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APPENDIX

Web Appendix A: Asymptotic Properties of V̂bIcalib and Îcalib

Although the working models could be semi-parametric and β̂ could be infinite dimensional,

for the derivation of the asymptotic theory, we focus on the case when β̂ is finite dimensional.

Throughout we use notation g′(x) = dg(x)/dx and g′k(x1, ...,xK) = ∂g(x1, ...,xK)/∂xk. We

assume that the covariates are bounded, β̄ is an interior point of a compact parameter space,

D(β̄,X) is a continuous random variable which has a continuously differentiable density

function fD(·) bounded away from 0 with finite support [τl, τr], and Y (k) | D(β̄,X) has a

finite second moment for any D(β̄,X) ∈ [τl, τr]. We require the regularity condition that β̂ →

β̄ = (β̄T
0 , β̄

T
1)T for β̄ and Ŵβ = n

1
2 (β̂ − β̄) = n−

1
2

∑n
i=1 Ψβi + op(1) which converges weakly

in distribution to a multivariate normal. We consider that ∆̄(·) is continuously differentiable

with |∆̄′(s)| 6 b∆̄′ <∞. We also assume that there are at most K0 <∞ number of solutions

to ∆̄′(s) = 0, there exists intervals τl = s1 < · · · < sK0+1 = τr such that ∆̄(s) is monotone

in [sk, sk+1], for k = 1, ..., K0; and hence ∆̄(s) = ξ has at most K0 roots. Furthermore, when

at least one solution to ∆̄(s) = ξ exists, we denote by {skr ∈ (skr , skr+1) : r = 1, ..., R0} all

the solutions and assume that |∆̄′(skr)| > L∆̄′ > 0. This regularity condition ensures that

the total variation of I(s) = I{∆̄(s) > ξ} is bounded by K0.

We next derive the convergence properties of V̂bIcalib = V̂a(∆̂, β̂)+Ȳ0 to VIcalib = Va(∆̄, β̄)+

µ0, where Ȳ0 = n−1
0

n∑
i=1

YiI(Gi = 0), µ0 = E(Y (0)),

V̂a(∆,β) = n−1

n∑
i=1

I [∆{D(β,Xi)} > ξ] Ŷξi , Va(∆,β) = E (I [∆{D(β,Xi)} > ξ]Yξi)

Ŷξi = (Yi−ξ)I(Gi = 1)/π̂1−YiI(Gi = 0)/π̂0 and Yξi = (Yi−ξ)I(Gi = 1)/π1−YiI(Gi = 0)/π0.

To decompose various sources of variation, we define ŴV as

ŴV ≡ V̂bIcalib − VIcalib = Ŵ∆ + V̂a(∆̄, β̂)− V̂a(∆̄, β̄) + V̂a(∆̄, β̄) + Ȳ0 − VIcalib
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where Ŵ∆ ≡ V̂a(∆̂, β̂)− V̂a(∆̄, β̂) = Ŵ∆1 + Ŵ∆2 with

Ŵ∆1 =

∫
[I{∆̂ξ(s) > 0} − I{∆ξ(s) > 0}]Ĥ(β̂; ds)

Ŵ∆2 =

∫
[I{∆̂ξ(s) > 0} − I{∆ξ(s) > 0}]∆ξ(s)F̂ (β̂; ds),

and Ĥ(β; s) = n−1

n∑
i=1

I{D(β,Xi) 6 s}[Ŷξi −∆ξ{D(β,Xi)}], ∆̂ξ(d) = ∆̂(d)− ξ, ∆ξ(d) =

E(Yξi | D(β̄,X)i = d) = ∆̄(d)− ξ, and F̂ (β; s) = n−1

n∑
i=1

I{D(β,Xi) 6 s}.

From supx |D(β̂,x)−D(β̄,x)| = Op(n
− 1

2 ) and similar arguments in Cai et al. (2011),

ε̂∆ = sup
s
|∆̂(s)− ∆̄(s)| = op{(nh)−1/2 log(n)}.

Now consider Ŵ∆1. Note that n
1
2

{
Ĥ(β; s)−H(β; s)

}
= n−

1
2

n∑
i=1

Hi(β; s) + op(1), where

Hi(β; s) = I{D(β,Xi) 6 s}[Yξi−∆ξ{D(β,Xi)}]−m1(β, s){I(Gi = 1)/π1−1}+m0(β, s){I(Gi =

0)/π0−1} and H(β; s) = E[Hi(β; s)], mj(β; s) = E[I{D(β,Xi) 6 s}Yξi | Gi = j]. It follows

from a functional central limit theorem that n
1
2

{
Ĥ(β; s)−H(β; s)

}
converges weakly to

a gaussian process and hence is equicontinuous in β. Hence, n
1
2 Ĥ(β̂; s) = n

1
2{Ĥ(β̂; s) −

H(β̄; s)} = n
1
2

{
Ĥ(β̄; s)−H(β̄; s)

}
+ Ḣ1(β̄; s)Tn

1
2 (β̂ − β̄) which converges weakly to a

zero-mean gaussian process. Therefore, for any δ = op(1),

ε̂H(δ) = sup
s

∣∣∣Ĥ(β̂; s)− Ĥ(β̂; s+ δ)
∣∣∣ = op(n

− 1
2 ),

and consequently |Ŵ∆1| 6
∫
I{∆̄(s) − ξ ∈ [−ε̂∆, ε̂∆]}|Ĥ(β̂; ds)|.If infs |∆̄(s) − ξ| > δ0 > 0,

then the equation ∆̄(s) = ξ has no solution. This implies that P{infs |∆̂(s)−ξ| > δ0/2} → 1

and I
{

∆̄(s)− ξ ∈ [−ε̂∆, ε̂∆]
} P→ 0 in probability. Thus, P (Ŵ∆1 = 0)→ 1 and n

1
2 Ŵ∆1

P→ 0.

For the setting where the solution to ∆̄(s) = ξ exists, we have,

|Ŵ∆1| 6
R0∑
r=1

∫ skr+1

skr

I
{
s ∈ [∆̄−1

kr
(ξ − ε̂∆), ∆̄−1

kr
(ξ + ε̂∆)]

} ∣∣∣Ĥ(β̂; ds)
∣∣∣

6
R0∑
r=1

ε̂H
{∣∣∆̄−1

kr
(ξ − ε̂∆)− ∆̄−1

kr
(ξ + ε̂∆)

∣∣}



Web-based Supplementary Materials for ”Evaluating Marker-Guided Treatment Selection Strategies” 3

where ∆̄−1
kr

(·) denotes the inverse function of ∆̄ within [skr , skr+1]. Given that |∆̄′(skr)| > L∆′

and ε̂∆ = op(1), ∆̄−1
kr

(ξ − ε̂∆)− ∆̄−1
kr

(ξ + ε̂∆) = op(1), we have Ŵ∆1 = op(n
− 1

2 ).

For Ŵ∆2, since F̂ (β; s) is a monotone function in s,

|Ŵ∆2| 6
∫ ∣∣∣I{∆̂ξ(s) > 0} − I{∆ξ(s) < 0}

∣∣∣ |∆ξ(s)|F̂ (β̂; ds)

6
∫
I{∆ξ(s) ∈ [−ε̂∆, ε̂∆]}ε̂∆F̂ (β̂; ds) = ε̂∆

{
F̂∆(β̂; ε̂∆)− F̂∆(β̂;−ε̂∆)

}
where F̂∆(β; d) = n−1

∑n
i=1 I[∆{D(β,Xi)} 6 d].

It follows from a functional central limit theorem that n
1
2{F̂∆(β; d)−F∆(β; d)} converges to

a zero-mean Gaussian process and hence is equicontinuous in β and d. We have F̂∆(β̂; ε̂∆)−

F̂∆(β̂;−ε̂∆) = F∆(β̄; ε̂∆)− F∆(β̄; ε̂∆) + op(n
− 1

2 ). This implies |Ŵ∆2| 6 2ε̂2∆ sups |f∆(β̄; s)|+

op(n
− 1

2 ). Provided that ε̂∆ = op(n
−1/4), we have Ŵ∆2 = op(n

− 1
2 ). Hence, Ŵ∆ = op(n

− 1
2 ). The

above results also indicate that P{Îcalib(X) 6= Icalib(X)} → 0.

Next, we establish the the asymptotic convergence of V̂bIcalib to VIcalib . By the law of large

numbers, V̂a(∆̄, β̄)+Ȳ0−VIcalib
P→ 0. It remains to show that V̂a(∆̄, β̂)−V̂a(∆̄, β̄) = op(1). It

follows from similar arguments as given for the convergence of Ĥ(β; s) that n
1
2{V̂a(∆̄,β)−

Va(∆̄,β)} = n−
1
2

∑n
i=1 Ψai(β) + op(1), which converges weakly to a zero-mean Gaussian

process, where

Ψai(β) = I[∆̄ξ{D(β; Xi)} > 0]Yξi −m∆1(β) I(Gi=1)

π1
−+m∆0(β) I(Gi=0)

π0

and m∆j(β) = E(I[∆̄ξ{D(β; Xi)} > 0]Yξi | Gi = j). Hence,

V̂a(∆̄, β̂)− V̂a(∆̄, β̄) = Va(∆̄, β̂)− Va(∆̄, β̄) + op(n
− 1

2 ) = V ′a2(∆̄,β)T(β̂ − β̄) + op(n
− 1

2 ).

Therefore, V̂a(∆̄, β̂)− V̂a(∆̄, β̄) = op(1) and thus ŴV = op(1), indicating the consistency of

V̂bIcalib for VIcalib . For the weak convergence of V̂bIcalib , we note from the above expansions that

n
1
2 (V̂bIcalib − VIcalib) = n

1
2V ′a2(∆̄,β)T(β̂ − β̄) + n

1
2{V̂a(∆̄, β̄) + Ȳ0 − VIcalib}+ op(1)

= n−
1
2

n∑
i=1

ΨVi + op(1),
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where

ΨVi = V ′a2(∆̄,β)TΨβi + Ψai(β̄) + (Yi − µ0)
I(Gi = 0)

π0

. (A.1)

It then follows from a central limit theorem that n
1
2 (V̂bIcalib−VIcalib) converges in distribution

to a normal with mean 0 and variance σ2
V = E(Ψ2

Vi).

Web Appendix B: Asymptotic Properties of ¢̂, ĉ, and V̂bIbc when ∆̄ is increasing

In this section, we assume that ∆̄(c) is monotone and there exists c0 such that ∆̄(c0) = ξ and

∆̄′(c0) > 0. The monotonicity implies that V {F−1(u)} = µ0 +

∫ u

0

∆̄{F−1(v)}dv is convex

in u. Moreover, ∆̄′(c0)F ′(c0) > 0 implies that VIc has a unique maximizer at c0, where

Ic = I{D(β̄; X) > c}. From Newey and McFadden (1994), to show the consistency of ¢̂, it

suffices to show that V̂bIc P→ VIc uniformly in c. To this end, note that V̂(c,β) = V̂a(c,β)+Ȳ0,

and V̂a(c,β) = n−1

n∑
i=1

I{D(β; Xi) > c}Ŷξi . We have V̂bIc = V̂(c; β̂). It follows from the

uniform law of large numbers (Pollard, 1990) that V̂(c; β) converges to V(c; β) uniformly in

{β, c}, where V(c; β) = E[I{D(β; X) > c}Yξ] + µ0. Furthermore, by the functional central

limit theorem (Pollard, 1990), n
1
2{V̂(c,β)−V(c; β)} converges weakly to a Gaussian process

in β and c.

These results, together with the weak convergence of n
1
2 (β̂ − β̄), imply that

sup
c

∣∣∣n 1
2{V̂bIc − VIc}

∣∣∣ = Op(1) (B.1)

The consistency of ĉ immediately follows from the monotonicity of ∆̄(c), ∆̄′(c0) > 0.

We next show that ¢̂ − co = Op(n
−1/3) following the cubic-root asymptotic theory from

Kim and Pollard (1990). For the ease of presentation, we assume that β̄ is known and hence

¢̂ = argmax
c

V̂bIc = argmax
c
{V̂bIc − Ȳ0} = n−1

n∑
i=1

YiI(D(β̄,Xi) > c) +Op(n
−1)

where Yi = Yξi − µ1{I(Gi = 1)/π1 − 1} + µ0{I(Gi = 0)/π0 − 1}. To verify the regularity

conditions of the main theorem in §1.1 of Kim and Pollard (1990), we let ηi = (Yi, D(β̄,Xi)),

g(η, c) = YiI(D(β̄,Xi) > c) and hence n−1
∑n

i=1 YiI(D(β̄,Xi) > c) = n−1
∑n

i=1 g(ηi, c).
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The main condition involves an envelope function for g(ξ, c)

GR(η) = sup{g(η, c) : |c− co| 6 R}

= sup
|c−co|6R

[
Y{I(D(β̄,X) > c)− I(D(β̄,X) > co)}

]
= |Y|I(|D(β̄,X)− co| < R)

It is easy to see that E{GR(ηi)} = E{|Y|I(|D(β̄,X)− co| < R)} = O(R) as R→ 0 and

E[GR(ηi)I{GR(ηi) > K}] 6 E{I(|D(β̄,X)− co| < R)Y2I(|Y| > K)}

6 R
[
max{fD(·)}E{Y2I(|Y| > K) | co −R < D(β̄,X) < co +R}

]
.

Since Y (k) has a finite second moment given D(β̄,X), E{Y2I(|Y| > K) | co−R < D(β̄,X) <

co +R} → 0 as K →∞ and hence condition (vi) of Theorem §1.1 is verified. The rest of the

regularity conditions follow mainly from the smoothness of ∆(·) and fD.

To derive the distribution of ĉ, note that ∆̂ξ(ĉ; β̂) = 0, where ∆̂ξ(c; β) =
∑n

i=1Kh{D(β; Xi)−

c}Ŷξi/[
∑n

i=1Kh{D(β; Xi}]. From arguments as given in Cai et al. (2011), supc |∆̂ξ(c; β̂) −

∆̂ξ(c; β̄)| = Op(n
− 1

2 ) and supc |∆̂ξ(c; β̄)− ∆̄ξ(c; β̄)| = Op{(nh)−1/2 log(n)}. Then, by a taylor

series expansion, o = ∆̂ξ(ĉ; β̂) = ∆̂ξ(ĉ; β̄) + Op(n
− 1

2 ) = ∆̂ξ(c0; β̄) + (ĉ − c0)∆̂′ξ(c0; β̄) +

Op{n−
1
2 + (nh)−1 log(n)2}. It follows that

ĉ− c0 = ∆̂ξ(c0; β̄) + op{(nh)−1/2 + h2} = n−1

n∑
i=1

Kh{D(β; Xi)− c}
Yξi − ∆̄ξ(c0; β̄)

F ′(c)

which is asymptotically normal as a typical kernel smoothed estimator.

For the asymptotic distribution of V̂bIbc = V̂(ĉ, β̂), using similar arguments as given above,

we can show that V̂(ĉ, β̂)−V̂(c0, β̂) = op(n
− 1

2 ) and V̂(c0; β̂)−V̂(c0; β̄) = V(c0; β̂)−V(c0; β̄)+

op(n
− 1

2 ). Therefore,

V̂bIbc − VIcalib = V(c0; β̂)− V(c0; β̄) + V̂(c0; β̄)− VIcalib + op(n
− 1

2 )

= V′2(c0; β̄)T(β̂ − β̄) + V̂(c0; β̄)− VIcalib + op(n
− 1

2 ) = n−1

n∑
i=1

ΨV i(c0) + op(n
− 1

2 )

where ΨV i(c0) = V′2(c0; β̄)TΨβi + I(Di > c0)Yξi − m∆1(β̄)I(Gi = 1)/π1 + m∆0(β̄)I(Gi =
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0)/π0 + (Yi − µ0)I(Gi = 0)/π0. Under the monotonicity of ∆̄(·), we see that ΨV i(c0) = ΨVi

and hence V̂bIbc − V̂bIcalib = op(n
− 1

2 ).
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