BIOMETRICS 000, 000–000 000 XXXXX

DOI: 000

Web-based Supplementary Materials for "Evaluating Marker-Guided Treatment Selection Strategies"

Roland A. Matsouaka^{1†,*}, Junlong Li^{2†,**}, and Tianxi Cai^{2,***}

¹Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA ²Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA † Equal Contributors *email: rmatsoua@hsph.harvard.edu **email: juli@hsph.harvard.edu ***email: tcai@hsph.harvard.edu

APPENDIX

Web Appendix A: Asymptotic Properties of $\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{calib}}$ and $\widehat{\mathcal{I}}_{calib}$

Although the working models could be semi-parametric and $\hat{\beta}$ could be infinite dimensional, for the derivation of the asymptotic theory, we focus on the case when $\hat{\beta}$ is finite dimensional. Throughout we use notation g'(x) = dg(x)/dx and $\mathbf{g}'_k(\mathbf{x}_1, ..., \mathbf{x}_K) = \partial g(\mathbf{x}_1, ..., \mathbf{x}_K)/\partial \mathbf{x}_k$. We assume that the covariates are bounded, $\hat{\beta}$ is an interior point of a compact parameter space, $D(\hat{\beta}, \mathbf{X})$ is a continuous random variable which has a continuously differentiable density function $f_D(\cdot)$ bounded away from 0 with finite support $[\tau_l, \tau_r]$, and $Y^{(k)} \mid D(\hat{\beta}, \mathbf{X})$ has a finite second moment for any $D(\hat{\beta}, \mathbf{X}) \in [\tau_l, \tau_r]$. We require the regularity condition that $\hat{\beta} \rightarrow$ $\hat{\beta} = (\hat{\beta}_0^{\pi}, \hat{\beta}_1^{\tau})^{\tau}$ for $\hat{\beta}$ and $\widehat{\mathcal{W}}_{\beta} = n^{\frac{1}{2}}(\hat{\beta} - \hat{\beta}) = n^{-\frac{1}{2}} \sum_{i=1}^n \Psi_{\beta i} + o_p(1)$ which converges weakly in distribution to a multivariate normal. We consider that $\bar{\Delta}(\cdot)$ is continuously differentiable with $|\bar{\Delta}'(s)| \leq b_{\bar{\Delta}'} < \infty$. We also assume that there are at most $K_0 < \infty$ number of solutions to $\bar{\Delta}'(s) = 0$, there exists intervals $\tau_l = s_1 < \cdots < s_{K_0+1} = \tau_r$ such that $\bar{\Delta}(s)$ is monotone in $[s_k, s_{k+1}]$, for $k = 1, ..., K_0$; and hence $\bar{\Delta}(s) = \xi$ has at most K_0 roots. Furthermore, when at least one solution to $\bar{\Delta}(s) = \xi$ exists, we denote by $\{\mathbf{s}_{k_r} \in (s_{k_r}, s_{k_r+1}) : r = 1, ..., R_0\}$ all the solutions and assume that $|\bar{\Delta}'(\mathbf{s}_{k_r})| \ge L_{\bar{\Delta}'} > 0$. This regularity condition ensures that the total variation of $\Im(s) = I\{\bar{\Delta}(s) \geq \xi\}$ is bounded by K_0 .

We next derive the convergence properties of $\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}} = \widehat{\mathbb{V}}_a(\widehat{\Delta},\widehat{\boldsymbol{\beta}}) + \overline{Y}_0$ to $\mathbb{V}_{\mathcal{I}_{\text{calib}}} = \mathbb{V}_a(\overline{\Delta},\overline{\boldsymbol{\beta}}) + \mu_0$, where $\overline{Y}_0 = n_0^{-1} \sum_{i=1}^n Y_i I(G_i = 0), \ \mu_0 = E(Y^{(0)}),$ $\widehat{\mathbb{V}}_a(\Delta,\boldsymbol{\beta}) = n^{-1} \sum_{i=1}^n I\left[\Delta\{D(\boldsymbol{\beta},\mathbf{X}_i)\} \ge \xi\right] \widehat{\mathcal{Y}}_{\xi_i}, \quad \mathbb{V}_a(\Delta,\boldsymbol{\beta}) = E\left(I\left[\Delta\{D(\boldsymbol{\beta},\mathbf{X}_i)\} \ge \xi\right] \mathcal{Y}_{\xi_i}\right)$ $\widehat{\mathcal{Y}}_{\xi_i} = (Y_i - \xi)I(G_i = 1)/\widehat{\pi}_1 - Y_iI(G_i = 0)/\widehat{\pi}_0 \text{ and } \mathcal{Y}_{\xi_i} = (Y_i - \xi)I(G_i = 1)/\pi_1 - Y_iI(G_i = 0)/\pi_0.$

To decompose various sources of variation, we define $\widehat{W}_{\mathbb{V}}$ as

$$\widehat{W}_{\mathbb{V}} \equiv \widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}} - \mathbb{V}_{\mathcal{I}_{\text{calib}}} = \widehat{W}_{\Delta} + \widehat{\mathbb{V}}_{a}(\bar{\Delta}, \widehat{\boldsymbol{\beta}}) - \widehat{\mathbb{V}}_{a}(\bar{\Delta}, \bar{\boldsymbol{\beta}}) + \widehat{\mathbb{V}}_{a}(\bar{\Delta}, \bar{\boldsymbol{\beta}}) + \bar{Y}_{0} - \mathbb{V}_{\mathcal{I}_{\text{calib}}}$$

where $\widehat{W}_{\Delta} \equiv \widehat{\mathbb{V}}_{a}(\widehat{\Delta},\widehat{\boldsymbol{\beta}}) - \widehat{\mathbb{V}}_{a}(\overline{\Delta},\widehat{\boldsymbol{\beta}}) = \widehat{W}_{\Delta 1} + \widehat{W}_{\Delta 2}$ with $\widehat{W}_{\Delta 1} = \int [I\{\widehat{\Delta}_{\xi}(s) \ge 0\} - I\{\Delta_{\xi}(s) \ge 0\}]\widehat{H}(\widehat{\boldsymbol{\beta}}; ds)$ $\widehat{W}_{\Delta 2} = \int [I\{\widehat{\Delta}_{\xi}(s) \ge 0\} - I\{\Delta_{\xi}(s) \ge 0\}]\Delta_{\xi}(s)\widehat{F}(\widehat{\boldsymbol{\beta}}; ds),$ and $\widehat{H}(\boldsymbol{\beta}; s) = n^{-1}\sum_{i=1}^{n} I\{D(\boldsymbol{\beta}, \mathbf{X}_{i}) \le s\}[\widehat{\mathcal{Y}}_{\xi_{i}} - \Delta_{\xi}\{D(\boldsymbol{\beta}, \mathbf{X}_{i})\}], \ \widehat{\Delta}_{\xi}(d) = \widehat{\Delta}(d) - \xi, \ \Delta_{\xi}(d) = E(\mathcal{Y}_{\xi_{i}} \mid D(\overline{\boldsymbol{\beta}}, \mathbf{X})_{i} = d) = \overline{\Delta}(d) - \xi, \text{ and } \widehat{F}(\boldsymbol{\beta}; s) = n^{-1}\sum_{i=1}^{n} I\{D(\boldsymbol{\beta}, \mathbf{X}_{i}) \le s\}.$ From $\sup_{\mathbf{x}} |D(\widehat{\boldsymbol{\beta}}, \mathbf{x}) - D(\overline{\boldsymbol{\beta}}, \mathbf{x})| = O_{p}(n^{-\frac{1}{2}})$ and similar arguments in Cai et al. (2011), $\widehat{\epsilon}_{\Delta} = \sup_{s} |\widehat{\Delta}(s) - \overline{\Delta}(s)| = o_{p}\{(nh)^{-1/2}\log(n)\}.$ Now consider $\widehat{W}_{\Delta i}$. Note that $n^{\frac{1}{2}} \{\widehat{H}(\boldsymbol{\beta}; s) - H(\boldsymbol{\beta}; s)\} = n^{-\frac{1}{2}} \sum_{i=1}^{n} H_{i}(\boldsymbol{\beta}; s) + o_{i}(1)$, where

Now consider $\widehat{W}_{\Delta 1}$. Note that $n^{\frac{1}{2}} \left\{ \widehat{H}(\boldsymbol{\beta};s) - H(\boldsymbol{\beta};s) \right\} = n^{-\frac{1}{2}} \sum_{i=1}^{n} H_i(\boldsymbol{\beta};s) + o_p(1)$, where $H_i(\boldsymbol{\beta};s) = I\{D(\boldsymbol{\beta}, \mathbf{X}_i) \leq s\} [\mathcal{Y}_{\xi_i} - \Delta_{\xi}\{D(\boldsymbol{\beta}, \mathbf{X}_i)\}] - m_1(\boldsymbol{\beta}, s)\{I(G_i = 1)/\pi_1 - 1\} + m_0(\boldsymbol{\beta}, s)\{I(G_i = 0)/\pi_0 - 1\}$ and $H(\boldsymbol{\beta};s) = E[H_i(\boldsymbol{\beta};s)], m_j(\boldsymbol{\beta};s) = E[I\{D(\boldsymbol{\beta}, \mathbf{X}_i) \leq s\} \mathcal{Y}_{\xi_i} \mid G_i = j]$. It follows from a functional central limit theorem that $n^{\frac{1}{2}} \left\{ \widehat{H}(\boldsymbol{\beta};s) - H(\boldsymbol{\beta};s) \right\}$ converges weakly to a gaussian process and hence is equicontinuous in $\boldsymbol{\beta}$. Hence, $n^{\frac{1}{2}} \widehat{H}(\widehat{\boldsymbol{\beta}};s) = n^{\frac{1}{2}} \{\widehat{H}(\widehat{\boldsymbol{\beta}};s) - H(\bar{\boldsymbol{\beta}};s)\} = n^{\frac{1}{2}} \left\{ \widehat{H}(\bar{\boldsymbol{\beta}};s) - H(\bar{\boldsymbol{\beta}};s) \right\} + \dot{\mathbf{H}}_1(\bar{\boldsymbol{\beta}};s)^{\mathsf{T}}n^{\frac{1}{2}}(\widehat{\boldsymbol{\beta}} - \bar{\boldsymbol{\beta}})$ which converges weakly to a zero-mean gaussian process. Therefore, for any $\delta = o_p(1)$,

$$\widehat{\epsilon}_{H}(\delta) = \sup_{s} \left| \widehat{H}(\widehat{\beta}; s) - \widehat{H}(\widehat{\beta}; s + \delta) \right| = o_{p}(n^{-\frac{1}{2}}),$$

and consequently $|\widehat{W}_{\Delta 1}| \leq \int I\{\bar{\Delta}(s) - \xi \in [-\widehat{\epsilon}_{\Delta}, \widehat{\epsilon}_{\Delta}]\} |\widehat{H}(\widehat{\boldsymbol{\beta}}; ds)|$. If $\inf_{s} |\bar{\Delta}(s) - \xi| \geq \delta_{0} > 0$, then the equation $\bar{\Delta}(s) = \xi$ has no solution. This implies that $P\{\inf_{s} |\widehat{\Delta}(s) - \xi| \geq \delta_{0}/2\} \to 1$ and $I\{\bar{\Delta}(s) - \xi \in [-\widehat{\epsilon}_{\Delta}, \widehat{\epsilon}_{\Delta}]\} \xrightarrow{\mathcal{P}} 0$ in probability. Thus, $P(\widehat{W}_{\Delta 1} = 0) \to 1$ and $n^{\frac{1}{2}}\widehat{W}_{\Delta 1} \xrightarrow{\mathcal{P}} 0$.

For the setting where the solution to $\overline{\Delta}(s) = \xi$ exists, we have,

$$\begin{aligned} |\widehat{W}_{\Delta 1}| &\leq \sum_{r=1}^{R_0} \int_{s_{k_r}}^{s_{k_r+1}} I\left\{s \in [\bar{\Delta}_{k_r}^{-1}(\xi - \widehat{\epsilon}_{\Delta}), \bar{\Delta}_{k_r}^{-1}(\xi + \widehat{\epsilon}_{\Delta})]\right\} \left|\widehat{H}(\widehat{\boldsymbol{\beta}}; ds)\right| \\ &\leq \sum_{r=1}^{R_0} \widehat{\epsilon}_H\left\{\left|\bar{\Delta}_{k_r}^{-1}(\xi - \widehat{\epsilon}_{\Delta}) - \bar{\Delta}_{k_r}^{-1}(\xi + \widehat{\epsilon}_{\Delta})\right|\right\}\end{aligned}$$

where $\bar{\Delta}_{k_r}^{-1}(\cdot)$ denotes the inverse function of $\bar{\Delta}$ within $[s_{k_r}, s_{k_r+1}]$. Given that $|\bar{\Delta}'(\mathfrak{s}_{k_r})| \ge L_{\Delta'}$ and $\hat{\epsilon}_{\Delta} = o_p(1), \ \bar{\Delta}_{k_r}^{-1}(\xi - \hat{\epsilon}_{\Delta}) - \bar{\Delta}_{k_r}^{-1}(\xi + \hat{\epsilon}_{\Delta}) = o_p(1)$, we have $\widehat{W}_{\Delta 1} = o_p(n^{-\frac{1}{2}})$.

For $\widehat{W}_{\Delta 2}$, since $\widehat{F}(\boldsymbol{\beta}; s)$ is a monotone function in s,

$$\begin{aligned} |\widehat{W}_{\Delta 2}| &\leq \int \left| I\{\widehat{\Delta}_{\xi}(s) \geq 0\} - I\{\Delta_{\xi}(s) < 0\} \right| |\Delta_{\xi}(s)|\widehat{F}(\widehat{\boldsymbol{\beta}}; ds) \\ &\leq \int I\{\Delta_{\xi}(s) \in [-\widehat{\epsilon}_{\Delta}, \widehat{\epsilon}_{\Delta}]\}\widehat{\epsilon}_{\Delta}\widehat{F}(\widehat{\boldsymbol{\beta}}; ds) = \widehat{\epsilon}_{\Delta} \left\{ \widehat{F}_{\Delta}(\widehat{\boldsymbol{\beta}}; \widehat{\epsilon}_{\Delta}) - \widehat{F}_{\Delta}(\widehat{\boldsymbol{\beta}}; -\widehat{\epsilon}_{\Delta}) \right\} \end{aligned}$$

where $\widehat{F}_{\Delta}(\boldsymbol{\beta}; d) = n^{-1} \sum_{i=1}^{n} I[\Delta\{D(\boldsymbol{\beta}, \mathbf{X}_i)\} \leq d].$

It follows from a functional central limit theorem that $n^{\frac{1}{2}}\{\widehat{F}_{\Delta}(\boldsymbol{\beta};d) - F_{\Delta}(\boldsymbol{\beta};d)\}$ converges to a zero-mean Gaussian process and hence is equicontinuous in $\boldsymbol{\beta}$ and d. We have $\widehat{F}_{\Delta}(\widehat{\boldsymbol{\beta}};\widehat{\epsilon}_{\Delta}) - \widehat{F}_{\Delta}(\widehat{\boldsymbol{\beta}};\widehat{\epsilon}_{\Delta}) = F_{\Delta}(\overline{\boldsymbol{\beta}};\widehat{\epsilon}_{\Delta}) - F_{\Delta}(\overline{\boldsymbol{\beta}};\widehat{\epsilon}_{\Delta}) + o_p(n^{-\frac{1}{2}})$. This implies $|\widehat{W}_{\Delta 2}| \leq 2\widehat{\epsilon}_{\Delta}^2 \sup_s |f_{\Delta}(\overline{\boldsymbol{\beta}};s)| + o_p(n^{-\frac{1}{2}})$. Provided that $\widehat{\epsilon}_{\Delta} = o_p(n^{-1/4})$, we have $\widehat{W}_{\Delta 2} = o_p(n^{-\frac{1}{2}})$. Hence, $\widehat{W}_{\Delta} = o_p(n^{-\frac{1}{2}})$. The above results also indicate that $P\{\widehat{\mathcal{I}}_{calib}(\mathbf{X}) \neq \mathcal{I}_{calib}(\mathbf{X})\} \to 0$.

Next, we establish the the asymptotic convergence of $\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}}$ to $\mathbb{V}_{\mathcal{I}_{\text{calib}}}$. By the law of large numbers, $\widehat{\mathbb{V}}_{a}(\bar{\Delta}, \bar{\beta}) + \bar{Y}_{0} - \mathbb{V}_{\mathcal{I}_{\text{calib}}} \xrightarrow{\mathcal{P}} 0$. It remains to show that $\widehat{\mathbb{V}}_{a}(\bar{\Delta}, \hat{\beta}) - \widehat{\mathbb{V}}_{a}(\bar{\Delta}, \bar{\beta}) = o_{p}(1)$. It follows from similar arguments as given for the convergence of $\widehat{H}(\beta; s)$ that $n^{\frac{1}{2}} \{\widehat{\mathbb{V}}_{a}(\bar{\Delta}, \beta) - \mathbb{V}_{a}(\bar{\Delta}, \beta) = n^{-\frac{1}{2}} \sum_{i=1}^{n} \Psi_{ai}(\beta) + o_{p}(1)$, which converges weakly to a zero-mean Gaussian process, where

$$\Psi_{ai}(\boldsymbol{\beta}) = I[\bar{\Delta}_{\xi}\{D(\boldsymbol{\beta}; \mathbf{X}_i)\} \ge 0] \mathcal{Y}_{\xi_i} - m_{\Delta 1}(\boldsymbol{\beta}) \frac{I(G_i=1)}{\pi_1} - +m_{\Delta 0}(\boldsymbol{\beta}) \frac{I(G_i=0)}{\pi_0}$$

and $m_{\Delta j}(\boldsymbol{\beta}) = E(I[\bar{\Delta}_{\xi}\{D(\boldsymbol{\beta}; \mathbf{X}_i)\} \ge 0] \mathcal{Y}_{\xi_i} \mid G_i = j)$. Hence,

$$\widehat{\mathbb{V}}_{a}(\bar{\Delta},\widehat{\boldsymbol{\beta}}) - \widehat{\mathbb{V}}_{a}(\bar{\Delta},\bar{\boldsymbol{\beta}}) = \mathbb{V}_{a}(\bar{\Delta},\widehat{\boldsymbol{\beta}}) - \mathbb{V}_{a}(\bar{\Delta},\bar{\boldsymbol{\beta}}) + o_{p}(n^{-\frac{1}{2}}) = \mathcal{V}_{a2}'(\bar{\Delta},\boldsymbol{\beta})^{\mathsf{T}}(\widehat{\boldsymbol{\beta}}-\bar{\boldsymbol{\beta}}) + o_{p}(n^{-\frac{1}{2}}).$$

Therefore, $\widehat{\mathbb{V}}_{a}(\bar{\Delta}, \widehat{\boldsymbol{\beta}}) - \widehat{\mathbb{V}}_{a}(\bar{\Delta}, \bar{\boldsymbol{\beta}}) = o_{p}(1)$ and thus $\widehat{\mathcal{W}}_{\mathbb{V}} = o_{p}(1)$, indicating the consistency of $\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}}$, for $\mathbb{V}_{\mathcal{I}_{\text{calib}}}$. For the weak convergence of $\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}}$, we note from the above expansions that

$$\begin{split} n^{\frac{1}{2}} (\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}} - \mathbb{V}_{\mathcal{I}_{\text{calib}}}) &= n^{\frac{1}{2}} \mathcal{V}'_{a2}(\bar{\Delta}, \boldsymbol{\beta})^{\mathsf{T}} (\widehat{\boldsymbol{\beta}} - \bar{\boldsymbol{\beta}}) + n^{\frac{1}{2}} \{ \widehat{\mathbb{V}}_{a}(\bar{\Delta}, \bar{\boldsymbol{\beta}}) + \bar{Y}_{0} - \mathbb{V}_{\mathcal{I}_{\text{calib}}} \} + o_{p}(1) \\ &= n^{-\frac{1}{2}} \sum_{i=1}^{n} \Psi_{\mathcal{V}i} + o_{p}(1), \end{split}$$

where

$$\Psi_{\mathcal{V}i} = \mathcal{V}'_{a2}(\bar{\Delta}, \boldsymbol{\beta})^{\mathsf{T}} \Psi_{\boldsymbol{\beta}i} + \Psi_{ai}(\bar{\boldsymbol{\beta}}) + (Y_i - \mu_0) \frac{I(G_i = 0)}{\pi_0}.$$
 (A.1)

It then follows from a central limit theorem that $n^{\frac{1}{2}}(\widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}} - \mathbb{V}_{\mathcal{I}_{\text{calib}}})$ converges in distribution to a normal with mean 0 and variance $\sigma_{\mathbb{V}}^2 = E(\Psi_{\mathcal{V}i}^2)$.

Web Appendix B: Asymptotic Properties of $\hat{\mathbf{c}}$, \hat{c} , and $\widehat{\mathbb{V}}_{\hat{l}_{c}}$ when $\overline{\Delta}$ is increasing In this section, we assume that $\overline{\Delta}(c)$ is monotone and there exists c_{0} such that $\overline{\Delta}(c_{0}) = \xi$ and $\overline{\Delta}'(c_{0}) > 0$. The monotonicity implies that $V\{F^{-1}(u)\} = \mu_{0} + \int_{0}^{u} \overline{\Delta}\{F^{-1}(v)\} dv$ is convex in u. Moreover, $\overline{\Delta}'(c_{0})F'(c_{0}) > 0$ implies that $\mathbb{V}_{I_{c}}$ has a unique maximizer at c_{0} , where $I_{c} = I\{D(\bar{\beta}; \mathbf{X}) \ge c\}$. From Newey and McFadden (1994), to show the consistency of $\hat{\mathbf{c}}$, it suffices to show that $\widehat{\mathbb{V}}_{\hat{I}_{c}} \xrightarrow{\mathcal{P}} \mathbb{V}_{I_{c}}$ uniformly in c. To this end, note that $\widehat{\mathbb{V}}(c, \beta) = \widehat{\mathbb{V}}_{a}(c, \beta) + \bar{Y}_{0}$, and $\widehat{\mathbb{V}}_{a}(c, \beta) = n^{-1} \sum_{i=1}^{n} I\{D(\beta; \mathbf{X}_{i}) \ge c\} \widehat{\mathcal{Y}}_{\xi_{i}}$. We have $\widehat{\mathbb{V}}_{\hat{I}_{c}} = \widehat{\mathbb{V}}(c; \hat{\beta})$. It follows from the uniform law of large numbers (Pollard, 1990) that $\widehat{\mathbb{V}}(c; \beta)$ converges to $\mathbb{V}(c; \beta)$ uniformly in $\{\beta, c\}$, where $\mathbb{V}(c; \beta) = E[I\{D(\beta; \mathbf{X}) \ge c\} \mathcal{Y}_{\xi}] + \mu_{0}$. Furthermore, by the functional central limit theorem (Pollard, 1990), $n^{\frac{1}{2}}\{\widehat{\mathbb{V}}(c, \beta) - \mathbb{V}(c; \beta)\}$ converges weakly to a Gaussian process in β and c.

These results, together with the weak convergence of $n^{\frac{1}{2}}(\hat{\beta} - \bar{\beta})$, imply that

$$\sup_{c} \left| n^{\frac{1}{2}} \{ \widehat{\mathbb{V}}_{\widehat{I}_{c}} - \mathbb{V}_{I_{c}} \} \right| = O_{p}(1) \tag{B.1}$$

The consistency of \hat{c} immediately follows from the monotonicity of $\bar{\Delta}(c)$, $\bar{\Delta}'(c_0) > 0$.

We next show that $\hat{\mathbf{c}} - c^o = O_p(n^{-1/3})$ following the cubic-root asymptotic theory from Kim and Pollard (1990). For the ease of presentation, we assume that $\bar{\boldsymbol{\beta}}$ is known and hence

$$\widehat{\mathfrak{c}} = \operatorname*{argmax}_{c} \widehat{\mathbb{V}}_{\widehat{I}_{c}} = \operatorname*{argmax}_{c} \{ \widehat{\mathbb{V}}_{\widehat{I}_{c}} - \overline{Y}_{0} \} = n^{-1} \sum_{i=1}^{n} \mathbb{V}_{i} I(D(\overline{\beta}, \mathbf{X}_{i}) \ge c) + O_{p}(n^{-1})$$

where $\mathbb{Y}_i = \mathcal{Y}_{\xi_i} - \mu_1 \{ I(G_i = 1)/\pi_1 - 1 \} + \mu_0 \{ I(G_i = 0)/\pi_0 - 1 \}$. To verify the regularity conditions of the main theorem in §1.1 of Kim and Pollard (1990), we let $\eta_i = (\mathbb{Y}_i, D(\bar{\boldsymbol{\beta}}, \mathbf{X}_i)),$ $g(\eta, c) = \mathbb{Y}_i I(D(\bar{\boldsymbol{\beta}}, \mathbf{X}_i) \ge c)$ and hence $n^{-1} \sum_{i=1}^n \mathbb{Y}_i I(D(\bar{\boldsymbol{\beta}}, \mathbf{X}_i) \ge c) = n^{-1} \sum_{i=1}^n g(\eta_i, c).$ The main condition involves an envelope function for $g(\xi, c)$

$$G_{R}(\eta) = \sup\{g(\eta, c) : |c - c^{o}| \leq R\}$$
$$= \sup_{|c - c^{o}| \leq R} \left[\mathbb{Y}\{I(D(\bar{\beta}, \mathbf{X}) \geq c) - I(D(\bar{\beta}, \mathbf{X}) \geq c^{o})\} \right] = |\mathbb{Y}|I(|D(\bar{\beta}, \mathbf{X}) - c^{o}| < R)$$

It is easy to see that $E\{G_R(\eta_i)\} = E\{|\mathbb{Y}|I(|D(\bar{\boldsymbol{\beta}}, \mathbf{X}) - c^o| < R)\} = O(R)$ as $R \to 0$ and $E[G_R(\eta_i)I\{G_R(\eta_i) > \mathcal{K}\}] \leq E\{I(|D(\bar{\boldsymbol{\beta}}, \mathbf{X}) - c^o| < R)\mathbb{Y}^2I(|\mathbb{Y}| > \mathcal{K})\}$

$$\leq R \left[\max\{f_D(\cdot)\} E\{ \mathbb{Y}^2 I(|\mathbb{Y}| > \mathcal{K}) \mid c^o - R < D(\bar{\beta}, \mathbf{X}) < c^o + R \} \right]$$

Since $Y^{(k)}$ has a finite second moment given $D(\bar{\beta}, \mathbf{X})$, $E\{\mathbb{Y}^2 I(|\mathbb{Y}| > \mathcal{K}) \mid c^o - R < D(\bar{\beta}, \mathbf{X}) < c^o + R\} \to 0$ as $\mathcal{K} \to \infty$ and hence condition (vi) of Theorem §1.1 is verified. The rest of the regularity conditions follow mainly from the smoothness of $\Delta(\cdot)$ and f_D .

To derive the distribution of \hat{c} , note that $\widehat{\Delta}_{\xi}(\hat{c};\hat{\beta}) = 0$, where $\widehat{\Delta}_{\xi}(c;\beta) = \sum_{i=1}^{n} K_h\{D(\beta;\mathbf{X}_i) - c\}\widehat{\mathcal{Y}}_{\xi_i}/[\sum_{i=1}^{n} K_h\{D(\beta;\mathbf{X}_i\}]]$. From arguments as given in Cai et al. (2011), $\sup_c |\widehat{\Delta}_{\xi}(c;\hat{\beta}) - \widehat{\Delta}_{\xi}(c;\bar{\beta})| = O_p\{(nh)^{-1/2}\log(n)\}$. Then, by a taylor series expansion, $o = \widehat{\Delta}_{\xi}(\hat{c};\hat{\beta}) = \widehat{\Delta}_{\xi}(\hat{c};\hat{\beta}) + O_p(n^{-\frac{1}{2}}) = \widehat{\Delta}_{\xi}(c_0;\hat{\beta}) + (\hat{c} - c_0)\widehat{\Delta}'_{\xi}(c_0;\hat{\beta}) + O_p\{n^{-\frac{1}{2}} + (nh)^{-1}\log(n)^2\}$. It follows that

$$\widehat{c} - c_0 = \widehat{\Delta}_{\xi}(c_0; \overline{\beta}) + o_p\{(nh)^{-1/2} + h^2\} = n^{-1} \sum_{i=1}^n K_h\{D(\beta; \mathbf{X}_i) - c\} \frac{\mathcal{Y}_{\xi_i} - \overline{\Delta}_{\xi}(c_0; \overline{\beta})}{F'(c)}$$

which is asymptotically normal as a typical kernel smoothed estimator.

For the asymptotic distribution of $\widehat{\mathbb{V}}_{\widehat{I}_{\widehat{c}}} = \widehat{\mathbb{V}}(\widehat{c},\widehat{\beta})$, using similar arguments as given above, we can show that $\widehat{\mathbb{V}}(\widehat{c},\widehat{\beta}) - \widehat{\mathbb{V}}(c_0,\widehat{\beta}) = o_p(n^{-\frac{1}{2}})$ and $\widehat{\mathbb{V}}(c_0;\widehat{\beta}) - \widehat{\mathbb{V}}(c_0;\widehat{\beta}) = \mathbb{V}(c_0;\widehat{\beta}) - \mathbb{V}(c_0;\widehat{\beta}) + o_p(n^{-\frac{1}{2}})$. Therefore,

$$\begin{split} \widehat{\mathbb{V}}_{\widehat{I}_{\widehat{c}}} - \mathbb{V}_{\mathcal{I}_{\text{calib}}} &= \mathbb{V}(c_0; \widehat{\boldsymbol{\beta}}) - \mathbb{V}(c_0; \overline{\boldsymbol{\beta}}) + \widehat{\mathbb{V}}(c_0; \overline{\boldsymbol{\beta}}) - \mathbb{V}_{\mathcal{I}_{\text{calib}}} + o_p(n^{-\frac{1}{2}}) \\ &= \mathbf{V}_2'(c_0; \overline{\boldsymbol{\beta}})^{\mathsf{T}}(\widehat{\boldsymbol{\beta}} - \overline{\boldsymbol{\beta}}) + \widehat{\mathbb{V}}(c_0; \overline{\boldsymbol{\beta}}) - \mathbb{V}_{\mathcal{I}_{\text{calib}}} + o_p(n^{-\frac{1}{2}}) = n^{-1} \sum_{i=1}^n \Psi_{Vi}(c_0) + o_p(n^{-\frac{1}{2}}) \\ &= \mathbf{V}_2'(c_0; \overline{\boldsymbol{\beta}})^{\mathsf{T}}(\widehat{\boldsymbol{\beta}} - \overline{\boldsymbol{\beta}}) + \widehat{\mathbb{V}}(c_0; \overline{\boldsymbol{\beta}}) - \mathbb{V}_{\mathcal{I}_{\text{calib}}} + o_p(n^{-\frac{1}{2}}) = n^{-1} \sum_{i=1}^n \Psi_{Vi}(c_0) + o_p(n^{-\frac{1}{2}}) \\ &= \mathbf{V}_2'(c_0; \overline{\boldsymbol{\beta}})^{\mathsf{T}}(\widehat{\boldsymbol{\beta}} - \overline{\boldsymbol{\beta}}) + \widehat{\mathbb{V}}(c_0; \overline{\boldsymbol{\beta}}) - \mathbb{V}_{\mathcal{I}_{\text{calib}}} + o_p(n^{-\frac{1}{2}}) = n^{-1} \sum_{i=1}^n \Psi_{Vi}(c_0) + o_p(n^{-\frac{1}{2}}) \\ &= n^{-1} \sum_$$

where $\Psi_{Vi}(c_0) = \mathbf{V}'_2(c_0; \bar{\boldsymbol{\beta}})^{\mathsf{T}} \Psi_{\boldsymbol{\beta}i} + I(D_i \ge c_0) \mathcal{Y}_{\xi_i} - m_{\Delta 1}(\bar{\boldsymbol{\beta}}) I(G_i = 1)/\pi_1 + m_{\Delta_0}(\bar{\boldsymbol{\beta}}) I(G_i = 1)/\pi_1$

Biometrics, 000 XXXXX

 $0)/\pi_0 + (Y_i - \mu_0)I(G_i = 0)/\pi_0$. Under the monotonicity of $\overline{\Delta}(\cdot)$, we see that $\Psi_{Vi}(c_0) = \Psi_{\mathcal{V}i}$ and hence $\widehat{\mathbb{V}}_{\widehat{I}_{\widehat{c}}} - \widehat{\mathbb{V}}_{\widehat{\mathcal{I}}_{\text{calib}}} = o_p(n^{-\frac{1}{2}}).$

References

- Cai, T., Tian, L., Wong, P., and Wei, L. (2011). Analysis of randomized comparative clinical trial data for personalized treatment selections. *Biostatistics* **12**, 270–282.
- Kim, J. and Pollard, D. (1990). Cube root asymptotics. *The Annals of Statistics* pages 191–219.
- Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing. Handbook of econometrics 4, 2111–2245.
- Pollard, D. (1990). Empirical processes: theory and applications. In NSF-CBMS regional conference series in probability and statistics. JSTOR.