

Supplemental Figure 1. Vacuoles in uninfected cells emit fluorescence corresponding to pH 5-5.5 whereas vacuoles in infected cells emit fluorescence corresponding to pH 7-7.5. Uninfected cells are distinguished from infected ones by their smaller size; the vacuoles of uninfected cells occupy near the whole area of the cell .Panel B shows the calibration of fluorescence of lysosensor Yellow/Blue at pH 3 to 8. IC, infected cell, (*) vacuole; UC, uninfected cell, bar:25µm. For analysis used a Leica DM 5500 Flu microscope with the filter cube A (DAPI). Bar:75 µm

Supplemental Figure 2. The expression pattern of ProVPS11:GUS (A) and ProVPS39:GUS (B) in transgenic roots inoculated by G. intraradices shows that both VPS11 and VPS39 are expressed in the root cells which contain arbuscules. (C): Neutral Red staining to determine vacuolar pH indicates that the vacuole of the cell, containing the arbuscule (asterisk), retains acidic pH (C). H-hyphae, (*) – arbuscules. Bars:(A),(B):25 μ m, (C): 20 μ m.

Supplemental Figure 3. Co-localization of endosome/vacuole molecular marker VTI11 with VPS proteins in ProVPS11:GFP-VPS11(A) and ProVPS39:GFP-VPS39 (B) transgenic cells. Co-localization shows that VPS proteins are located on the same structures- endosomes/young vacuoles- as a molecular marker VTI11. Tonoplast localization of GFP-VPS11 in ProUBQ3:GFP-VPS11 transgenic nodule (C). Arrow: tonoplast labelled by GFP. Bars: (A), (B): 10 µm, (C): 20µm

Supplemental Figure 4. The level of gene silencing of VPS11 **(A)** and VPS39 **(B)** in 14 dpi nodules elicited on *ProE12:RNAi-VPS11* and *ProE12:RNAi-VPS39* transgenic roots (P<0.05).

А

В

At-TIP1;2	MPTRNIAIGGVQEEVYHPNALRAALAEFISTLIFVFAGSGSGIAFNKITDNGATTPSGLV	60
Os-YTIP	MPIRNIAVG-SHQEVYHPGALKAALAEFISTLIFVFAGQGSGMAFSKLTGGGATTPAGLI	59
Mt-TIP1b	MPIRNIAVG-TPQEATHPDTLKAGLAEFISTFIFVFAGSGSGIAYNKLTNDGAATPAGLI	59
Mt-TIP1g	MPISRIAIG-NPSEFGKADALKAALAEFISMLIFVFAGEGSGMAYNKLTNNGAATPAGLV	59
Gh-YTIP1	MPISRIAVG-SPAEAGQADALKAALAEFISVLIFVFAGEGSGMAFNKLTDDGSSTPAGLV	59
Zm-TIP1-2	MPVSRIAVG-APGELSHPDTAKAAVAEFISTLIFVFAGSGSGMAFSKLTDGGAATPAGLI	59
Mt-TIPle	MAKIALG-TTREATQPDCIQALIVEFIATFLFVFAGVGSAMTADKLSGD	48

Mt-TIP1c	$-{\tt MA-GIAFG-RLDDSFSFGSIKAYIAEFISTLLFVFAGVGSAIAYGKLTSDAALDPAGLL}$	57
Mt-TIP1f	-MGRGIAFG-RFDDSFSVSSIRAYVAEFISTLIFVFAGVGSAIAYAKLTSGAALDPAGLV	58
Mt-TIP1d	MVKIGFG-TFDDSFSAASLKAYLSEFIATLIFVFAGVGSAIAYNDLTSDAALDPAGLV	57
Mt-TIP1a	MTGKLMPDASLNPTSLV	17
	$\Delta\Delta\Delta$	
At-TIP1;2	AAALAHAFGLFVAVSVGANISGGHVNPAVTFGVLLGGNITLLRGILYWIAQLLGSVAACF	120
Os-YTIP	AAAVAHAFALFVAVSVGANISGGHVNPAVTFGAFVGGNITLFRGLLYWIAQLLGSTVACF	119
Mt-TIP1b	SASIAHAFALFVAVSVGANISGGHVNPAVTFGAFVGGNITLLRGIVYIIAQLLGSIVASA	119
Mt-TIPIg	AASLSHAFALFVAVSVGANISGGHVNPAVTFGAFIGGHITLIRGLLYWIAQLLGSVVACL	119
Gh-γTIPI	AAALAHALALE'VAVSIGANISGGHVNPAV'I'E'GAE'VGGHI'I'LVRSILYWIAQLLGSVVACE'	119
Zm-TIP1-2	AASLAHALALFVAVSVGANISGGHVNPAVTFGAFVGGNISLLKALVYWVAQLLGSVVACL	119
Mt-TIPle	ALVGLFFVGHITIVRSILYWIDQLIASAAACY	80
Mt-TIPIC	AVAVCHGFALF/VAVAVGANISGGHVNPAV/TFGLAVGGQ1T1LTG1FYWIAQLLGS1VACF	117
Mt-TIPII	AVAVCHGFALFVAVSVGANISGGHVNPAVTFGLAIGGQITILTGIFYWIAQLLGSIVACF	117
Mt-TIPIQ	AVAVAHAFALFVGVATAANISGGHLNPAVTFGLAIGGNITILTGLFYWIAQLLGSIVASL	11/
MU-IIPIa	VGATASAFALSSVLYIAWDISGGHVNPAVIFAMAVGGHISVPIALFYWVAQLIASVIACL	//
At-TIP1;2	LLSFATGGEPIPAFGLSAGVGSLNALVFEIVMTFGLVYTVYATAVDPKNGSLGTIAPIAI	180
Os-YTIP	LLRFSTGGLATGTFGLTG-VSVWEALVLEIVMTFGLVYTVYATAVDPKKGSLGTIAPIAI	178
Mt-TIP1b	LLVFVTAS-SVPAFGLSEGVGVGPALVLEIVMTFGLVYTVYATAVDPKKGNIGIIAPIAI	178
Mt-TIP1g	LLKIATGGLETSAFSLSSGVGATNALVFEIVMTFGLVYTVYATAVDPKNGSLGTIAPIAI	179
Gh-YTIP1	LLKFSTGGMTTSAFSLSSGVGAWNAVVFEIVMTFGLVYTVYATAVDPKKGNIGIIAPIAI	179
Zm-TIP1-2	LLKIATGGAALGAFSLSAGVGAMNAVVLEMVMTFGLVYTVYATAVDPKKGDLGVIAPIAI	179
Mt-TIPle	LLHYLSGGLTTPAHTLASGVGYTQGVWEIVLTFSLLFTVYATMVDPKKGALAGLGPTLV	140
Mt-TIPIC		170
MC-TIPII ME DID14		170
Mt-TIPIQ Mt-TIPIa		126
MC IIFIA		130
	$\Delta\Delta\Delta$	
At-TIP1;2	GFIVGANILAGGAFSGASMNPAVAFGPAVVSWTWTNHWVYWAGPLIGGGLAGIIYDFVFI	240
Os-YTIP	GFIVGANILVGGAFDGASMNPAVSFGPALVSWSWESQWVYWVGPLIGGGLAGVIYEVLFI	238
Mt-TIP1b	GFIVGANILVGGAFTGASMNPAVSFGPAVVSWSWSNHWVYWAGPLIGGGIAGLVYEVLFI	238
Mt-TIP1g	GFIVGANILAGGAFDGASMNPAVSFGPAVVSWTWANHWVYWVGPLIGSAIAAVVYETFFI	239
Gh-YTIP1	GFIVGANILAGGAFDGASMNPAVSFGPAVVSWTWDNHWVYWLGPFIGSAIAAIVYEVFFI	239
Zm-TIP1-2	GFIVGANILAGGAFDGASMNPAVSFGPAVVTGVWENHWVYWVGPLAGAAIAALVYDIIFI	239
Mt-TIP1e	GFVVGANILAGGAFSAASMNPARSFGPALVSGNWTDHWVYWVGPLIGGGLAGFIYENFFI	200
Mt-TIP1c	GFIVGANILAAGPFSGGSMNPARSFGPAVVSGNFHDNWIYWAGPLIGGGLAGLIYGNVFM	237
Mt-TIP1f	GLIVGANILAAGPFSGGSMNPARSFGPAVLSGDYHNNWIYWVGPLIGGGLAGVIYSYVFM	238
Mt-TIP1d	GFVVGANILAAGPFSGGSMNPARSFGPAVVSGNFADNWIYWVGPLIGGGLAGLIYGDVFI	236
Mt-TIPIa	<u>GLIAGASVLAAGPF</u> SGGSINPACAFGSASIAGTFR <u>NQAVYWVGPLIGAVVAGLLYDNVLF</u>	196
At-TIP1;2	DENAHEQLPTTDY 253	
Os-YTIP	SH-THEQLPTTDY 250	
Mt-TIP1b	NS-THEQLPTTDY 250	
Mt-TIP1g	TPSSYEQLPVTDY 252	
Gn-yTIP1	APSTYEEVPSADF 252	
Zm-TIP1-2	GQRPHQQLPTTAADY 254	
Mt-TIPle	NR-DHVPLAVDEESY 214	
Mt-TIPIC	HT-EHAPLSSDF 248	
Mt-TIPIÍ	PS-DHVPLASDF 249	
Mt-TIPId	GS-YTPAPASEF 247	
MC-IIPIA	LOČNONCTKANONALAKA STA	

С

Gene name	Corresponding gene locus		
Mt-TIP1a	Medtr2g060360		
Mt-TIP1b	AJ251652.1		
Mt-TIP1c	Medtr8g013680		
Mt-TIP1d	Medtr5g012810		
Mt-TIP1e	Medtr1g006490		
Mt-TIP1f	Medtr2g101370		
Mt-TIP1g	Medtr4g063090		
At-TIP1;1	AT2G36830		
At-TIP1;2	AT3G26520		
At-TIP1:3	AT4G01470		

At-TIP2;1	AT3G16240
At-TIP2;2	AT4G17340
At-TIP2;3	AT5G47450
At-TIP3;1	AT1G73190
At-TIP3;2	AT1G17810
At-TIP4;1	AT2G25810
At-TIP5;1	AT3G47440
At-PIP1;1	At3g61430
At-PIP1;2	At2g45960
At-PIP1;3	At1g01620
At-PIP1;4	At4g00430
At-PIP1;5	At4g23400
At-PIP2;1	At3g53420
At-PIP2;2	At2g37170
At-PIP2;3	At2g37180
At-PIP2;4	At5g60660
At-PIP2;5	At3g54820
At-PIP2;6	At2g39010
At-PIP2;7	At4g35100
At-PIP2;8	At2g16850
At-NIP1;1	At4g19030
At-NIP1;2	At4g18910
At-NIP2;1	At2g34390
At-NIP3;1	At1g31885
At-NIP4;1	At5g37810
At-NIP4;2	At5g37820
At-NIP5;1	At4g10380
At-NIP6;1	At1g80760
At-NIP7;1	At3g06100
At-SIP1;1	At3g04090
At-SIP1;2	At5g18290
At-SIP2;1	At3g56950

D

Gene name	Corresponding gene locus	References
At-TIP1;2	AT3G26520	Bourguignon et al., 2007
Gh-γTIP1	EF470294	Zhang et al., 2008
Os-γTIP	RICYK333	Uchimiya et al., 1994
Zm-TIP1-2	AF326500	Jung et al., 2001

Supplemental Figure 5. (A) Phylogenetic comparison of transporters from *M. truncatula* and *A. thaliana*. Classification and naming of *A. thaliana* MIPs members as in Johanson et al. (2001). Phylogenetic analyses (bootstrap values of 500 replicates) were conducted using MEGA version 5 (Tamura et al., 2011). (B) ClastalW alignment of predicted amino acid sequence of *M. truncatula* aquaporins with another well studied water transporters. Transmembrane domains are shown with a line below the alignment; triangles indicate the NPA selectivity filter. (C) Accession numbers of gene sequences used in TIPs phylogenetic analysis. (D) Gene sequences used for multiple alignments of amino acid sequences

Supplemental Figure 6. Expression profile of *M. truncatula* TIP genes in roots and different zones of 14 day old nodules (14-1 – meristem and infection zone, 14-2 – fixation zone). Expression level was determined by qRT-PCR and normalized against transcription level of reference gene *M. truncatula* UBQ10.

Supplemental Figure 7. YFP-TIP1g localizes on plasma membrane of injected oocytes. (A) Confocal image of expressing YFP-TIP1g oocytes. Plasma membrane is counterstained with FM4-64. (B) Signal overlapping in region of interest 1 (ROI1). (C) Water permeability coefficient values for oocytes injected with cRNA encoding TIP1g and YFP-TIP1g. Bar :0.5 μm

Supplemental Figure 8. Water-channel activity of TIP1g.

(A) The relative volume of oocytes injected with cRNA encoding TIP1g, human AQP1 or water following exposure to hypotonic media. The rate of oocytes swelling is plotted as V/V0 versus time, where V is a volume at the certain time point and V0 is the initial volume.

(B) Water permeability coefficient values for oocytes injected with cRNA encoding TIP1g, AQP1 or water. The difference was significant, that show that TIP1g is a functional water transporter.

Tukey's multiple comparisons test	Mean Diff.	95% CI of diff.	Significant?	Summary	Adjusted P Value
TIP1g vs. Water	0.003166	0.001308 to 0.005025	Yes	* **	0.0006
TIP1g vs. AQP1	-0.004654	-0.006185 to -0.003122	Yes	****	< 0.0001
Water vs. AQP1	-0.007820	-0.009742 to -0.005897	Yes	****	< 0.0001

 Supplemental Figure 9. TIP1g does not transport ammonia and malate.
(A) NH3 flux experiment. ¹⁵ N content of TIP1g injected oocytes were same with water control in all pH tested. This result suggests that TIP1g is not a NH_3 transporter.

(B) Malate flux experiment. TIP1g injected oocytes in comparison with water control, show no significant differences, TIP1g does not transport malate.

Supplemental Figure 10. The induction of the rhizobial nifH gene, detectable due to GFP fluorescence, permits discrimination between Fix+ and Fix- nodules on ProL-B:RNAi-TIP1g transgenic roots.

(A) to (C) Fix+ transgenic nodules (Tr Fix+) and Fix+ non-transgenic (Ntr) nodules.

(D) to (F) Fix- transgenic nodules (Tr Fix-) and Fix+ non-transgenic (Ntr) nodules.

All non-transgenic nodules are Fix+. The transgenic roots were selected according to DsRed emission (620/60) (A) and (D); rhizobial nifH induction was detected by GFP emission (525/50) (C) and (F) and the composite image were made by using YFP emission 560/40 (B) and (E). Bars:2 mm

Supplemental Figure 11. The level of *TIP1g* gene silencing in Fix⁺ and Fix⁻ nodules harvested from *ProLB:RNAi-TIP1g* transgenic roots in comparison with an empty vector control. The difference between the control and Fix⁻ nodules is significant (P<0.05).

Supplemental Table 1: primers used for cloning and PCR analysis of *VPS11*, *VPS39* and TIP aquaporins

Gene specific primers for cloning VPS11 and VPS39: VPS11-F TCCCCGGGATGTATCAATGGCGGAAGTT; VPS11-R GGGGTACCTCAGAAG-CCACTGCTAGATGAT; VPS39-F CGGGATCCATGGTGCACAGTGCGTACG: VPS39-R GGGGTACCTCATCGCTTCCTCAACTGA;. Promoter specific primers for VPS11 and VPS39: Pro VPS11- F CACCTATTCAAATTGAAAAAACACAGAATATT; Pro VPS11- R CGCCGCCGCGAT; Pro VPS39- F CACCAAGGATTCAAACCCCGATCA: Pro VPS39- R TTTGGTTACGAAATA-TTGAAGTTGA: Primers for the analysis of the expression level by q-PCR for VPS11 and VPS39: VPS11- FTCAAGCAACGCAACTTCCTG; VPS11-R TCAGGCACAAAGCTGATTGC; Vps39-F AATCTACTCGCCGGAAACAG; Vps39-R TGACACAACAGGCTTCTTCG; Gene specific primers for cloning TIP1g: TIP1g-F CACCATGCCGATTTCTAGAATTGCA; Tip1g-R TTAATAATCCGTGACAGGTAACTG; Promoter specific primers for TIP1g: ProTIP1g- F CACCGCTTGTCTTGATTTCATGGATTG; ProTIP1g- R TGTTTTATATTTTTTCTTTCTCAAAGA; Primers for the analysis of the expression level by q-PCR of TIP genes in roots and different zones of14 day old nodules: TIP1a-F ATTTACGCTGCAAGGGACAC; TIP1a- R CACATGCAGGGTTGATTGAC; TIP1b-F CGTTGACCCAAAGAAGGGTA; TIP1b-R AAGTCCAGCAATTCCACCAC; TIP1c-F GTCACCTTTGGATTGGCTGT; TIP1c-R TCAGCTGCTGTGGCATAAAC; TIP1d-F TTTTGTGTTCGCTGGAGTTG;

TIP1d-R ACAGCTGGGTTCAAATGTCC;

TIP1e-F CCCAAAGAAAGGAG-CACTTG;

TIP1e-R CCAACCCAATAAACCCAATG;

TIP1f-F GGTTCCATAG-TGGCATGCTT;

TIP1f-R AGCTGCTGTGGCATACACTG;

TIP1g-F AACACCAG-CAGGGTTGGTAG;

TIP1g-R CAAGCAACTGAGCAATCCAA.