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3D-SIM Super-resolution of FtsZ and Its Membrane Tethers in Escherichia
coli Cells
Veronica Wells Rowlett1 and William Margolin1,*
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ABSTRACT FtsZ, a bacterial homolog of eukaryotic tubulin, assembles into the Z ring required for cytokinesis. In Escherichia
coli, FtsZ interacts directly with FtsA and ZipA, which tether the Z ring to the membrane. We used three-dimensional structured
illumination microscopy to compare the localization patterns of FtsZ, FtsA, and ZipA at high resolution in Escherichia coli cells.
We found that FtsZ localizes in patches within a ring structure, similar to the pattern observed in other species, and discovered
that FtsA and ZipA mostly colocalize in similar patches. Finally, we observed similar punctate and short polymeric structures
of FtsZ distributed throughout the cell after Z rings were disassembled, either as a consequence of normal cytokinesis or
upon induction of an endogenous cell division inhibitor.
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The assembly of the bacterial tubulin FtsZ has beenwell stud-
ied in vitro, but the fine structure of the cytokinetic Z ring it
forms invivo is notwell defined. Super-resolutionmicroscopy
methods including photoactivated localization microscopy
(PALM) and three-dimensional-structured illumination mi-
croscopy (3D-SIM) have recently provided a more detailed
view of Z-ring structures. Two-dimensional PALM showed
that Z rings in Escherichia coli are likely composed of
loosely-bundled dynamic protofilaments (1,2). Three-dimen-
sional PALM studies of Caulobacter crescentus initially
showed that Z ringswere comprised of loosely bundled proto-
filaments forming a continuous but dynamic ring (1–3). How-
ever, a more recent high-throughput study showed that the Z
rings of this bacteriumare patchy or discontinuous (4), similar
to Z rings of Bacillus subtilis and Staphylococcus aureus
using 3D-SIM (5). Strauss et al. (5) also demonstrated that
the patches in B. subtilis Z rings are highly dynamic.

Assembly of the Z ring is modulated by several proteins
that interact directly with FtsZ and enhance assembly or
disassembly (6). For example, FtsA and ZipA promote ring
assembly in E. coli by tethering it to the cytoplasmic mem-
brane (7,8). SulA is an inhibitor of FtsZ assembly, induced
only after DNA damage, which sequesters monomers of
FtsZ to prevent its assembly into a Z ring (9). Our initial goals
were to visualize Z rings in E. coli using 3D-SIM, and then
examine whether any FtsZ polymeric structures remain
after SulA induction. We also asked whether FtsA and
ZipA localized in patchy patterns similar to those of FtsZ.

We used a DeltaVision OMX V4 Blaze microscope
(Applied Precision, GE Healthcare, Issaquah, WA) to
view the high-resolution localization patterns of FtsZ in
E. coli cells producing FtsZ-GFP (Fig. 1). Three-dimen-
sional views were reconstructed using softWoRx software
(Applied Precision). To rule out GFP artifacts, we also visu-
alized native FtsZ from a wild-type strain (WM1074) by
immunofluorescence (IF).

Both FtsZ-GFP (Fig. 1, A, B, and B1) and IF staining for
FtsZ (Fig. 1, C, D, and D1) consistently localized to patches
around the ring circumference, similar to the B. subtilis and
C. crescentus FtsZ patterns (4,5). Analysis of fluorescence
intensities (see Fig. S1, A and B, in the Supporting Material)
revealed that the majority of Z rings contain one or more
gaps in which intensity decreases to background levels
(82% for FtsZ-GFP and 69% for IF). Most rings had 3–5
areas of lower intensity, but only a small percentage of these
areas had fluorescence below background intensity (34% for
FtsZ-GFP and 21% for IF), indicating that the majority of
areas with lower intensity contain at least some FtsZ.

To elucidate how FtsZ transitions from a disassembled
ring to a new ring, we imaged a few dividing daughter cells
before they were able to form new Z rings (Fig. 1 E). Previ-
ous conventional microscopy had revealed dynamic FtsZ
helical structures (10), but the resolution had been insuffi-
cient to see further details. Here, FtsZ visualized in dividing
cells by 3D-SIM localized throughout as a mixture of
patches and randomly-oriented short filaments (asterisk
and dashed oval in Fig. 1, respectively). These structures
may represent oligomeric precursors of Z ring assembly.

To visualize FtsZ after Z-ring disassembly another way,
we overproduced SulA, a protein that blocks FtsZ assembly.
We examined E. coli cells producing FtsZ-GFP after

mailto:william.margolin@uth.tmc.edu
http://dx.doi.org/10.1016/j.bpj.2014.08.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2014.08.024&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2014.08.024
http://dx.doi.org/10.1016/j.bpj.2014.08.024
http://dx.doi.org/10.1016/j.bpj.2014.08.024
http://dx.doi.org/10.1016/j.bpj.2014.08.024


FIGURE 1 Localization of FtsZ in E. coli. (A) Cell with a Z ring

labeled with FtsZ-GFP. (B) Rotated view of Z ring in panel A.

(C) Cell with a Z ring labeled with DyLight 550 (Thermo Fisher

Scientific, Waltham, MA). (D) Rotated view of Z ring in panel C.

(B1 and D1) Three-dimensional surface intensity plots of Z rings

in panels B and D, respectively. (E) A dividing cell producing

FtsZ-GFP. The cell outline is shown in the schematic. (Asterisk)

Focus of FtsZ localization; (open dashed ovals) filamentous

structures of FtsZ. Three-dimensional surface intensity plots

were created using the software ImageJ (19). Scale bars, 1 mm.

FIGURE 2 Localization of FtsZ after overproduction of SulA.

(A) Cell producing FtsZ-GFP after 0.2% arabinose induction of

SulA for 30 min. (B) After 45 min. (B1) Magnified cell shown in

panel B. (C) Cell producing native FtsZ labeled with AlexaFluor

488 (Life Technologies, Carlsbad, CA) 30 min after induction;

(D) 45 min after induction. (D1) Magnified cell shown in panel

D. Scale bars, 1 mm. (Asterisk) Focus of FtsZ localization;

(open dashed ovals) filamentous structures of FtsZ.
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induction of sulA expression from a pBAD33-sulA plasmid
(pWM1736) with 0.2% arabinose. After 30 min of sulA in-
duction, Z rings remained intact in most cells (Fig. 2 A and
data not shown). The proportion of cellular FtsZ-GFP in the
ring before and after induction of sulA was consistent with
previous data (data not shown) (1,11).

Notably, after 45 min of sulA induction, Z rings were
gone (Fig. 2, B and B1), replaced by numerous patches
and randomly-oriented short filaments (asterisk and dashed
ovals in Fig. 2), similar to those observed in a dividing cell.
FtsZ normally rapidly recycles from free monomers to ring-
bound polymers (11), but a critical concentration of SulA
reduces the pool of available FtsZ monomers, resulting in
breakdown of the Z ring (9). The observed FtsZ-GFP
patches and filaments are likely FtsZ polymers that disas-
semble before they can organize into a ring.

We confirmed this result by overproducing SulA in wild-
type cells and detecting FtsZ localization by IF (Fig. 2, C,D,
and D1). The overall fluorescence patterns in cells produc-
ing FtsZ-GFP versus cells producing only native FtsZ
were similar (Fig. 2, B1 and D1), although we observed
fewer filaments with IF, perhaps because FtsZ-GFP confers
slight resistance to SulA, or because the increased amount of
FtsZ in FtsZ-GFP producing cells might titrate the SulA
more effectively.
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Additionally, we wanted to observe the localization pat-
terns of the membrane tethers FtsA and ZipA. Inasmuch as
both proteins bind to the same C-terminal conserved tail of
FtsZ (12–14), they would be expected to colocalize with the
circumferential FtsZ patches in the Z ring. We visualized
FtsA using protein fusions to mCherry and GFP (data not
shown) as well as IF using a wild-type strain (WM1074)
(Fig. 3A).We found that the patchy ring pattern of FtsA local-
ization was similar to the FtsZ pattern. ZipA also displayed
a similar patchy localization in WM1074 by IF (Fig. 3 B).

To determine whether FtsA and ZipA colocalized to these
patches, we used a strain producing FtsA-GFP (WM4679)
for IF staining of ZipA using a red secondary antibody.
FtsA-GFP (Fig. 3 C) and ZipA (Fig. 3 D) had similar pat-
terns of fluorescence, although the three-dimensional inten-
sity profiles (Fig. 3, C1 and D1) reveal slight differences in
intensity that are also visible in a merged image (Fig. 3 E).
Quantitation of fluorescence intensities around the circum-
ference of the rings revealed that FtsA and ZipA colocalized
almost completely in approximately half of the rings
analyzed (Fig. 3 F, and see Fig. S2 A), whereas in the other
rings there were significant differences in localization in one
or more areas (see Fig. S2 B). FtsA and ZipA bind to the
same C-terminal peptide of FtsZ and may compete for bind-
ing. Cooperative self-assembly of FtsA or ZipA might result
in large-scale differential localization visible by 3D-SIM.

In conclusion, our 3D-SIM analysis shows that the patchy
localization of FtsZ is conserved in E. coli and suggests that
it may be widespread among bacteria. After disassembly of
the Z ring either in dividing cells or by excess levels of the
cell division inhibitor SulA, FtsZ persisted as patches and
short filamentous structures. This is consistent with a highly



FIGURE 3 Localization of FtsA (A) and ZipA (B) by IF using

AlexaFluor 488. (C) FtsA-GFP ring. (D) Same cell shown in panel

C with ZipA labeled with DyLight 550. (C1 and D1) Three-dimen-

sional surface intensity plots of FtsA ring from panel C or ZipA

ring from panel D, respectively. (E) Merged image of FtsA

(green) and ZipA (red) from the ring shown in panels C and D.

(F) Intensity plot of FtsA (green) and ZipA (red) of ring shown

in panel E. The plot represents intensity across a line drawn

counterclockwise from the top of the ring around the circum-

ference, then into its lumen. Red/green intensity plot and

three-dimensional surface intensity plots were created using

the software ImageJ (19). Scale bar, 1 mm.
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dynamic population of FtsZ monomers and oligomers
outside the ring, originally observed as mobile helices in
E. coli by conventional fluorescence microscopy (10) and
by photoactivation single-molecule tracking (15). FtsA
and ZipA, which bind to the same segment of FtsZ and
tether it to the cytoplasmic membrane, usually display a
similar localization pattern to FtsZ and each other, although
in addition to the differences we detect by 3D-SIM, there are
also likely differences that are beyond its ~100-nm resolu-
tion limit in the X,Y plane.

As proposed previously (16), gaps between FtsZ patches
may be needed to accommodate a switch from a sparse Z
ring to a more condensed ring, which would provide force
to drive ring constriction (17). If this model is correct, the
gaps should close upon ring constriction, although this
may be beyond the resolution of 3D-SIM in constricted
rings. Another role for patches could be to force molecular
crowding of low-abundance septum synthesis proteins such
as FtsI, which depend on FtsZ/FtsA/ZipA for their recruit-
ment, into a few mobile supercomplexes.

How are FtsZ polymers organized within the Z-ring
patches? Recent polarized fluorescence data suggest that
FtsZ polymers are oriented both axially and circumferen-
tially within the Z ring in E. coli (18). The seemingly random
orientation of the non-ring FtsZ polymeric structures
we observe here supports the idea that there is no strong
constraint requiring FtsZ oligomers to follow a circumferen-
tial path around the cell cylinder. The patches of FtsZ in the
unperturbed E. coli Z ring likely represent randomly oriented
clusters of FtsZ filaments that are associated with ZipA,
FtsA, and essential septum synthesis proteins. New super-
resolution microscopy methods should continue to shed light
on the in vivo organization of these protein assemblies.
SUPPORTING MATERIAL

Preparation of Samples for 3D-SIM and two figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(14)00895-9.
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FIGURE S1 Quantitation of fluorescence intensities around the circumference of Z rings. (A) 
Three representative examples of FtsZ-GFP ring cross-sections and their fluorescence intensities. 
The plots on the right represent fluorescence intensities along a line originating at the top of the 
ring drawn counterclockwise around the entire circumference of the Z ring, with a final 
extension of the line into the lumen of the ring to define the background fluorescence intensity, 
shown at the far right of the plots (denoted by large arrow). Red arrows indicate areas of 
fluorescence intensity that are at or below background levels; areas of the ring corresponding to 
these areas are shown with arrows in the images on the left. (B) Three representative examples of 
the intensity of Z rings detected by immunofluorescence. Plots and arrows are as described 
above. Intensity measurements were generated using ImageJ (1) and traced in Pixelmator. Scale 
bar, 1 µm. 
 
 



FIGURE S2 Quantitation of FtsA and ZipA colocalization. WM4769 cells producing FtsA-GFP 
were fixed and stained to detect ZipA localization using a red secondary antibody. (A) An 
example of FtsA and ZipA colocalization (another is shown in Fig. 3E-F), measured by plotting 
RGB intensities along a line originating at the top of the ring drawn counterclockwise around the 
entire circumference of the ring, with a final extension of the line into the lumen of the ring to 
define background intensity (far right of plot). The green line represents FtsA localization and 
the red line represents ZipA localization. (B) Two representative examples of colocalization 
patterns that have one (B1) or more (B2) significant differences in localization. RGB plots are as 
described above. RGB plots were generated using ImageJ (1) and traced in Pixelmator. Scale 
bar, 1 µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
SUPPORTING METHODS 
 
Preparation of samples for 3D-SIM 
 
Cells producing FtsZ tagged with green fluorescent protein (GFP) in strain WM2026 were grown 
to mid-logarithmic phase, fixed using glutaraldehyde and paraformaldehyde (2), adhered to poly-
lysine coated coverslips and inverted onto a drop of either ProLong Gold (Life Technologies) or 
Vectashield mounting medium (Vector Laboratories). Strain WM2026 harbors the native ftsZ 
gene along with a ftsZ-gfp gene fusion located elsewhere in the chromosome under control of an 
isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible trc promoter. To produce FtsZ-GFP as 
a dilute label less than the level of native FtsZ, 30 µM IPTG was added to cultures 3 h prior to 
fixation. 
 
Wild-type cells (WM1074) were grown and fixed as described above, then treated with lysozyme 
followed by washes and incubation with affinity-purified anti-FtsZ as described (2), with the 
following modifications. Fixed cells were adhered to poly-lysine coated coverslips instead of a 
15-well slide. The coverslips were washed by immersion in 1X phosphate-buffered saline (PBS) 
followed by soaking for 10 min in 1X PBS in a small container. Blocking buffer and diluted 
antibodies were spotted onto parafilm and coverslips were inverted onto the spots. 
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