Title: The role of OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels

Authors: Tianyuan Yang, Song Zhang, Yibing Hu, Fachi Wu, Qingdi Hu, Guang Chen, Jing Cai, Ting Wu, Nava Moran, Ling Yu, Guohua Xu

SUPPLEMENTARY DATA

Table S1. The primers for Semi-quantitative RT-PCR and Real-time quantitative PCR of *OsHAK5*

Gene (DNA Accession No.)	Primers sequences (5' to 3')	Product length (bp)	
	Semi-F: GGCATCCCACCCATACTTCCTCA	614	
OsHAK5 (AK241580)	Semi-R: TACGTCATTCCTACCCGCAACAG	014	
	Real-time-F: CATTGTGGACTATTTTGAAAGAA	149	
	Real-time-R: GGAGAACTACAGAAAAGCCAATC		
OsACT (OsRac1) (AB047313)	Semi-F: GGAACTGGTATGGTCAAGGC	750	
	Semi-R: AGTCTCATGGATAACCGCAG	750	
	Real-time-F: TTATGGTTGGGATGGGACA	407	
	Real-time-R: AGCACGGCTTGAATAGCG	197	

Table S2. The primers for promoter of OsHAK5

Gene(DNA Accession No.)	Primers sequences (5' to 3')	Product length (bp)
OsHAK5	F: GCG TTAATTAACCATAGTTGCCAGACTGTTAG	1776
(AK241580)	R:AGT <u>GGCGCGCC</u> TCTCAGTGTATGGAATTTGCT	1770

Notes: 5' spacer sequences are indicated in overstriking. The incorporated two restriction sitessequences of AscI(<u>TTAATTAA</u>) and PacI(<u>GGCGCGCC</u>) are underlined.

	Table S3. The	e primers for OsHAK5-cD	NA for construction	of overexpression
--	---------------	-------------------------	---------------------	-------------------

Gene (DNA Accession No.)	Primers sequences (5' to 3')	Product length (bp)	
	F: ATT<u>GGTACC</u>ATGACCGAGCCTCTGCACAC	2246	
USHAND(AN241000)	R: ATA<u>GCTAGC</u>AGATTTCCAAGAACATCACCATC	2340	

Notes: 5' spacer sequences are indicated in overstriking. Incorporated two restrictionsites sequences of KpnI (<u>GGTACC</u>) and NheI (<u>GCTAGC</u>) are underlined.

Table C4 The	nuine and fau identification	two hamany may	mutant lines of ashallE
1201e 54 The	primers for identification	two nomozvoous	mutant lines of osnako
		the noniozygodo	

Gene (DNA Accession No.)	Primers sequences (5' to 3')
	DJ-3A09138 F: TGCATTTCCTCACTCAGCAC
OsHAK5	DJ-3A09138 R: GCAAGGATGGACATGATCTG
(AK241580)	HY-2A30318 F: TGGTTGCCTGAAGTTCTTCC
	HY-2A30318 R: GCCCAAATCTATCAGGCAAG
T-DNA Vector2715	2715L: ACGTCCGCAATGTGTTATTAA
	2715R: AACGCTGATCAATTCCACAG

Figure S1: Localization of OsHAK5 in the cell plasma membrane.

A, An expression of eGFP and OsHAK5:eGFP fusion protein in rice protoplasts. Top row: images of a control protoplast expressing eGFP. Bottom row: images of a protoplast expressing OsHAK5:GFP fusion protein. (a) GFP (green) fluorescence images (excitation: 490 nm, emission: 525 nm). (b) Bright-field images.(c) FM4-64FX dye (red) images (FM4-64FX is a membrane-selective fluorescent vital dye; excitation: 543 nm, emission: 660 nm). (d) Superposition of the GFP and FM4-64FX fluorescence images. (e) Superposition of the GFP fluorescence and bright-field images. Bars = 5 μ m.

B, An expression of *OsHAK5*:GFP fusion protein in BY-2 cells.(f) GFP images, (g) Bright-field images, (h) Overlap of GFP fluorescence and bright-field images. Tobacco (*Nicotianatabacum* L.) cv. Bright Yellow 2 (BY2) suspension-cultured cells were maintained in a modified liquid Linsmaier and Skoog (LS) medium (pH 5.8) (Nagata et al., 1981). The cells were cultivated in this medium at 27°C in the dark on an orbital shaker at 125 rpm, according to Nakayama et al. (2000).

Nagata T, Okada K, Takebe I, Matsui C (1981) Delivery of tobacco mosaic-virous RNA into plant-protoplasts mediated by reverse-phase evaporation vesicles (Liposome). Mol Gen Genet **184**: 161-165.

Nakayama H, Yoshida K, Ono H, Murooka Y, Shinmyo A (2000) Ectoine, the compatible solute of Halomonaselongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol**122**: 1239-1247.

Figure S2: Functional complementation test of OsHAK5 in yeast for absorbing K from culture medium containing different levels of K.

The coding sequence of *OsHAK5* was clonedin pYES2 (Invitrogen) under control of the inducible Gal1 promoter. The expression vectors were transformed into the R5421 strain, an K uptake-deficient strain of Saccharomyces cerevisiae [ura3-52his3 \triangle 200 leu2 \triangle 1 trp1 \triangle 1ade2 trk1 \triangle ::HIS3 trk2 \triangle ::HIS3] (kindly provided by Prof. Gaber from Northwest university in USA). The transformants were selected on Glc-containing SC-agar plates without uracil, supplemented with 100 mM K. Phosphoric acid (AP) medium was used for subsequent growth assays which were performed as described previously (Horie*et al.*, 2011). The complementation tests were conducted on solidmedia, and the plates were incubated at 30 °C for 6 d. The numbers at the top indicate yeast culture dilutions.

FigureS3: Molecular identification of *OsHAK5-overexpressing* transgenic rice lines in the background of the Nipponbare cultivar.

A, Southern blot analysis of the transgene copy number in T2 transgenic rice plants (OX1,OX2 and OX3)and WT plant. Genomic DNA was digested with two restriction enzymes *HindIII* and *EcoRI*, the Hygromycin gene was used as probe. The DNA was separated on 1%agarose gel. M: marker; P: pTK303-ubi as a positive control. **B**, Real-time quantitative RT-PCR analysis of endogenous *OsHAK5* gene levels in the leaves of WT, OX1, OX2 and OX3 plants using total RNA isolated from the leaves of two weeks-old seedlings.

Figure S4: Homozygous T-DNA insertion mutants of OsHAK5 gene in rice: phenotype and isolation. A, The position of two T-DNA insertions, identified by sequencing the regions flanking theright border of the T-DNA inserts in the PCR products. **B**, Identification of plants homozygous (homo) for each of the T-DNA insertsusing two rounds of RT-PCR according to the detailed procedures for Japonica subspecies described in (http://signal.salk.edu/cgi-bin/RiceGE). All the primers are listed in the Supplemental Table S4. **C**, phenotype of 10-day-old seedlings of WTs and two homozygous T-DNA insertion (oshak5 knockout mutant) lines grown in 0.3 mM K solution (KO(DJ) and KO(HY)). D, Expression levels of OsHAK5 in leaves of WTs and oshak5 mutants. RT-PCR was performed on total extracted RNA using the primers listed in Table S4. E, Southern blot analysis of WTs and the two T-DNA insertion lines. Genomic DNA from whole leaves was digested with two restriction enzymes *HindIII* and *EcoRI*, and separated by agarose gel of 1%. Arrow heads: indicated one copy insertion in the genomic DNA. M: marker; WTs: wild types of the Dongjin and Hwayoung cultivars. WT(DJ): wild type of the Dongjin cultivar, KO(DJ): OsHAK5 knockout mutant line of the Dongjin cultivar. WT(HY): wild type of Hwayoung cultivar, KO(HY): OsHAK5 knockout mutant line of the Hwayoung cultivar.

Figure S5: Effect of *OsHAK5* **knockout on rice growth at conditions of low K supply.** Phenotypes of WT and KO lines grown in IRRI solution containing 0.3 mM K for two weeks. Details of the treatment were described in Fig.4 legend. Bar is 5 cm.

Figure S6: Effect of continuous supply of high K on plant growth and K accumulation of the *OsHAK5* knockout transgenic rice. A and B: Ten-day-old seedlings were grown continuously in IRRI solution containing 1 mM K for two weeks, and then supplied with 5 mM K for two more weeks. C and D: Independent experiment for growth comparison of WT and the *oshak5* mutants which were grown continuously in IRRI solution containing 1 mM K for one week, and then supplied with 10 mM K (C) and 20 mM K (D) for two more weeks. WT(DJ): wild type of the Dongjin cultivar, KO(DJ): *OsHAK5* knockout mutant line of the Dongjin cultivar. WT(HY): wild type of the Hwayoung cultivar, KO(HY): *OsHAK5* knockout mutant line of the Hwayoung cultivar, error bars: se (*n*=5 plants), DW: Dry Weight. Significant differences from WT in each group are indicated by different letters (*P*<0.05,one way ANOVA). R: root, BN.S: basal node + sheath, L.B: leaf blade.

Figure S7

Figure S8: Effect of *OsHAK5* knockout on plant growth in the presence of **100 mM NaCI.** Phenotypes of WT and KO lines grown in IRRI solution containing 1 mM K and 100 mM NaCI. Details of the treatment were described in Fig.10 legend. Bar is 5 cm.