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APPENDIX

Web Appendix A: Asymptotic Properties of YA/fCB“b and ia“b

Although the working models could be semi-parametric and B could be infinite dimensional,
for the derivation of the asymptotic theory, we focus on the case when B\ is finite dimensional.
Throughout we use notation ¢'(z) = dg(x)/dx and g (X1, ....,Xkx) = 0g9(X1, ..., Xk ) /Ox;. We
assume that the covariates are bounded, 3 is an interior point of a compact parameter space,
D(B,X) is a continuous random variable which has a continuously differentiable density
function fp(-) bounded away from 0 with finite support [, 7,], and Y*) | D(3,X) has a
finite second moment for any D(3, X) € [r, 7,.]. We require the regularity condition that B —
B = (8,B7)" for B and )7\/\@ = n%(,@ —B)=n":2 > Ugi + 0,(1) which converges weakly
in distribution to a multivariate normal. We consider that A(-) is continuously differentiable
with |A’(s)] < bas < 0o. We also assume that there are at most Ky < oo number of solutions
to A'(s) = 0, there exists intervals 7, = s; < -+ < sk, 11 = 7, such that A(s) is monotone
in [sg, spy1), for k=1, ..., Ko; and hence A(s) = ¢ has at most Ky roots. Furthermore, when
at least one solution to A(s) = ¢ exists, we denote by {8y, € (g, Sk,41) : 7 = 1,..., Ro} all
the solutions and assume that |A/(s;, )| > La, > 0. This regularity condition ensures that
the total variation of J(s) = I{A(s) > £} is bounded by Kj.

~

We next derive the convergence properties of i}iam’ = Va(z, B) +YotoVz . =V, (A,B)+

calib

tto, where Yy = ng* ZY}I(GZ- =0), po = E(Y®),

Va(A, B) =n~! Z TA{D(B,X:)} = €] Ve, Vu(A,B) = E(I[A{D(B,X,)} > €] Ve,)

Ve, = (i=I(Gi = 1)/71=Yil(G; = 0)/Fo and Vg, = (Yi=&)I(Gi = 1)/m =YiI(Gi = 0) /7.

To decompose various sources of variation, we define Wy as

>

Wy=Vz  — Vi, =Wa+ V(A B) — V(A B) +V.(A,B8) + Y~ Vi,

calib
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where Wa =V, (A, B) — Vo (A, B) = Way + Wao with

War = [ (HB(5) > 0) ~ HAL) > 0)]1(B:ds)

Waa = [[HB(5) > 0) ~ HAL) > 0)Ac(s) F(Bids),
and H(B3;s) =n"" il{m, X;) < sHVe — AfD(B,X0)}], Acld) = A(d) — &, A¢(d) =

=1

E(% | D(B.X), = d) = M) & and F(Bis) =n~ 3 HD(B.X,) < s}

From sup, |D(B\7 x) — D(B,x)| = Op(n~2) and similar arguments in Cai et al. (2011),
e = sup|A(s) = A(s)] = 0,{(nh) "/ log(n)}.

Now consider /Wm. Note that n2 {ﬁ(@;s) — H(B;s } %Z ) + 0,(1), where
H(8:5) = 1{D(8.X,) < sV~ A DB, X)) - (8.5 (G, = 1

0)/mo —1} and H(B; s) = E[Hi(B; s)], m;(8; s) = E[I{D(B,X;) < s}V, | Gi = j]. It follows
from a functional central limit theorem that n2 {[/1\7 (B;s) — H(B; s)} converges weakly to
a gaussian process and hence is equicontinuous in 3. Hence, ns H (ﬁ, s) = n%{ITI (3, s) —
H(B;s)} = %{ (B;s) — (,678)} + H,(B; S)Tn%(,é\ — 3) which converges weakly to a
zero-mean gaussian process. Therefore, for any § = o0,(1),

e (0) = sup |H(B:s) — H(Brs +6)| = 0,(n"3),

and consequently ]Wm] < [I{A(s) - € € [—?A,€A]}]ﬁ(3; ds)|.If inf, |A(s) — €| = & > 0,
then the equation A(s) = ¢ has no solution. This implies that P{inf, |A(s)—&| = 6,/2} — 1
and I {A(s) — € € [—€a,€al} %, 0 in probability. Thus, P(WM =0) — 1 and niWa, 2 0.

For the setting where the solution to A(s) = ¢ exists, we have,

\Wm\ Z/Sk HI{SG[AI;}@_%) AN (E+En) }’HB ds)’

ZEH{!A §—a) - A€ +a)])

1)/m—=1}+mo(B, s){1(G; =



Web-based Supplementary Materials for ”Evaluating Marker-Guided Treatment Selection Strategies”

where A '(+) denotes the inverse function of A within [sy, , sy, +1]. Given that |A'(sy, )| > Las
and €x = 0,(1), AL (€ —€a) — AL +€a) = 0,(1), we have Wa = 0p(n"2).

For Was, since F(3;s) is a monotone function in s,

~

Waal < [ [HBe(5) > 0) ~ I{Acls) < 0} 1Als) F(B:ds)
< / I{A(s) € [~ea,ealeaF(B;ds) =& { Fa(Biea) - Fa(B: —2)

where Fa(8;d) =n~' S0 IIA{D(8,X,)} < d].

It follows from a functional central limit theorem that n2 { F A(B;d)—Fa(B; d)} converges to
a zero-mean Gaussian process and hence is equicontinuous in 3 and d. We have F A ([/‘3\, €a) —
Fa(B:—€a) = Fa(B;ea) — Fa(B:en) + 0,(n"2). This implies [Was| < 26% sup, | fa(8: s)| +
0p(n~%). Provided that €x = 0,(n~"/4), we have Was = 0,(n~2). Hence, Wa = o,(n~2). The
above results also indicate that P{iahb(X) #7..(X)} — 0.

Next, we establish the the asymptotic convergence of @fwnb to Vz_ ... By the law of large
numbers, @G(A, B)+Yy—Vr . %, 0. It remains to show that @G(A, B)—@Q(A, B) = o0,(1). It
follows from similar arguments as given for the convergence of H(3;s) that nz{V,(A, 8) —

Vo(A,B)} = nz Yo Uei(B) 4 0,(1), which converges weakly to a zero-mean Gaussian

process, where

Voi(B) = I[ALD(B; Xi)} 2 01V, — man(B) 1S — +mao(B) "G

0

and mAj(B) = E([[Ag{D(Ba XZ)} > O]y&

G; = j). Hence,
X A X 2 _1 X S A _1
Va(A,8) = V(A B) = Vo(B, B) = V(B B) + 0p(n2) = Viu(D, B)"(B = B) + 0p(n2).
Therefore, V, (A, B) (A B) = 0,(1) and thus Wy = 0p(1), indicating the consistency of
Q’:ﬁaub for Vz_ . . For the weak convergence of @fw“b, we note from the above expansions that

B (B —B) +n2{Vy(A,B) + Yo — Vi, } +0,(1)

Vaa (A,
Z Vz+0p

l\.’)\»—‘

1,8
n: (Vfcalb B VI “lb)

M\H
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where

I(G; = 0)

o

Uy = Vi (A, B) Vi + Vi (B) + (Vi — pio) (A1)

It then follows from a central limit theorem that n2 (@fcalib —Vz.,,..) converges in distribution

to a normal with mean 0 and variance o3 = E(¥3,).

Web Appendix B: Asymptotic Properties of ¢, ¢, and i\/fa when A is increasing
In this section, we assume that A(c) is monotone and there exists ¢y such that A(cy) = ¢ and
A'(co) > 0. The monotonicity implies that V{F~(u)} = uo + /u A{F~*(v)}dv is convex
in u. Moreover, A'(co)F'(cy) > 0 implies that V;, has a uniqu(e); maximizer at c¢p, where
I. = I{D(B;X) > c}. From Newey and McFadden (1994), to show the consistency of ¢, it
suffices to show that i\/fc LA V1, uniformly in ¢. To this end, note that XA’(C, B) = Q’a(c, B)+Y,
and V,(c,8) = n~" iI{D(B;Xi) > c}ﬁgi. We have \A/f = V(e ,@) It follows from the
uniform law of large ;;lmbers (Pollard, 1990) that @(C; B) converges to V(c; ) uniformly in
{B,c}, where V(¢; 8) = E[I{D(B;X) = c}Ve| + po. Furthermore, by the functional central
limit theorem (Pollard, 1990), n%{@(c, B) —V(c; B)} converges weakly to a Gaussian process

in B and c.

These results, together with the weak convergence of n%(ﬁ — ), imply that
sup [n2{V; —V1.}| = 0,(1) (B.1)
The consistency of ¢ immediately follows from the monotonicity of A(c), A’(cy) > 0.

We next show that ¢ — ¢® = Op(nfl/ 3) following the cubic-root asymptotic theory from

Kim and Pollard (1990). For the ease of presentation, we assume that 3 is known and hence

¢ = argmaX\A’fc = argmax {\A/fc Yo} =n"" Z Y, I(D(B,X;) = ¢) + O,(n~ ")
¢ ¢ i=1
where Y; = Ve, — i {I(G; = 1)/m — 1} + po{I(G; = 0)/my — 1}. To verify the regularity
conditions of the main theorem in §1.1 of Kim and Pollard (1990), we let n; = (Y;, D(3,X,)),

g(n,c¢) =Y, I(D(B,X;) > c) and hence n~* Yoy Y I[(D(B3,X;) >¢)=n"" Yo g(mic).
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The main condition involves an envelope function for g(¢, ¢)

Gr(n) =sup{g(n,c) : [c =’ < R}
-, [Y{I(D(B,X) > ¢) = I(D(B,X) > ¢*)}] = [Y|I(|D(8,X) — ¢’| < R)

It is easy to see that E{Gr(n;)} = E{|Y|I(|D(B,X) — c°| < R)} = O(R) as R — 0 and
E[Gr(n:) {Gr(m) > K} < E{I(|D(B,X) — ¢’| < R)Y*I(|Y| > K)}

< R [max{fp(-)}E{Y?*I(|Y| > K) | " — R < D(3,X) < ¢’ + R}] .
Since Y has a finite second moment given D(3, X), E{Y?I(|Y| > K) | *— R < D(3,X) <
®+ R} — 0 as K — oo and hence condition (vi) of Theorem §1.1 is verified. The rest of the
regularity conditions follow mainly from the smoothness of A(-) and fp.

To derive the distribution of ¢, note that 35 (c; ﬁ) = 0, where 35 (e;8)=>1"  Kn{D(B; X;)—
C}JA)&/[ZZ; Kp{D(B;X;}]. From arguments as given in Cai et al. (2011), sup, |£§(C; B) —
Ae(e; B)| = Op(n~2) and sup, |A¢(c; B) — Ae(c; B)| = O,{(nh)~/21og(n)}. Then, by a taylor
series expansion, 0 = A¢(@ 8) = A¢(@B) + 0p(n72) = Ac(co; B) + (€ — Cdﬁé(Co;B) +
O,{n"2 + (nh)*log(n)?}. It follows that

- A&(Co; B)

e co = Beleni B) + o, {(nh) ™2 + 12} = n™' S Ki{D(BX,) - 0} 22 (o)

1=1

which is asymptotically normal as a typical kernel smoothed estimator.

For the asymptotic distribution of i\/]q = WA/(E, B), using similar arguments as given above,

we can show that V (¢, 8)—V(co, B) = 0,(n"2) and V(co; B)—V(co; B) = V(co; B)—V(co: B) +

op(n~ 2). Therefore,

-~

i\ffz - VIcalib - V(CO; ﬂ) - V(CO; IB) —|— i\](co; B) _ Vfca“b + Op(n_%)

= Vi(co; B)(B = B) + V(co: B) — Vi, +0,(n72) =07 > Wyi(co) + 0,(n"7)

=1

where \IIVi<Co) = Vé(CmB)T\I’ﬁfL + [(Dl 2 Co)ygi — mAl(ﬁ)I(G, = 1)/71'1 -+ mAO(B)I(Gl =
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0) /7o + (Y; — p10)I(G; = 0)/m. Under the monotonicity of A(+), we see that Wy;(co) = ¥y

~ ~ n
and hence Vz —Vz = 0,(n"2).
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