27	20	29	0.000 0 0 1	0 000) 1.80	.0.2 0) 341
	20	21	29	25	0.000 0.0 1	0.000	5 100	•0 2 0	
toraion	20	27	20	20	0 000 0 0 1	0 000	100	0 2 0	200
COLETON	Zδ	21	29	30	0.000 0.0 I	0.000	, 190	•0 Z U	
0.03	07	2.0	2.2	27		0 07	1 1 0 0	0 0 0	1
torsion	27	29	29	21	0.854 0.0 1	-0.374	ŧ 180	.020	.108
0.03	~ -			2.0	0 054 0 0 1	0 07		0 0 0	1
torsion	27	29	29	29	0.854 0.0 1	-0.374	Ŧ 180	.020	.108
torsion	27	20	20	30	0 000 0 0 1	0 000) 1.80	020) 3/1
0.0 3	21	23	23	50	0.000 0.0 1	0.000	, 100	.02 (

torsion 0.0 3	29	29	29	29	0.854 0.0 1	-0.374 180.	0 2 0.108
torsion 0.0 3	29	29	29	79	0.854 0.0 1	-0.374 180.	0 2 0.108
torsion 0.0 3	29	29	29	30	0.000 0.0 1	0.000 180.	0 2 0.108
torsion 0.0 3	79	29	29	30	0.000 0.0 1	0.000 180.	0 2 0.108
torsion	30	29	29	30	0.000 0.0 1	0.000 180.	0 2 0.299
torsion	80	79	29	30	0.000 0.0 1	0.000 180.	0 2 0.000
torsion 0.0 3	80	79	29	29	0.000 0.0 1	0.000 180.	0 2 0.000
multipole	29	31	30		-0.16638 0.00000 -0.24574	0.00000	0.25069
					0.00000	-0.24574	0 49148
multipole	30	29	31		0.05546	0.00000	-0.10399
					0.00247	0.01000	
					0.00000	-0.01906	0.01659
multipole	31	31	29		-0.12028		0.01009
					0.33700	0.00000	0.22666
					0.34191	0 72407	
					-0.04985	0.00000	0.38216
multipole	31	-31	-31		-0.12028		
-					0.00000	0.00000	0.27522
					0.47728		
					0.00000	-0.35302	0 10406
multipolo	30	31	21		0.00000	0.00000	-0.12426
murcipore	52	51	51		0.00606	0,00000	-0.08554
					-0.00370		
					0.00000	-0.01833	
					0.00546	0.00000	0.02203
multipole	210	211	0		0.50893		
					0.00000	0.00000	0.00838
					0.04512	0 0/512	
					0.00000	0.00000	-0.09024
multipole	211	210	0		-0.64934		
-					0.00000	0.00000	-0.41663
					0.40285		
					0.00000	0.40285	
	22	010	0		0.00000	0.00000	-0.80570
шитттроте	33	210	U		-0.1611/	0 00000	0 17024
					-0.03526	0.00000	0.1/034
					0.00000	-0.03526	
					0.00000	0.00000	0.07052
multipole	34	33	210		0.15079		
					0.00543	0.00000	-0.12249

0.11906		
0.00000	0.00913	
0.02813	0.00000	-0.12819

polarize	29	1.3340	0.3900	30
polarize	30	0.4960	0.3900	29
polarize	31	1.3340	0.3900	32
polarize	32	0.4960	0.3900	31
polarize	33	1.3340	0.3900	210 34
polarize	34	0.4960	0.3900	33
polarize	210	1.3340	0.3900	211 33
polarize	211	1.0730	0.3900	210

5.6. Tetrahydrofuran

atom atom atom atom	1 2 3 4 5	1 2 3 4 5	С О С Н Н	"thf C "thf O "thf C "thf H "thf H	next to O next to O	" (" { " {	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D11 4 999 2 D11 4 D08 1 D08 1
vdw vdw vdw vdw	1 2 3 4			3.820 3.404 3.820 2.980	0.1010 0.1100 0.1010 0.0240	0.94		
vdw	5			2.980	0.0240	0.94		
bond bond bond bond bond	1 1 3 3	2 3 4 3 5		403.45 337.31 384.37 370.82 380.44	1.4325 1.5289 1.0916 1.5343 1.0868			
angle	2	1	3	44.81	94.14			
angle	2	1	4	51.60	113.50			
angle	3	1	4	20.91	119.97			
angle	4	2	1	82.65	85.11			
angle	1	3	3	14.63	120.85			
angle	1	3	5	34.45	120.15			
angle	3	3	5	34.78	120.24			
angle	5	3	5	15.90	125.48			
strbnd	2	1	3	18.70	18.70			
strbnd	2	1	4	18.70	11.50			
strbnd	3	1	4	18.70	11.50			
strbnd	1	2	1	38.00	38.00			
strbnd	1	3	3	18.70	18.70			
strbnd	1	3	5	18.70	11.50			
SCIDIIa	3	3	5	10.70	11.50			
torsion 0.0 3	3	1	2	1	1.000 0.0 1	-0.750	180.0 2	0.445
torsion	4	1	2	1	0.000 0.0 1	0.000	180.0 2	0.355
torsion	2	1	3	3 –	0.575 0.0 1	0.000	180.0 2	0.640
torsion	2	1	3	5	0.000 0.0 1	0.000	180.0 2	0.150
torsion	4	1	3	3	0.000 0.0 1	0.000	180.0 2	0.170
torsion	4	1	3	5	0.000 0.0 1	0.000	180.0 2	0.150
torsion	1	3	3	1	0.090 0.0 1	0.085	180.0 2	0.260
0.0 3 torsion	1	3	3	5	0.000 0.0 1	0.000	180.0 2	0.170
0.0 3 torsion	5	3	3	1	0.000 0.0 1	0.000	180.0 2	0.170
0.0 3								

torsion 0.0 3	5	3	3	5	0.000	0.0 1	L	0.000	180.0	2	0.150
multipole	1	2	3		0. 0. -0.	09445	5 2 3	0.000	000	0.35	5135
multipole	2	_1	_1		0. -0.	00000 27885 29982) 5 5	-0.344	110 000	0.50)153
multipole	L	-1	-1		-0. 0.	35733	3	0.000	000	0.59	9272
multipole	3	1	3		0 0. -0.	.00000 .00000 .19057)) 7	-0.676	546)00	0.31	L913
					0. 0. 0.	24073	3 1)	0.000	000 542	0.23	3156
multipole	4	1	2		-0.	25214	1)	0.000	000	0.12	2448
					-0. 0. 0.	01882	3	0.131	L88	-0.10)133
multipole	5	3	1		-0. 0. 0.	08609 08357 00299) 7)	0.000)00 ·	-0.18 -0.07	3676 7326
					0. 0. -0.	14804 00000 05098	1) 3	0.013	303)00 ·	-0.16	5107
	_										
polarize polarize	1 2 3		1.33 0.83 1 33	40 70 40	0.3900)))	2 1 5	4			
polarize polarize	4 5		0.49	60 60	0.3900))	1 3				

5.7. Acetophenone

atom	101	101	С	"ACPH C	4	"	6	12.011	3
atom	102	102	С	"ACPH C	3	"	6	12.011	3
atom	103	103	C	"ACPH C	2		6	12.011	3
atom	104	104	C	"АСРН С	1		6	12 011	3
atom	104	107	с u	"ACDU U	3		1	1 008	1
	107	107	п	ACPH H	ວ າ		1	1.000	1
atom	108	108	н	"АСРН Н.	2		1 C	1.008	1
atom	111	111	C	"ACPH C	(00)		6	12.011	3
atom	112	112	С	"ACPH C	(CH3)	"	6	12.011	4
atom	115	115	Н	"АСРН Н	(CH3)	"	1	1.008	1
atom	116	116	0	"АСРН О	(CO)	"	8	15.999	1
atom	117	117	Н	"ACPH H	4	"	1	1.008	1
vdw	101			3.800	0.0910				
vdw	102			3.800	0.0910				
vdw	102			3 800	0 0010				
vuw	103			2 900	0.0910				
vuw	104			2.000	0.0910	0	0.2		
Vaw	107			2.980	0.0260	0	.92		
vdw	108			2.980	0.0260	0	.92		
vdw	111			3.800	0.0910				
vdw	112			3.820	0.1010				
vdw	115			2.960	0.0240	0	.92		
vdw	116			3.300	0.1120				
vdw	117			2.960	0.0260	0	.92		
bond	101	102		680 0	1 30/7				
bond	101	117		410 0	1 0822				
bond	101	102		410.0	1 2015				
bolid	102	103		410 0	1.0000				
bond	102	107		410.0	1.0822				
bond	103	104		680.0	1.3992				
bond	103	108		410.0	1.0819				
bond	104	111		680.0	1.4940				
bond	111	112		385.0	1.5085				
bond	111	116		680.0	1.2237				
bond	112	115		400.0	1.0888				
angle	102	101	102	60.00	119.	90			
angle	102	101	117	32.00	120.	05			
angle	101	102	103	60 00	120	11			
angle	101	102	107	22 00	110	00			
angle	101	102	107	32.00	119.	90			
angle	103	102	107	32.00	119.	91			
angle	102	103	104	60.00	120.	19			
angle	102	103	108	32.00	120.	43			
angle	104	103	108	32.00	119.	37			
angle	103	104	103	60.00	119.	50			
angle	103	104	111	60.00	120.	25			
angle	104	111	112	60.00	118.	35			
angle	104	111	116	60.00	120.	69			
angle	112	111	116	60.00	120.	97			
angle	111	112	115	38.00	109.	91			
angle	115	112	115	34.50	109.	03			
at who d	102	101	100	10 70	10	70			
strona	102	101	102	18.70	18.	/0			
strbnd	102	101	117	18.70	11.	50			
strbnd	101	102	103	18.70	18.	70			
strbnd	101	102	107	18.70	11.	50			
strbnd	103	102	107	18.70	11.	50			

strbnd	102	103	104		18.70	18.	.70				
strbnd	102	103	108		18.70	11.	50				
strbnd	104	103	108		18.70	11.	50				
strbnd	103	104	103		18.70	18.	70				
strbnd	103	104	111		18.70	18.	70				
strbnd	104	111	112		18.70	18.	70				
strbnd	104	111	116		18.70	18.	70				
strbnd	112	111	116		18.70	18.	70				
strbnd	111	112	115		18.70	11.	50				
anhand	102	101	0	0		14 40	`				
oppend	102	101	0	0		14.40)				
opbend	102	101	0	0		14 40) \				
opbend	103	102	0	0		14.40) \				
opbella	107	102	0	0		13.10)				
oppend	104	103	0	0		14.40)				
oppend	108	103	0	0		13.10)				
oppend	103	104	0	0		14.40)				
oppend	111	104	0	0		14.40)				
oppend	102	103	0	0		14.40)				
opbend	112		0	0		14.40)				
oppend			0	0		46.80)				
oppend	104	111	0	0		14.40)				
opbend	101	102	0	0		14.40)				
torsion	102	101	102		103	-0.335	0.0	1	2.000	180.0	2
0.000 0.0 3											
torsion	102	101	102		107	0.000	0.0	1	3.050	180.0	2
0.000 0.0 3											
torsion	117	101	102		103	0.000	0.0	1	3.050	180.0	2
0.000 0.0 3											
torsion	117	101	102		107	0.000	0.0	1	2.035	180.0	2
0.000 0.0 3											
torsion	101	102	103		104	-0.335	0.0	1	2.000	180.0	2
0.000 0.0 3											
torsion	101	102	103		108	0.000	0.0	1	3.050	180.0	2
0.000 0.0 3											
torsion	107	102	103		104	0.000	0.0	1	3.050	180.0	2
0.000 0.0 3											
torsion	107	102	103		108	0.000	0.0	1	2.035	180.0	2
0.000 0.0 3											
torsion	102	103	104		103	-0.335	0.0	1	2.000	180.0	2
0.000 0.0 3											
torsion	102	103	104		111	-0.335	0.0	1	2.000	180.0	2
0.000 0.0 3											
torsion	108	103	104		103	0.000	0.0	1	3.050	180.0	2
0.000 0.0 3											
torsion	108	103	104		111	0.000	0.0	1	3.050	180.0	2
0.000 0.0 3											
torsion	103	104	111		112	-0.305	0.0	1	2.105	180.0	2
0.000 0.0 3											
torsion	103	104	111		116	0.000	0.0	1	2.235	180.0	2
0.000 0.0 3											
torsion	104	111	112		115	0.000	0.0	1	0.000	180.0	2
-0.045 0.0 3											
torsion	116	111	112		115	0.000	0.0	1	0.000	180.0	2
0.150 0.0 3											

multipole	101	-102	-102	-0.02570		
-				0.00768	0.00000	-0.01753
				0.21266		
				0.00000	-0.16041	
				0 00442	0 00000	0 05225
multipolo	102	101	102	0.00442	0.00000	-0.03223
multipole	102	-101	-105	0.03091	0 00000	0 14007
				0.02722	0.00000	0.14297
				-0.04801		
				0.00000	-0.26527	
				-0.06576	0.00000	0.31328
multipole	103	-102	-104	-0.00467		
				0.10264	0.00000	0.06877
				0.09548		
				0.00000	-0.16435	
				-0.13677	0.00000	0.06886
multipole	104	111	103	_0 19836		
marcipore	101		105	0 10216	0 00000	0 00151
				0.04074	0.00000	0.09131
				-0.04074	0 00010	
				0.00000	0.02610	0 01464
				0.01242	0.00000	0.01464
multipole	107	102	101	0.01016		
				-0.00065	0.00000	-0.17629
				0.12054		
				0.00000	0.06309	
				-0.00762	0.00000	-0.18362
multipole	108	103	102	0.039795		
-				-0.00208	0.00000	-0.13374
				0.10762		
				0.00000	0.02400	
					0 00000	_0 13162
multipolo	111	116	104	-0.10070	0.00000	-0.13102
multipole	TTT	110	104	0.70904	0 00000	0 50007
				0.21969	0.00000	0.59927
				0.31546		
				0.00000	-0.31422	
				0.49622	0.00000	-0.00124
multipole	112	111	113	-0.27307		
				-0.02897	0.00000	0.21491
				-0.11113		
				0.00000	0.04609	
				0.02550	0.00000	0.06504
multipole	115	112	111	0.08196		
				-0.00144	0.0000	-0.08391
				0 06581		
				0.00000	0 00381	
				0.00000	0.00000	0 06062
	110	1 1 1	104	-0.04427	0.00000	-0.00902
multipole	110	111	104	-0.69483		
				-0.15120	0.00000	-0.22092
				-0.71841		
				0.00000	0.46814	
				-0.20408	0.00000	0.25027
multipole	117	101	102	0.00865		
				0.00321	0.00000	-0.18157
				0.10658		
				0.00000	0.02986	
				0.00449	0.00000	-0.13644
nolarize	101		1 7500	0 3900	102 11	7
POTOT TTC	TOT		T • 1 2 0 0	0.0000	그 ~ 드 그 그 그	

polarize	102	1.7500	0.3900	101	103	107	
polarize	103	1.7500	0.3900	102	104	108	
polarize	104	1.7500	0.3900	103			
polarize	107	0.6960	0.3900	102			
polarize	108	0.6960	0.3900	103			
polarize	111	1.3340	0.3900	116			
polarize	112	1.3340	0.3900	113			
polarize	115	0.4960	0.3900	112			
polarize	116	0.8370	0.3900	111			
polarize	117	0.6960	0.3900	101			