BIOMETRICS 000, 000–000 DOI: 000 DOI: 000 000 XXXXX

Web-based Supplementary Materials for "Evaluating Marker-Guided Treatment Selection Strategies"

Roland A. Matsouaka^{1†,}*, Junlong Li^{2†,}**, and Tianxi Cai^{2,}***

¹Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA ²Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA † Equal Contributors *email: rmatsoua@hsph.harvard.edu **email: juli@hsph.harvard.edu ***email: tcai@hsph.harvard.edu

APPENDIX

Web Appendix A: Asymptotic Properties of $\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_\text{calib}}$ and $\widehat{\mathcal{I}}_\text{calib}$

Although the working models could be semi-parametric and $\hat{\beta}$ could be infinite dimensional, for the derivation of the asymptotic theory, we focus on the case when $\hat{\beta}$ is finite dimensional. Throughout we use notation $g'(x) = dg(x)/dx$ and $\mathbf{g}'_k(\mathbf{x}_1, ..., \mathbf{x}_K) = \partial g(\mathbf{x}_1, ..., \mathbf{x}_K)/\partial \mathbf{x}_k$. We assume that the covariates are bounded, $\bar{\beta}$ is an interior point of a compact parameter space, $D(\beta, \mathbf{X})$ is a continuous random variable which has a continuously differentiable density function $f_D(\cdot)$ bounded away from 0 with finite support $[\tau_l, \tau_r]$, and $Y^{(k)} \mid D(\bar{\beta}, \mathbf{X})$ has a finite second moment for any $D(\bar{\beta}, \mathbf{X}) \in [\tau_l, \tau_r]$. We require the regularity condition that $\widehat{\boldsymbol{\beta}} \to$ $\bar{\beta} = (\bar{\beta}_0^{\dagger}, \bar{\beta}_1^{\dagger})^{\dagger}$ for $\bar{\beta}$ and $\widehat{\mathcal{W}}_{\beta} = n^{\frac{1}{2}}(\widehat{\beta} - \bar{\beta}) = n^{-\frac{1}{2}} \sum_{i=1}^{n} \Psi_{\beta i} + o_p(1)$ which converges weakly in distribution to a multivariate normal. We consider that $\Delta(\cdot)$ is continuously differentiable with $|\bar{\Delta}'(s)| \leqslant b_{\bar{\Delta}'} < \infty$. We also assume that there are at most $K_0 < \infty$ number of solutions to $\bar{\Delta}'(s) = 0$, there exists intervals $\tau_l = s_1 < \cdots < s_{K_0+1} = \tau_r$ such that $\bar{\Delta}(s)$ is monotone in $[s_k, s_{k+1}]$, for $k = 1, ..., K_0$; and hence $\overline{\Delta}(s) = \xi$ has at most K_0 roots. Furthermore, when at least one solution to $\bar{\Delta}(s) = \xi$ exists, we denote by $\{\mathfrak{s}_{k_r} \in (s_{k_r}, s_{k_r+1}) : r = 1, ..., R_0\}$ all the solutions and assume that $|\bar{\Delta}'(\mathfrak{s}_{k_r})| \geq L_{\bar{\Delta}'} > 0$. This regularity condition ensures that the total variation of $\mathfrak{I}(s) = I\{\Delta(s) \geq \xi\}$ is bounded by K_0 .

We next derive the convergence properties of $\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}} = \widehat{\mathbb{V}}_a(\widehat{\Delta}, \widehat{\boldsymbol{\beta}}) + \bar{Y}_0$ to $\mathbb{V}_{\mathcal{I}_{\text{calib}}} = \mathbb{V}_a(\bar{\Delta}, \bar{\boldsymbol{\beta}}) +$ μ_0 , where $\bar{Y}_0 = n_0^{-1} \sum_{i=1}^{n}$ $i=1$ $Y_i I(G_i = 0), \mu_0 = E(Y^{(0)}),$ $\widehat{\mathbb{V}}_a(\Delta,\boldsymbol{\beta})=n$ $-1\sum_{}^n$ $\sum_{i=1} I \left[\Delta \{ D(\boldsymbol{\beta}, \mathbf{X}_i) \} \geqslant \xi \right] \widehat{\mathcal{Y}}_{\xi_i}, \quad \mathbb{V}_a(\Delta, \boldsymbol{\beta}) = E \left(I \left[\Delta \{ D(\boldsymbol{\beta}, \mathbf{X}_i) \} \geqslant \xi \right] \mathcal{Y}_{\xi_i} \right)$ $\widehat{\mathcal{Y}}_{\xi_i} = (Y_i - \xi)I(G_i = 1)/\widehat{\pi}_1 - Y_iI(G_i = 0)/\widehat{\pi}_0$ and $\mathcal{Y}_{\xi_i} = (Y_i - \xi)I(G_i = 1)/\pi_1 - Y_iI(G_i = 0)/\pi_0$.

To decompose various sources of variation, we define W_{V} as

$$
\widehat{W}_{\mathbb{V}} \equiv \widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}} - \mathbb{V}_{\mathcal{I}_{\text{calib}}} = \widehat{W}_{\Delta} + \widehat{\mathbb{V}}_{a}(\bar{\Delta}, \widehat{\boldsymbol{\beta}}) - \widehat{\mathbb{V}}_{a}(\bar{\Delta}, \bar{\boldsymbol{\beta}}) + \widehat{\mathbb{V}}_{a}(\bar{\Delta}, \bar{\boldsymbol{\beta}}) + \bar{Y}_{0} - \mathbb{V}_{\mathcal{I}_{\text{calib}}}
$$

where $\widehat{W}_{\Delta} \equiv \widehat{\mathbb{V}}_a(\widehat{\Delta}, \widehat{\boldsymbol{\beta}}) - \widehat{\mathbb{V}}_a(\bar{\Delta}, \widehat{\boldsymbol{\beta}}) = \widehat{W}_{\Delta 1} + \widehat{W}_{\Delta 2}$ with $\widehat{W}_{\Delta 1} = \int [I\{\widehat{\Delta}_{\xi}(s) \geq 0\} - I\{\Delta_{\xi}(s) \geq 0\}] \widehat{H}(\widehat{\beta}; ds)$ $\widehat{W}_{\Delta 2} = \int [I\{\widehat{\Delta}_{\xi}(s) \geqslant 0\} - I\{\Delta_{\xi}(s) \geqslant 0\}] \Delta_{\xi}(s) \widehat{F}(\widehat{\beta}; ds),$ and $H(\boldsymbol{\beta}; s) = n$ $-1\sum_{}^n$ $i=1$ $I\{D(\boldsymbol{\beta}, \mathbf{X}_i) \leqslant s\}[\widehat{\mathcal{Y}}_{\xi_i} - \Delta_{\xi} \{D(\boldsymbol{\beta}, \mathbf{X}_i)\}], \ \widehat{\Delta}_{\xi}(d) = \widehat{\Delta}(d) - \xi, \ \ \Delta_{\xi}(d) =$ $E(\mathcal{Y}_{\xi_i} \mid D(\bar{\boldsymbol{\beta}}, \mathbf{X})_i = d) = \bar{\Delta}(d) - \xi$, and $\widehat{F}(\boldsymbol{\beta}; s) = n$ $-1\sum_{n=1}^{n}$ $i=1$ $I\{D(\boldsymbol{\beta}, \mathbf{X}_i) \leqslant s\}.$ From $\sup_{\mathbf{x}} |D(\hat{\beta}, \mathbf{x}) - D(\bar{\beta}, \mathbf{x})| = O_p(n^{-\frac{1}{2}})$ and similar arguments in Cai et al. (2011), $\widehat{\epsilon}_{\Delta} = \sup_{s} |\widehat{\Delta}(s) - \bar{\Delta}(s)| = o_p\{(nh)^{-1/2} \log(n)\}.$

Now consider $\widehat{W}_{\Delta 1}$. Note that $n^{\frac{1}{2}} \left\{ \widehat{H}(\boldsymbol{\beta};s) - H(\boldsymbol{\beta};s) \right\} = n^{-\frac{1}{2}} \sum_{i=1}^{n} H_i(\boldsymbol{\beta};s) + o_p(1)$, where $H_i(\boldsymbol\beta; s) = I\{D(\boldsymbol\beta; \mathbf{X}_i) \leqslant s\}[\mathcal{Y}_{\xi_i} - \Delta_{\xi}\{D(\boldsymbol\beta; \mathbf{X}_i)\}] - m_1(\boldsymbol\beta, s)\{I(G_i = 1)/\pi_1 - 1\} + m_0(\boldsymbol\beta, s)\{I(G_i = 1)/\pi_1 - 1\}$ 0)/ $\pi_0 - 1$ and $H(\boldsymbol{\beta}; s) = E[H_i(\boldsymbol{\beta}; s)]$, $m_j(\boldsymbol{\beta}; s) = E[I\{D(\boldsymbol{\beta}, \mathbf{X}_i) \leq s\} \mathcal{Y}_{\xi_i} | G_i = j]$. It follows from a functional central limit theorem that $n^{\frac{1}{2}}\left\{\widehat{H}(\beta;s) - H(\beta;s)\right\}$ converges weakly to a gaussian process and hence is equicontinuous in β . Hence, $n^{\frac{1}{2}}\hat{H}(\hat{\beta};s) = n^{\frac{1}{2}}\{\hat{H}(\hat{\beta};s) H(\bar{\beta}; s) = n^{\frac{1}{2}} \left\{ \widehat{H}(\bar{\beta}; s) - H(\bar{\beta}; s) \right\} + \dot{\mathbf{H}}_1(\bar{\beta}; s)^\intercal n^{\frac{1}{2}} (\widehat{\boldsymbol{\beta}} - \bar{\boldsymbol{\beta}})$ which converges weakly to a zero-mean gaussian process. Therefore, for any $\delta = o_p(1)$,

$$
\widehat{\epsilon}_H(\delta) = \sup_s \left| \widehat{H}(\widehat{\boldsymbol{\beta}};s) - \widehat{H}(\widehat{\boldsymbol{\beta}};s+\delta) \right| = o_p(n^{-\frac{1}{2}}),
$$

and consequently $|\widehat{W}_{\Delta 1}| \leqslant \int I\{\bar{\Delta}(s) - \xi \in [-\widehat{\epsilon}_{\Delta}, \widehat{\epsilon}_{\Delta}]\}|\widehat{H}(\widehat{\beta}; ds)|.$ If $\inf_s |\bar{\Delta}(s) - \xi| \geqslant \delta_0 > 0$, then the equation $\bar{\Delta}(s) = \xi$ has no solution. This implies that $P\{\inf_s |\hat{\Delta}(s) - \xi| \geq \delta_0/2\} \to 1$ and $I\left\{\bar{\Delta}(s) - \xi \in [-\hat{\epsilon}_{\Delta}, \hat{\epsilon}_{\Delta}]\right\} \stackrel{\mathcal{P}}{\rightarrow} 0$ in probability. Thus, $P(\widehat{W}_{\Delta 1} = 0) \rightarrow 1$ and $n^{\frac{1}{2}} \widehat{W}_{\Delta 1} \stackrel{\mathcal{P}}{\rightarrow} 0$.

For the setting where the solution to $\bar{\Delta}(s) = \xi$ exists, we have,

$$
|\widehat{W}_{\Delta 1}| \leqslant \sum_{r=1}^{R_0} \int_{s_{k_r}}^{s_{k_r+1}} I\left\{s \in [\bar{\Delta}_{k_r}^{-1}(\xi - \widehat{\epsilon}_{\Delta}), \bar{\Delta}_{k_r}^{-1}(\xi + \widehat{\epsilon}_{\Delta})]\right\} \left|\widehat{H}(\widehat{\beta}; ds)\right|
$$

$$
\leqslant \sum_{r=1}^{R_0} \widehat{\epsilon}_{H}\left\{|\bar{\Delta}_{k_r}^{-1}(\xi - \widehat{\epsilon}_{\Delta}) - \bar{\Delta}_{k_r}^{-1}(\xi + \widehat{\epsilon}_{\Delta})|\right\}
$$

where $\bar{\Delta}_{k_r}^{-1}(\cdot)$ denotes the inverse function of $\bar{\Delta}$ within $[s_{k_r}, s_{k_r+1}]$. Given that $|\bar{\Delta}'(\mathfrak{s}_{k_r})| \geq L_{\Delta'}$ and $\hat{\epsilon}_{\Delta} = o_p(1), \, \bar{\Delta}_{k_r}^{-1}(\xi - \hat{\epsilon}_{\Delta}) - \bar{\Delta}_{k_r}^{-1}(\xi + \hat{\epsilon}_{\Delta}) = o_p(1),$ we have $\widehat{W}_{\Delta 1} = o_p(n^{-\frac{1}{2}}).$

For $\widehat{W}_{\Delta 2}$, since $\widehat{F}(\boldsymbol{\beta}; s)$ is a monotone function in s,

$$
|\widehat{W}_{\Delta 2}| \leq \int \left| I\{\widehat{\Delta}_{\xi}(s) \geq 0\} - I\{\Delta_{\xi}(s) < 0\} \right| |\Delta_{\xi}(s)| \widehat{F}(\widehat{\beta}; ds)
$$
\n
$$
\leq \int I\{\Delta_{\xi}(s) \in [-\widehat{\epsilon}_{\Delta}, \widehat{\epsilon}_{\Delta}]\} \widehat{\epsilon}_{\Delta} \widehat{F}(\widehat{\beta}; ds) = \widehat{\epsilon}_{\Delta} \left\{ \widehat{F}_{\Delta}(\widehat{\beta}; \widehat{\epsilon}_{\Delta}) - \widehat{F}_{\Delta}(\widehat{\beta}; -\widehat{\epsilon}_{\Delta}) \right\}
$$

where $\widehat{F}_{\Delta}(\boldsymbol{\beta}; d) = n^{-1} \sum_{i=1}^{n} I[\Delta\{D(\boldsymbol{\beta}, \mathbf{X}_i)\} \leq d].$

It follows from a functional central limit theorem that $n^{\frac{1}{2}}\{\widehat{F}_\Delta(\boldsymbol{\beta}; d) - F_\Delta(\boldsymbol{\beta}; d)\}$ converges to a zero-mean Gaussian process and hence is equicontinuous in β and d. We have $\widehat{F}_\Delta(\widehat{\beta}; \widehat{\epsilon}_\Delta)$ – $\widehat{F}_{\Delta}(\widehat{\beta}; -\widehat{\epsilon}_{\Delta}) = F_{\Delta}(\overline{\beta}; \widehat{\epsilon}_{\Delta}) - F_{\Delta}(\overline{\beta}; \widehat{\epsilon}_{\Delta}) + o_p(n^{-\frac{1}{2}})$. This implies $|\widehat{W}_{\Delta 2}| \leq 2\widehat{\epsilon}_{\Delta}^2 \sup_s |f_{\Delta}(\overline{\beta}; s)| +$ $o_p(n^{-\frac{1}{2}})$. Provided that $\widehat{\epsilon}_{\Delta} = o_p(n^{-1/4})$, we have $\widehat{W}_{\Delta 2} = o_p(n^{-\frac{1}{2}})$. Hence, $\widehat{W}_{\Delta} = o_p(n^{-\frac{1}{2}})$. The above results also indicate that $P\{\widehat{\mathcal{I}}_{\text{\tiny{calb}}}(\mathbf{X}) \neq \mathcal{I}_{\text{\tiny{calb}}}(\mathbf{X})\} \to 0.$

Next, we establish the the asymptotic convergence of $\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}}$ to $\mathbb{V}_{\mathcal{I}_{\text{calib}}}$. By the law of large numbers, $\widehat{\mathbb{V}}_a(\bar{\Delta}, \bar{\beta}) + \bar{Y}_0 - \mathbb{V}_{\mathcal{I}_{\text{calib}}}\stackrel{\mathcal{P}}{\rightarrow} 0$. It remains to show that $\widehat{\mathbb{V}}_a(\bar{\Delta}, \widehat{\beta}) - \widehat{\mathbb{V}}_a(\bar{\Delta}, \bar{\beta}) = o_p(1)$. It follows from similar arguments as given for the convergence of $\widehat{H}(\beta; s)$ that $n^{\frac{1}{2}}\{\widehat{V}_a(\bar{\Delta}, \beta) \mathbb{V}_a(\bar{\Delta}, \beta)$ = $n^{-\frac{1}{2}} \sum_{i=1}^n \Psi_{ai}(\beta) + o_p(1)$, which converges weakly to a zero-mean Gaussian process, where

$$
\Psi_{ai}(\boldsymbol{\beta}) = I[\bar{\Delta}_{\xi} \{D(\boldsymbol{\beta}; \mathbf{X}_i)\} \geq 0] \mathcal{Y}_{\xi_i} - m_{\Delta 1}(\boldsymbol{\beta}) \frac{I(G_i=1)}{\pi_1} - +m_{\Delta 0}(\boldsymbol{\beta}) \frac{I(G_i=0)}{\pi_0}
$$

and $m_{\Delta j}(\boldsymbol{\beta}) = E(I[\bar{\Delta}_{\xi} \{D(\boldsymbol{\beta}; \mathbf{X}_i)\} \geq 0] \mathcal{Y}_{\xi_i} | G_i = j)$. Hence,

$$
\widehat{\mathbb{V}}_a(\bar{\Delta}, \widehat{\boldsymbol{\beta}}) - \widehat{\mathbb{V}}_a(\bar{\Delta}, \bar{\boldsymbol{\beta}}) = \mathbb{V}_a(\bar{\Delta}, \widehat{\boldsymbol{\beta}}) - \mathbb{V}_a(\bar{\Delta}, \bar{\boldsymbol{\beta}}) + o_p(n^{-\frac{1}{2}}) = \mathcal{V}'_{a2}(\bar{\Delta}, \boldsymbol{\beta})^{\mathsf{T}}(\widehat{\boldsymbol{\beta}} - \bar{\boldsymbol{\beta}}) + o_p(n^{-\frac{1}{2}}).
$$

Therefore, $\widehat{\mathbb{V}}_a(\bar{\Delta}, \widehat{\beta}) - \widehat{\mathbb{V}}_a(\bar{\Delta}, \bar{\beta}) = o_p(1)$ and thus $\widehat{\mathcal{W}}_v = o_p(1)$, indicating the consistency of $\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}}$ for $\mathbb{V}_{\mathcal{I}_{\text{calib}}}$. For the weak convergence of $\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}}$, we note from the above expansions that

$$
n^{\frac{1}{2}}(\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}}-\mathbb{V}_{\mathcal{I}_{\text{calib}}})=n^{\frac{1}{2}}\mathcal{V}_{a2}^{\prime}(\bar{\Delta},\beta)^{\top}(\widehat{\beta}-\bar{\beta})+n^{\frac{1}{2}}\{\widehat{\mathbb{V}}_{a}(\bar{\Delta},\bar{\beta})+\bar{Y}_{0}-\mathbb{V}_{\mathcal{I}_{\text{calib}}}\}+o_{p}(1)
$$

$$
=n^{-\frac{1}{2}}\sum_{i=1}^{n}\Psi_{\mathcal{V}i}+o_{p}(1),
$$

where

$$
\Psi_{\mathcal{V}i} = \mathcal{V}'_{a2}(\bar{\Delta}, \beta)^{\mathsf{T}} \Psi_{\beta i} + \Psi_{ai}(\bar{\beta}) + (Y_i - \mu_0) \frac{I(G_i = 0)}{\pi_0}.
$$
\n(A.1)

It then follows from a central limit theorem that $n^{\frac{1}{2}}(\hat{V}_{\hat{\mathcal{I}}_{\text{calib}}} - V_{\mathcal{I}_{\text{calib}}})$ converges in distribution to a normal with mean 0 and variance $\sigma_{\mathbb{V}}^2 = E(\Psi_{\mathcal{V}_i}^2)$.

Web Appendix B: Asymptotic Properties of $\widehat{\mathfrak{e}}, \widehat{c},$ and $\widehat{\mathbb{V}}_{\widehat{I}_{\widehat{c}}}$ when $\bar{\Delta}$ is increasing In this section, we assume that $\bar{\Delta}(c)$ is monotone and there exists c_0 such that $\bar{\Delta}(c_0) = \xi$ and $\bar{\Delta}'(c_0) > 0$. The monotonicity implies that $V\{F^{-1}(u)\} = \mu_0 +$ \int_0^u $\boldsymbol{0}$ $\bar{\Delta} \{F^{-1}(v)\}dv$ is convex in u. Moreover, $\bar{\Delta}'(c_0)F'(c_0) > 0$ implies that V_{I_c} has a unique maximizer at c_0 , where $I_c = I\{D(\bar{\boldsymbol{\beta}}; \mathbf{X}) \geq c\}$. From Newey and McFadden (1994), to show the consistency of $\hat{\boldsymbol{\phi}}$, it suffices to show that $\widehat{\mathbb{V}}_{\widehat{I}_c} \stackrel{\mathcal{P}}{\rightarrow} \mathbb{V}_{I_c}$ uniformly in c. To this end, note that $\widehat{\mathbb{V}}(c,\boldsymbol{\beta}) = \widehat{\mathbb{V}}_a(c,\boldsymbol{\beta}) + \bar{Y}_0$, and $\widehat{\mathbb{V}}_a(c,\boldsymbol{\beta}) = n$ $-1\sum_{n=1}^{n}$ $\sum_{i=1} I\{D(\boldsymbol{\beta}; \mathbf{X}_i) \geq c\} \widehat{\mathcal{Y}}_{\xi_i}$. We have $\widehat{\mathbb{V}}_{\widehat{I}_c} = \widehat{\mathbb{V}}(c; \widehat{\boldsymbol{\beta}})$. It follows from the uniform law of large numbers (Pollard, 1990) that $\hat{\mathbb{V}}(c;\boldsymbol{\beta})$ converges to $\mathbb{V}(c;\boldsymbol{\beta})$ uniformly in ${\{\beta,c\}}$, where $\mathbb{V}(c;\boldsymbol{\beta})=E[I\{D(\boldsymbol{\beta};\mathbf{X})\geq c\}\mathcal{Y}_{\xi}]+\mu_0$. Furthermore, by the functional central limit theorem (Pollard, 1990), $n^{\frac{1}{2}}\{\hat{\mathbb{V}}(c,\boldsymbol{\beta})-\mathbb{V}(c;\boldsymbol{\beta})\}$ converges weakly to a Gaussian process in β and c .

These results, together with the weak convergence of $n^{\frac{1}{2}}(\widehat{\beta}-\overline{\beta})$, imply that

$$
\sup_{c} \left| n^{\frac{1}{2}} \{ \widehat{\mathbb{V}}_{\widehat{I}_{c}} - \mathbb{V}_{I_{c}} \} \right| = O_{p}(1)
$$
\n(B.1)

The consistency of \hat{c} immediately follows from the monotonicity of $\bar{\Delta}(c)$, $\bar{\Delta}'(c_0) > 0$.

We next show that $\hat{\mathfrak{g}} - c^o = O_p(n^{-1/3})$ following the cubic-root asymptotic theory from Kim and Pollard (1990). For the ease of presentation, we assume that $\bar{\beta}$ is known and hence

$$
\widehat{\mathbf{C}} = \underset{c}{\operatorname{argmax}} \widehat{\mathbf{V}}_{\widehat{I}_c} = \underset{c}{\operatorname{argmax}} \left\{ \widehat{\mathbf{V}}_{\widehat{I}_c} - \bar{Y}_0 \right\} = n^{-1} \sum_{i=1}^n \mathbb{Y}_i I(D(\bar{\boldsymbol{\beta}}, \mathbf{X}_i) \geqslant c) + O_p(n^{-1})
$$

where $\mathbb{Y}_i = \mathcal{Y}_{\xi_i} - \mu_1 \{ I(G_i = 1) / \pi_1 - 1 \} + \mu_0 \{ I(G_i = 0) / \pi_0 - 1 \}$. To verify the regularity conditions of the main theorem in §1.1 of Kim and Pollard (1990), we let $\eta_i = (\mathbb{Y}_i, D(\bar{\beta}, \mathbf{X}_i)),$ $g(\eta, c) = \mathbb{Y}_i I(D(\bar{\beta}, \mathbf{X}_i) \geq c)$ and hence $n^{-1} \sum_{i=1}^n \mathbb{Y}_i I(D(\bar{\beta}, \mathbf{X}_i) \geq c) = n^{-1} \sum_{i=1}^n g(\eta_i, c)$.

The main condition involves an envelope function for $g(\xi, c)$

$$
G_R(\eta) = \sup \{ g(\eta, c) : |c - c^o| \le R \}
$$

=
$$
\sup_{|c - c^o| \le R} \left[\mathbb{Y} \{ I(D(\bar{\beta}, \mathbf{X}) \ge c) - I(D(\bar{\beta}, \mathbf{X}) \ge c^o) \} \right] = |\mathbb{Y}| I(|D(\bar{\beta}, \mathbf{X}) - c^o| < R)
$$

It is easy to see that $E\{G_R(\eta_i)\}=E\{|\mathbb{Y}|I(|D(\bar{\beta}, \mathbf{X})-c^o|< R)\}=O(R)$ as $R\to 0$ and $E[G_R(\eta_i)I\{G_R(\eta_i) > K\}] \leq E\{I(|D(\bar{\beta}, \mathbf{X}) - c^o| < R)\mathbb{Y}^2I(|\mathbb{Y}| > K)\}\$ $\leq R \left[\max\{f_D(\cdot)\} E\{\mathbb{Y}^2 I(|\mathbb{Y}| > K) \mid c^o - R < D(\bar{\beta}, \mathbf{X}) < c^o + R \} \right].$

Since $Y^{(k)}$ has a finite second moment given $D(\bar{\beta}, \mathbf{X}), E\{\mathbb{Y}^2I(|\mathbb{Y}| > \mathcal{K}) \mid c^o - R < D(\bar{\beta}, \mathbf{X}) <$ $c^o + R$ \rightarrow 0 as $K \rightarrow \infty$ and hence condition (vi) of Theorem §1.1 is verified. The rest of the regularity conditions follow mainly from the smoothness of $\Delta(\cdot)$ and f_D .

To derive the distribution of \widehat{c} , note that $\widehat{\Delta}_{\xi}(\widehat{c}; \widehat{\boldsymbol{\beta}}) = 0$, where $\widehat{\Delta}_{\xi}(c; \boldsymbol{\beta}) = \sum_{i=1}^{n} K_h \{D(\boldsymbol{\beta}; \mathbf{X}_i) - D_h\}$ $c\}\hat{\mathcal{Y}}_{\xi_i}/[\sum_{i=1}^n K_h\{D(\boldsymbol{\beta};\mathbf{X}_i\}].$ From arguments as given in Cai et al. (2011), $\sup_c|\widehat{\Delta}_{\xi}(c;\widehat{\boldsymbol{\beta}}) \widehat{\Delta}_{\xi}(c;\bar{\beta})| = O_p(n^{-\frac{1}{2}})$ and $\sup_c |\widehat{\Delta}_{\xi}(c;\bar{\beta}) - \bar{\Delta}_{\xi}(c;\bar{\beta})| = O_p\{(nh)^{-1/2} \log(n)\}\.$ Then, by a taylor series expansion, $o = \hat{\Delta}_{\xi}(\widehat{c}; \widehat{\beta}) = \hat{\Delta}_{\xi}(\widehat{c}; \bar{\beta}) + O_p(n^{-\frac{1}{2}}) = \widehat{\Delta}_{\xi}(c_0; \bar{\beta}) + (\widehat{c} - c_0)\widehat{\Delta}_{\xi}'(c_0; \bar{\beta}) +$ $O_p\{n^{-\frac{1}{2}} + (nh)^{-1}\log(n)^2\}$. It follows that

$$
\hat{c} - c_0 = \hat{\Delta}_{\xi}(c_0; \bar{\beta}) + o_p\{(nh)^{-1/2} + h^2\} = n^{-1} \sum_{i=1}^n K_h\{D(\beta; \mathbf{X}_i) - c\} \frac{\mathcal{Y}_{\xi_i} - \bar{\Delta}_{\xi}(c_0; \bar{\beta})}{F'(c)}
$$

which is asymptotically normal as a typical kernel smoothed estimator.

For the asymptotic distribution of $\widehat{\mathbb{V}}_{\widehat{I}_{\widehat{c}}} = \widehat{\mathbb{V}}(\widehat{c}, \widehat{\beta})$, using similar arguments as given above, we can show that $\widehat{\mathbb{V}}(\widehat{c},\widehat{\beta}) - \widehat{\mathbb{V}}(c_0,\widehat{\beta}) = o_p(n^{-\frac{1}{2}})$ and $\widehat{\mathbb{V}}(c_0;\widehat{\beta}) - \widehat{\mathbb{V}}(c_0;\widehat{\beta}) = \mathbb{V}(c_0;\widehat{\beta}) - \mathbb{V}(c_0;\widehat{\beta}) +$ $o_p(n^{-\frac{1}{2}})$. Therefore,

$$
\widehat{\mathbb{V}}_{\widehat{I}_{\widehat{c}}} - \mathbb{V}_{\mathcal{I}_{\text{calib}}} = \mathbb{V}(c_0; \widehat{\boldsymbol{\beta}}) - \mathbb{V}(c_0; \bar{\boldsymbol{\beta}}) + \widehat{\mathbb{V}}(c_0; \bar{\boldsymbol{\beta}}) - \mathbb{V}_{\mathcal{I}_{\text{calib}}} + o_p(n^{-\frac{1}{2}})
$$
\n
$$
= \mathbf{V}'_2(c_0; \bar{\boldsymbol{\beta}})^{\mathsf{T}} (\widehat{\boldsymbol{\beta}} - \bar{\boldsymbol{\beta}}) + \widehat{\mathbb{V}}(c_0; \bar{\boldsymbol{\beta}}) - \mathbb{V}_{\mathcal{I}_{\text{calib}}} + o_p(n^{-\frac{1}{2}}) = n^{-1} \sum_{i=1}^n \boldsymbol{\Psi}_{Vi}(c_0) + o_p(n^{-\frac{1}{2}})
$$

where $\Psi_{Vi}(c_0) = \mathbf{V}'_2(c_0;\bar{\boldsymbol{\beta}})^{\mathsf{T}}\Psi_{\boldsymbol{\beta}i} + I(D_i \geqslant c_0)\mathcal{Y}_{\xi_i} - m_{\Delta 1}(\bar{\boldsymbol{\beta}})I(G_i = 1)/\pi_1 + m_{\Delta_0}(\bar{\boldsymbol{\beta}})I(G_i = 1)/\pi_1$

6 Biometrics, 000 XXXXX

 $0/\pi_0 + (Y_i - \mu_0)I(G_i = 0)/\pi_0$. Under the monotonicity of $\bar{\Delta}(\cdot)$, we see that $\Psi_{Vi}(c_0) = \Psi_{Vi}(c_0)$ and hence $\widehat{\mathbb{V}}_{\widehat{I}_{\widehat{c}}} - \widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}} = o_p(n^{-\frac{1}{2}}).$

References

- Cai, T., Tian, L., Wong, P., and Wei, L. (2011). Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics 12, 270–282.
- Kim, J. and Pollard, D. (1990). Cube root asymptotics. The Annals of Statistics pages 191–219.
- Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing. Handbook of econometrics 4, 2111–2245.
- Pollard, D. (1990). Empirical processes: theory and applications. In NSF-CBMS regional conference series in probability and statistics. JSTOR.