Liquid Crystal Droplet-Based Amplification of Microvesicles that are Shed by Mammalian Cells

Lie Na Tan^a, Gregory J. Wiepz^b, Daniel S. Miller^a, Eric V. Shusta^a, Nicholas L. Abbott^a*

^aDepartment of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, and ^bDepartment of Biomolecular Chemistry, University of Wisconsin-Madison, 1300 University Avenue, Madison, Wisconsin 53706.

* To whom all correspondence should be addressed. Tel: 608-265-5278. Fax: 608-262-5434. Email: abbott@engr.wisc.edu.

Electronic Supplementary Materials (ESI)

lipid tails	mol %
C14:0	2.2
C16:1	4.7
C16:0	23.2
C18:2	20.6
C18:1	32.5
C18:0	16.7

Figure S1: GC-MS analysis of the lipids tails of A431 cells-derived MVs.

Figure S2: AFM image of a surface decorated with anti-EGFR 111.6 and subsequently incubated with MVs derived from A431 cells. The line corresponds to the location of the measurement of the cross sectional height (right plot).

Figure S3: AFM images of (a) a surface decorated with an isotype control IgG and (b) a surface decorated with isotype control IgG and subsequently incubated with MVs derived from A431 cells (scale bar: 500 nm).

Figure S4: Time-dependent size distributions of LC droplets in the (a) absence and (b) presence of lipids extracted from MVs (blue bars – 0 h and red bars – 6 h).

Figure S5. Frequency histogram for FSC obtained for radial (with MVs) and bipolar (no MVs)

LC droplets at t = 0 h and t = 6 h.

Figure S6: Frequency histogram for FSC obtained with increasing concentration of lipids in

5CB droplets.

Figure S7. Percentage of radial LC droplets as a function of diameter of LC droplets in the presence of lipids extracted from $5 \cdot 10^7$ MVs.

	# of lipids per droplet	
µLof 5CB	10 ⁷ MVs	10 ⁶ MVs
1	106	105
0.3	3 · 10 ⁶	3 · 10 ⁵
0.1	107	106
0.03	3 · 107	3 · 106

Table S1: Theoretical amount of lipids in each droplet with a given amount of MVs and volume

of 5CB used.