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1 Wild-type population dynamics

The wild-type population dynamics are given by

Ṡ = b
(S + δ I)2

S + I
(1− S − I)− 2 β b S I

S + I
− S

İ = I

(
2 β b S

S + I
− µ

)
.

(1)

The equations (1) admit three equilibria: population extinction, (S, I) = (0, 0), the disease-
free equilibrium (DFE), (S, I) = (1 − 1/b, 0), and the endemic equilibrium (EE), given
by

S̄ =
1

R0

(
1− 2 β (R0 − 1 + 1/µ)

(1 + δ(R0 − 1))2

)
,

Ī = S̄ (R0 − 1) ,

(2)

where R0 = 2 β b/µ. For the DFE to exist in the positive quadrant, b > 1. For the EE to
exist in the positive quadrant, b > 1, R0 > 1 and δ > δc, where

δc =
−1 +

√
2 β (1/µ+R0 − 1)

R0 − 1
. (3)

Because the population is bounded by a carrying capacity, we are only interested in
solutions with initial conditions contained in the solid closed triangle ∆̄ = {(S, I) : S ∈
[0, 1], 0 ≤ I ≤ 1 − S}. Indeed, ∆̄ is forward invariant to solution trajectories of (1). To
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see this, consider the phase plane of (1) (see Fig. 1). It is clear from (1) that if S = 0 and
I > 0, all trajectories crossing the I-axis point into the triangle ∆̄ (see Fig. 1). Similarly,
if S + I = 1, Ṡ < 0, whereas İ > 0 (resp. İ < 0) if S > 1/R0 (resp. S < 1/R0). Therefore
trajectories along the line S+I = 1 also remain in ∆̄ (see Fig. 1). Along the S-axis, if b < 1,
then the trajectories move towards the origin. Hence if b < 1, the extinction equilibrium
is globally asymptotically stable. If b > 1, then trajectories along the S-axis either move
towards the extinction equilibrium or the DFE (see Fig. 1). For I � 1, trajectories move
into the interior of ∆̄ provided R0 > 1.

In general, when b > 1, the dynamics in the phase plane becomes more complex (see Fig.
1). To investigate, in what follows we examine the local stability of each of the equilibria in
turn.

2 Local stability of equilibria

2.1 Extinction equilibrium

First consider the extinction equilibrium. There are two possible cases: i) I → 0 more
rapidly then S → 0 as (S, I) → 0 (i.e. I/S → 0), or ii) S → 0 more rapidly then I → 0 as
(S, I) → 0 (i.e. S/I → 0; the case when S/I → C < ∞, where C is a positive constant, is
the same). For case i), the Jacobian of (1) evaluated at the extinction equilibrium is

J i00 =

(
b− 1 ∗

0 2 β b− µ

)
,

and hence the extinction equilibrium is stable provided b < 1 and R0 = 2 β b/µ < 1.
For case ii), the Jacobian of (1) evaluated at the extinction equilibrium is

J ii00 =

(
−b (1− δ)2 + b− 1− 2 β b b δ2

2 β b −µ

)
.

If b ≤ 1, this is stable. If b > 1, this is locally stable provided δ < δ0, where δ0 is given by

δ0 =
−1 +

√
2 β (1/µ+R0 − 1) + 1− 1/b

R0 − 1
. (4)

Observe that δ0 > δc and that both δ0 and δc approach 0 as b → ∞. Hence for large b,
δ0 ≈ δc.
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Figure S1: Changes in stability of equilibria of wild-type system. For panel A, the extinction
equilibrium is globally asymptotically stable, while for panel B, both the extinction equi-
librium and the disease-free equilibrium (DFE) are locally stable. Observe that for both
panels A and B, the endemic equilibrium (EE) does not exist in ∆̄. For panel C, the DFE
is unstable, while the stability of the EE and the extinction equilibrium vary (see text for
further details).
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2.2 Disease-free equilibrium

Now suppose b > 1, then the DFE, (S, I) = (1− 1/b, 0) exists. The Jacobian evaluated at
the DFE is

JDFE =

(
−(b− 1) ∗

0 2 β b− µ

)
.

Since b > 1, if R0 < 1, the DFE is stable. Otherwise the DFE is a saddle and is unstable
(see Fig. 1).

2.3 Endemic equilibrium

Now suppose R0 > 1, b > 1 and δ > δc. Then the endemic equilibrium (EE) exists in the
positive quadrant. The Jacobian evaluated at the EE is

JEE =

(
Y −X −R0W

2 − 1/µ δ Y −X − 1/R0

R0W
2 −W

)
, (5)

where

X = b
(1 + δ (R0 − 1))2

µR2
0

, Y = 2
R0 − 1 + 1/µ

1 + δ (R0 − 1)
, and W =

R0 − 1

R0

.

The determinant of JEE is

det (JEE) =
R0 − 1

µR2
0

[
b (R0 − 1)2δ2 + 2 b (R0 − 1)δ + b− µR0(R0 + 1/µ− 1)

]
, (6)

and by solving for the δ at which det (JEE) changes sign, it can be shown that if δ > δc,
R0 > 1, and b > 1, this is strictly positive. Therefore the EE is not a saddle; furthermore,
we can conclude that the local stability of the EE rests upon the sign of the trace of JEE.
We will first consider the cases when δ = 1 and µ = 1 separately before considering them in
combination.

2.3.1 Pathogen only causes mortality (δ = 1)

Suppose δ = 1, that is infection does not cause sterility. Then

Tr (JEE) = −
(

(2 +R2
0 − 3R0)µ+R0(b+ 1)− 2

R0 µ

)
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Notice from the numerator that there can be at most one root; moreover, since Tr (JEE) |µ=0 >
0, while Tr (JEE) |µ=1 = − (b+R0 − 2) < 0, the root occurs on the interval µ ∈ (0, 1) and
thus is not biologically relevant. Therefore, if the pathogen only causes mortality, the en-
demic equilibrium is LAS whenever it exists.

2.3.2 Pathogen only causes sterility (µ = 1)

Suppose instead that µ = 1, that is, the pathogen only causes sterility. Then

Tr (JEE) ∝ −
(
b (R0 − 1)3 δ3 + 3 b (R0 − 1)2 δ2 + (R0 − 1)(R3

0 + 3 b) δ + b−R3
0

)
,

where proportionality is with respect to a positive constant. If we assume b < R3
0 (this

will only be violated if β � 1, since b < R3
0 ⇔ 1 < 2 β R2

0), there is exactly one δ ∈ R+

at which Tr (JEE) changes sign; denote this value δ∗. As we have previously shown that
Tr (JEE) |δ=1 < 0, to ensure that δ∗ ∈ (δc, 1), we must also have

Tr (JEE) |δ=δc = −1−R0 + 2
√
b > 0,

and it follows that if 1 < R0 < 2
√
b− 1, then δ∗ ∈ (δc, 1). Assuming δ∗ exists, when δ < δ∗,

the EE is unstable, while for δ > δ∗, the EE is LAS.
Suppose that S/I → 0 as (S, I)→ (0, 0) (case ii from the extinction equilibrium discus-

sion), and that δ > δ0, that is, the extinction equilibrium is unstable. Then for δ∗ ∈ (δ0, 1),
we must have

Tr (JEE) |δ=δ0 = −R0 − 1− b− 1

R2
0

+ 2

√
b

1 +R2
0(b− 1)

> 0

so if we have √
1 +R2

0(b− 1)

(
R0 + 1 +

b− 1

R2
0

)
< 2
√
b

then δ∗ ∈ (δ0, 1). Now, for δ0 ≤ δ < δ∗, all three equilibria are locally unstable. As ∆̄ is
forward invariant, by Poincaré-Bendixson, we can conclude that there are periodic orbits in
the phase plane.
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2.3.3 Pathogen causes both sterility and mortality

Finally, suppose virulence affects both mortality and sterility. Then the trace of (5) is

Tr (JEE) = −A
[
b(R0 − 1)3 δ3 + 3 b (R0 − 1)2δ2 + (R0 − 1)(µR2

0(R0 − 1)

+ R2
0 + 3 b)δ + b+ µR2

0 −R2
0(µR0 + 1)

]
(7)

where A = 1/(µR2
0[1 + δ(R0 − 1)]) > 0. Tr (JEE) can change sign on the interval δ ∈ (0, 1)

if R0 satisfies

3µR0 − 2(µ− 1)−R0 (b+ µR0) < R0 < R0

(
R0 +

1

µ

)
− 1

2 β
. (8)

If (8) is satisfied, then there exists a δ∗ on the interval (0, 1) at which the stability of the EE
changes: for δ < δ∗, the EE is locally unstable, whereas for δ > δ∗, the EE is locally stable.
Obviously, satisfying (8) requires consideration of a significantly restricted set of parameter
space; and if (8) is not satisfied, then the EE is LAS. We also note that numerical results
indicate that periodic orbits are possible; these of course can only occur when the EE exists.

In what follows, we assume that we are in a region of parameter space for which the
endemic equilibrium is LAS.

3 Mutant subpopulation dynamics

Here we present a derivation of the mutant subpopulation dynamics. As mentioned in
the main text, the invasion process is fully determined by heterozygous individuals and
mutant-wild-type pairings. There are six mutant densities we need to track. We will denote
these densities at time t as qÎ , qŜ, pŜS, pŜI , pÎS, and pÎI , where qk̂ and pk̂j correspond to

densities of singletons and pairs, respectively, and k̂ and k̂j indicate the infection status
of involved individuals. Mutants form pairs at a per-capita rate of ϕk̂j(ρ). We suppose
that pair-formation comes with a cost, in particular we let ν̂k(ρ) ∈ [0, 1] be the reduced
fecundity of a solitary (k = q) or paired (k = p) mutant, and let µ̂k(ρ) ≥ 1 be the increased
mortality of a solitary (k = q) or paired (k = p) mutant. We have chosen both costs to
be multiplicative to facilitate comparison, however, were we to use additive mortality costs
instead, the qualitative results would not change. Both ν̂k(ρ) and µ̂k(ρ) have the property
that ν̂k(0) = µ̂k(0) = 1.

A susceptible mutant singleton can expect to produce mutant susceptibles at a per-capita
rate of θŜ = ν̂q(ρ) θS, where we assume that θS is now at the wild-type endemic equilibrium
(S̄, Ī). Likewise, an infected singleton can expect to produce mutant susceptibles at a per-
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capita rate of θÎ = δ θŜ. As part of the different pairings, susceptible mutants are produced
at the following rates: θŜS = G + 1, θŜI = δ G + µ, θÎS = δ G, and θÎI = δ2G, where
G = ν̂p(ρ) b

(
1− S̄ − Ī

)
, that is, 2G is the fecundity in the absence of infection; since the

mutants are heterozygotes and rare, they can expect that half their reproductive output will
also be mutant. Notice that θŜI and θŜS include production of susceptible mutants from
pairing break up due to the death of the wild-type partner. Likewise, pairings involving
infected mutants can also expect to produce infected mutant singletons through the death
of the wild-type partner.

We assume that mutant behaviour does not explicitly alter the transmission process,
so susceptible singletons become infected at a per-capita rate of λ, which is computed at
wild-type equilibrium and hence λ = 2 β b − µ, whereas the STI is transmitted within pÎS
and pŜI pairings at a per-capita rate of λp = 2 β b. Finally, let τk̂ denote the per-capita rate

at which mutant singletons exit class k̂, and τk̂j denote the per-capita rate at which paired

mutants exit the class k̂j. These are as follows

τŜ = µ̂q(ρ) + λ+ ϕŜI(ρ) + ϕŜS(ρ)

τŜS = µ̂p(ρ) + 1

τŜI = µ̂p(ρ) + µ+ λp

τÎ = µ µ̂q(ρ) + ϕÎI(ρ) + ϕÎS(ρ)

τÎI = µ µ̂p(ρ) + µ

τÎS = µ µ̂p(ρ) + 1 + λp.

The dynamics of the mutant subpopulation can therefore be written in matrix-vector nota-
tion as 

q̇Ŝ
q̇Î
ṗÎI
ṗÎS
ṗŜI
ṗŜS

 =


θŜ − τŜ θÎ θÎI θÎS θŜI θŜS

λ −τÎ µ 1 0 0
0 ϕÎI(ρ) −τÎI λp λp 0
0 ϕÎS(ρ) 0 −τÎS 0 0

ϕŜI(ρ) 0 0 0 −τŜI 0
ϕŜS(ρ) 0 0 0 0 −τŜS




qŜ
qÎ
pÎI
pÎS
pŜI
pŜS

 , (9)

where dots denote differentiation with respect to non-dimensionalized time.

4 Invasion condition

The Jacobian of (9) evaluated at the mutant free equilibrium (MFE) is simply the matrix in
(9). Denote this matrix JMFE. To assess stability of the MFE, we apply the next-generation
method [1, 2]. This involves decomposing JMFE into two matrices, F and V such that: i)
JMFE = F − V , ii) all entries of F are nonnegative, and iii) each eigenvalue of −V must
have negative real part. If F and V are selected in this way, then the MFE is stable if the
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spectral radius of the matrix FV −1 is less than 1.
In general, F and V are chosen in a biologically specific way [2]. As we are concerned with

host reproductive success, we focus on production of susceptible mutants. This production
can occur in two ways: through reproduction or through the break up of pŜI or pŜS pairings
through the death of the wild-type partner. Within the context of lifetime reproductive
success (LRS), pairing break up can be viewed as an individual giving ‘birth’ to itself.

Define F as a 6 × 6 matrix whose first row is
(
θŜ θÎ θÎI θÎS θŜI θŜS

)
, and whose

remaining entries are zero, and V as

V =


τŜ 0 0 0 0 0
−λ τÎ(ρ) −µ −1 0 0
0 −ϕÎI(ρ) τÎI −λp −λp 0
0 −ϕÎS(ρ) 0 τÎS 0 0

−ϕŜI(ρ) 0 0 0 τŜI 0
−ϕŜS(ρ) 0 0 0 0 τŜS

 .

All entries of F are nonnegative. It remains to show that the eigenvalues of V have
positive real part (doing so implies that the eigenvalues of −V have negative real part). V
is block triangular: we have the blocks v11, v66 and the inner 4 × 4 block; however, the
inner 4× 4 block is itself block triangular, with one of its blocks consisting of the entry v55.
Therefore three of the eigenvalues of V are given by the entries v11, v55 and v66, each of
which is positive and real. The remaining three eigenvalues are determined by the matrix

M =

 τÎ −µ −1
−ϕÎI τÎI −λp
−ϕÎS 0 τÎS

 .

To show that the eigenvalues of M have positive real part, we use Gershgorin circle theorem
[3]. Briefly, if we define the Gerschgorin disks of M

Di = {|z −mii| ≤ Ri : z ∈ C}, with RI =
n∑
j=1
j 6=i

|mji|, i = 1, 2, 3

and let the Gerschgorin domain of M , DM = ∪3i=1Di ⊂ C, be the union of the disks, then
all eigenvalues of the matrix M lie in its Gerschgorin domain DM [3].

As each of the diagonal entries of M correspond to the total rate at which individuals
exit a particular class while the off-diagonal column entries correspond to a subset of those
rates, we necessarily have that the Di > Ri for each i = 1, 2, 3. Since for each Di, the center
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is greater than the radius, all points in each disk are strictly positive, hence all points in the
union of the three discs are also strictly positive. It follows immediately that all eigenvalues
of M have positive real part. Therefore we are justified in choosing F and V as we have.

Proceeding, we can compute FV −1, which in this case is a matrix with all zero entries
other than the first row. As a result, the stability of the MFE is determined by entry fv−111 .
Specifically, if fv−111 , which represents LRS of a rare mutant, is greater than the wild-type
LRS (which at equilibrium is equal to 1), then the mutant can invade. That is

θŜ
τŜ

+
ϕŜS
τŜ

θŜS
τŜS

+
ϕŜI
τŜ

θŜI
τŜI

+

(
λ

τŜ
+
ϕŜI
τŜ

λp
τŜI

µ

τÎI

)
I
θÎ
τÎ

+

(
λ

τŜ
+
ϕŜI
τŜ

λp
τŜI

µ

τÎI

)
I
ϕÎS
τÎ

θÎS
τÎS

+

 λ

τŜ
I
[
ϕÎI
τÎ

+
ϕÎS
τÎ

λp
τÎS

]
+
ϕŜI
τŜ

λp
τŜI

[
1−

ϕÎS
τÎ

1

τÎS

]
︸ ︷︷ ︸

a

 θÎI
τÎI

> 1. (10)

where I is

I =

(
1−

ϕÎS
τÎ

λp
τÎS

µ

τÎI
−
ϕÎS
τÎ

1

τÎS
−
ϕÎI
τÎ

µ

τÎI

)−1
.

Recognizing that I is the sum of a infinite geometric series, following two applications of the
binomial theorem, I can be rewritten as

I =
∞∑
n=0

n∑
k=0

(
n

k

)(
ϕÎS
τÎ

λp
τÎS

µ

τÎI

)k n−k∑
j=0

(
n− k
j

)(
ϕÎS
τÎ

1

τÎS

)j (ϕÎI
τÎ

µ

τÎI

)n−k−j
.

We also need to rewrite a; to do so we use the definition of I:

a =
ϕŜI
τŜ

λp
τŜI
I
(
I−1 +

ϕÎS
τÎ

λp
τÎS

µ

τÎI
+
ϕÎI
τÎ

µ

τÎI

)
=

ϕŜI
τŜ

λp
τŜI

(
1 +

µ

τÎI
I
[
ϕÎS
τÎ

λp
τÎS

+
ϕÎI
τÎ

])
.

(11)

Then swapping a in (10), the invasion condition, partitioned to match with Figure 1 from
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the main text is

θŜ
τŜ︸︷︷︸
i

+
ϕŜS
τŜ

θŜS
τŜS︸ ︷︷ ︸

ii

+
ϕŜI
τŜ

θŜI
τŜI︸ ︷︷ ︸

iii

+

(
λ

τŜ
+
ϕŜI
τŜ

λp
τŜI

µ

τÎI

)
I
θÎ
τÎ︸ ︷︷ ︸

iv

+

(
λ

τŜ
+
ϕŜI
τŜ

λp
τŜI

µ

τÎI

)
I
ϕÎS
τÎ

θÎS
τÎS︸ ︷︷ ︸

v

+

(
λ

τŜ
I
[
ϕÎI
τÎ

+
ϕÎS
τÎ

λp
τÎS

]
+
ϕŜI
τŜ

λp
τŜI

[
1 +

µ

τÎI
I
{
ϕÎS
τÎ

λp
τÎS

+
ϕÎI
τÎ

}])
θÎI
τÎI︸ ︷︷ ︸

vi

> 1, (12)

As a check of (12), observe that if the mutation is selectively neutral (ρ = 0), then ϕk̂j = 0,
and the left-hand side of (12) simplifies to 1, as expected.

4.1 Weak selection approximation

Fix attention on the pairing function given by

ϕk̂j(ρ) = ρ
j̄

Ī + S̄
.

As an aside, observe that were we to use our choice of ϕk̂j(ρ) in (10) and assume that
the wild-type population is at the DFE rather than the endemic equilibrium, when pair
formation is cost free (i.e. ν̂k(ρ) = 1 and µ̂k(ρ) = 0), (12) simplifies to ρ > 1. That is,
invasion is possible if the rate at which pairs form, ρ, exceeds the wild-type mortality. This
is intuitive: if there is no STI present in the population and pair formation is cost free,
forming pairs is only advantageous if it prolongs lifespan.

Now, applying a Maclaurin expansion to (12), while noting that I(0) = 1, we obtain

1 +

(
1

2

(
R0 − 1

R0

)
a2δ

2 − a1δ + a0

((R0 + 1/µ)2 − 1) (1 + δ(R0 − 1))2

+
dν̂q
dρ

∣∣∣∣
ρ=0

−
(

δ(R0 − 1)

1 + δ(R0 − 1)
+

1

µ (R0 + 1/µ− 1)

)
dµ̂q
dρ

∣∣∣∣
ρ=0

)
ρ+O(ρ2) > 1, (13)

10



where

a2 =
1

µ

(
(R0 − 1)2

(
R0 +

1

µ

)
+
R0 − 1

µ2
+
R0 (R0 + 1)

µ

)
a1 =

1

µ

(
1 + (R0 − 1)

(
R0 +

1

µ

)2

+ 3R0

)

a0 =

(
R0 +

1

µ

)(
R0 + 1− 1

µ

)
.

Under weak selection, we can neglect O(ρ2) terms, and therefore invasion is determined
by the selection gradient, which is the coefficient of ρ. The sign of the selection gradient
determines the success of mutant invasion.

4.1.1 No infection induced mortality (µ = 1)

Suppose µ = 1. Then the LHS of (13) simplifies to

1

2

(
R0 − 1

R0

)
(1− δ)(R0 + 1− δ(1 +R2

0))

(R0 + 2)(1 + δ(R0 − 1))2
. (14)

We first want to understand the behaviour of (14) as we vary the rate of infection transmis-
sion, R0 (manipulating β or b). (14) has two positive roots, R0 = 1 and

R∗0 =
(

1 +
√

1 + 4 δ(1− δ)
)
/(2 δ) > 1.

Now the derivative of (14) at R0 = 1 is (1 − δ)2/3 > 0, while as R0 → ∞, (14) goes to 0
from below. Therefore for R0 ∈ (0, 1) ∪ (R∗0,∞), (14) is negative and is non-negative for
R0 ∈ [1, R∗0]. By taking the derivative of (14), it can be shown that there are strictly two
critical points; one on the interval (1, R∗0), and one on the interval (R∗0, ∞). Combining this
information allows us to show the general behaviour of (14) as R0 is varied in Figure 2.

Now consider (14) as a function of δ. It has roots at δ = 1 and δ = (R0 + 1)/(1 + R2
0).

If we take the derivative of (14) with respect to δ, we obtain

1

2

(R0 − 1) (δ(R0 + 1)2 − (1 + 3R0))

(R0 + 2)(1 + δ(R0 − 1))3
,

and it follows that if δ > (1 + 3R0)/(1 + R0)
2, the function is increasing, whereas if δ <

(1 + 3R0)/(1 +R0)
2, the function is decreasing. Evaluating (14) at δ = (1 + 3R0)/(1 +R0)

2
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yields

− 1

16

(R0 − 1)3

R2
0(R0 + 2)

< 0,

so invasion is only possible for δ ∈ (δc, [R0 + 1]/ [1 +R2
0]), where δc is the critical value of

δ below which the population is driven to extinction. As δ increases on this interval, the
likelihood of the evolution of monogamy declines. Of course, as noted in the main text, it is
not necessarily true that (R0 + 1)/(1 +R2

0) > δc. If this is not satisfied, then invasion is not
possible.

If we suppose that ν̂ ′q(0) = 0 and µ̂′q(0) 6= 0, then we can divide through by the multiplier
in (13) giving the invasion condition, when µ = 1 as

1

2

(R0 − 1) (1− δ) (R0 + 1− δ(1 +R2
0))

(R0 + 2) (1 + δ(R0 − 1)) (δ R2
0 + 1− δ)

>
∣∣µ̂′q(0)

∣∣ (15)

Following some elementary calculus, it can be shown that the shape of (14) and (15) are
qualitatively similar; it is also clear that from inspection that they differ simply by one of
the denominator terms ((15) has δ R2

0 + 1− δ, while (14) has R0(1 + δ(R0 − 1))). Since

δ R2
0 + 1− δ < δ R2

0 +R0(1− δ) = R0(1 + δ(R0 − 1)),

the LHS of (15) is greater than the LHS of (14), so monogamy is more advantageous when
the trade-off is with mortality rather than fecundity.

4.1.2 No infection induced sterility (δ = 1)

Suppose δ = 1. Then the LHS of (13) simplifies to

1

2

(
R0 − 1

R2
0

)
(1− 1/µ) (R0 + 1− 1/µ)

(R0 + 1 + 1/µ) (R0 − 1 + 1/µ)
. (16)

As µ > 1, (16) has a single positive root with respect to R0, at R0 = 1. Also note that as
R0 → ∞, (16) approaches 0 from above and as R0 → 0, (16) approaches ∞. There is also
a discontinuity when R0 = 1 − 1/µ (which is mathematically relevant, but not biologically,
since R0, µ > 1). When R0 → (1− 1/µ)+, (16) → −∞, whereas when R0 → (1− 1/µ)−,
(16) → ∞. By taking the derivative with respect to R0, it can be shown that (16) has two
critical points. Hence, combining all of the above information allows us to deduce the general
form of the curve given by (16), which is shown in Figure 2. Of course,we have assumed that
the RHS of (13) is equal to zero; if it is not, then the invasion curve is translated downward.
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Figure S2: General qualitative behaviour of invasion coefficients when pathogen virulence
exclusively causes sterility (panel A) or exclusively causes mortality (panel B). The shaded
region of each plot represents the biologicallly relevant section of parameter space in which
invasion is possible.
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If we suppose that ν̂ ′q(0) = 0 and µ̂′q(0) 6= 0, then dividing through by the multiplier in
(13) gives the revised version of (16) as

1

2

(
R0 − 1

R0

)
(1− 1/µ) (R0 + 1− 1/µ)

(R0 + 1 + 1/µ) (R2
0 − (1− 1/µ)(2R0 − 1))

. (17)

As before, by elementary calculus, it can be shown that this curve qualitatively matches
that of (16). However, (17) has R2

0 − (1− 1/µ)(2R0 − 1) in the denominator, whereas (16)
has R0(R0 − 1 + 1/µ). Thus (17) is greater than or equal to (16), so monogamy is more
advantageous when the trade-off is with mortality rather than fecundity.
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