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Modulus distribution 

A simple methodology to extract modulus distributions over an entire segment of a fibril that 

takes into account the effect of the underlying substrate and the shape of the fibril was 

developed.  Fitting different regions of the FD curves has a dramatic impact on the obtained 

modulus distribution. As an example we extract the modulus distribution of a collagen fibril 

using two different methods. We either fit the upper part of the FD curves between 30 and 90% 

of the applied peak force (Fig. S1 A) or we fit the lower part of the FD curves up to an 

indentation depth corresponding to 10% of the average “zero force” height of the fibril (Fig. S1 

B) in accordance with Bueckle’s rule.(1, 2) The corresponding images and histograms are very 

different with an average modulus of 63.5±0.3 and 15.5±0.1 MPa, respectively (Fig. S2 A,B, C 

and D). This fourfold overestimation of the modulus in the first method is attributable to the 

presence of the glass substrate underneath the fibril and highlights the importance of only fitting 

the FD curves according to Bueckle’s rule.(1, 2)However, it is noticeable that in both methods 

the modulus distribution has a tail on the left side of the main peak (Fig. S2 C and D).  

 



 (Figure S1: Regions of fit.  Two different sneddon modulus fits of a force-seperation curve 

acquired from the apex of a collagen fibril. A) 30-90% peak force fit bounds. B) 2-21% peak 

force fit bounds corresponding to an indentation depth of 10% of the average “zero force” height 

of the fibril.  

 

Figure S2: Effect of the substrate on the modulus distribution. Modulus maps of a collagen fibril. 

A) Fitting the FD curves in the region between 30 and 90% of the applied peak force. B) Fitting 

the FD curves up to an indentation depth corresponding to 10% of the average “zero force” 

height of the fibril, 20 nm in this case. C) (n = 2508) and D) (n = 2387) Corresponding 

histograms of modulus distribution. Notice that the first method provides a fourfold overestimate 

of the modulus compared to the second method. 

In order to understand the origin of this tail we look at the systematic variations in peak force 

associated with the response time of the feedback loop observed in AFM tapping modes 

(1.7)(Fig. S3). The image obtained from the peak force error channel always shows a dark and a 

bright edge on each side of the fibril (Fig. S3 A). Inverting the scanning direction exchanges the 

bright and dark edges.  One possible explanation is that the response time of the feedback loop is 

too long to accommodate the rapid change in topography on the sides of the fibril. Another 

explanation is that the bright edge occurs due to coupled cantilever torsion and deflection away 

from the fibril. This results in an applied force in excess of the set point visible as a spike on the 



right side of the peak force error profile across the fibril (Fig. S3 C). As the tip scans across the 

fibril the peak force error first (1.7) goes through zero as it passes the apex and then spikes 

negatively as it slips of the side of the fibril (Fig. S3 C), giving rise to a dark edge on the image 

(Fig. S3 B).   

 

 

Figure S3:  Variations in applied peak force correlate with sample topography. Height and peak 

force error images of a collagen fibril, A) and B), respectively. The peak force set point was 10 

nN and the scanning direction was right to left. C) and D) are corresponding line profiles across 

the fibril. The region where the peak force error is ±10% of the peak force set point (broken 

lines) corresponds to the apex of the fibril. 

Due to the systematic nature of the peak force error profile across a fibril, it is possible to select 

different regions across the fibril by selecting different ranges of peak force error (see 

Supplement S5).  Force curves were sorted into 0.1 nN bins to allow accurate fitting parameters 

to be applied to the sorted force curves due to the uniformity of the applied force within each 

sorted bin.  This becomes relevant when considering the fitting parameters within the analysis 

software are based on percent peak force per curve and not on specific force values. 



The modulus distributions extracted from a 5 by 5 µm image are shown for an entire fibril (Fig. 

S4 A), the left side corresponding to negative peak force error (Fig. S4 B), the right side 

corresponding to positive peak force error (Fig. S4 C), and the apex corresponding to minimal 

peak force error (Fig.S4 D).  The tail in the distribution obtained for the full fibril is associated 

only with the left side of the collagen fibril (Fig. S4 B) whereas the positive peak force error on 

first contact is responsible for a broadening of the main peak (Fig. S4 C). The distribution 

obtained from the apex of the fibril is Gaussian with a standard deviation of 2.5 MPa giving rise 

to an estimate of the modulus with an accuracy better than 1% at 18.63±0.07 MPa (Fig. S4 D). 

This is not the absolute accuracy of the measurement since the cantilever spring constant 

calibration is only 10% accurate, but it shows the potential of the approach to detect fluctuations 

in modulus along the length of a fibril or before and after modifications of a fibril by an external 

factor such as temperature or pH.   

 

Figure S4: Selecting the apex of the fibril using the peak force error. Modulus distributions 

extracted from a 5 by 5 µm image of a collagen fibril according to Bueckle’s rule (ref). A) Entire 

fibril, peak force error ranging from -5 nN to +5 nN. B) Region where the tip slip on the fibril 

side, peak force error ranging from -5 nN to -1 nN. C) Region where the tip first contacts the 

fibril, peak force error ranging from +1 nN to +5 nN. D) Apex of the fibril, peak force error 

ranging from -1 nN to +1 nN. The peak force setpoint was 10 nN as in Figure 2.  The total 

number of force curves (n) of each region ,a-d, are 2297,515, 632, and 1250 respectively. 



 

  



 

Supplement S5 

Sorting Algorithm (MATLAB v7.10.0) 

DataSourceFolder =('C:\Users\Sam\Desktop\before\');%make sure it ends 

with a \ 

DataSortedFolder =('C:\Users\Sam\Desktop\after\'); %make sure it ends 

with a \ 

 

LowBound =(0) 

HighBound = (22) 

SEnN = (.1)  %Sorting by this many nN  MAKE SURE THAT FOLDERS 

GENERATED ARE ALWAYS A FACTOR OF AN INTEGER. 

SD = (1/SEnN)  %Sorting Denominator 

 

 

LowerBound= (LowBound); 

UpperBound= (HighBound*SD); 

BoundRange=[LowerBound:UpperBound]; 

 

%Making Destination Folders 

   

mkdir(DataSortedFolder) 

for x=(BoundRange) 

    str = num2str(x/SD); 

    MakeFolders = strcat(DataSortedFolder,str); 

    mkdir(MakeFolders) 

end 

UBoundFolder=strcat(DataSortedFolder,'Above Upper Bound'); 

mkdir(UBoundFolder) 

LBoundFolder=strcat(DataSortedFolder,'Below Lower Bound'); 

mkdir(LBoundFolder) 

 



%Defining Nanoscope utilities 

NS = NSMatlabUtilities(); 

 

F = dir(DataSourceFolder); 

F = F(~[F.isdir]); 

NumberOfFiles = length(F); 

 

 

%CHECK TO SEE I AF NEEDS TO UPDATE WITH EACH LOOP AKA IT LOOKS FOR 

(1,1) 

%and its GONE after first go 

for p=[1:NumberOfFiles] 

    FN = {F.name}; %FileNames=FN 

    AF = FN(1,p); %ActiveFile=AF 

    AF = AF{1};  %Reads Cell element as a string 

    TAF = strcat(DataSourceFolder,AF);%TAF= total active file path 

    NS.Open(TAF) 

    [xTrace, xRetrace, yTrace, yRetrace, xLabel, yLabel] = 

NS.CreateForceZPlot(1, NS.FORCE, 0); 

    PF = max(yTrace); 

    for x=(BoundRange); 

        if ((x/SD)> PF+SEnN) 

                break; 

        end  

        if ((x/SD)>PF) 

            XS=num2str(x/SD); 

            TargetFolder = strcat(DataSortedFolder,XS); 

            movefile(TAF,TargetFolder)% EX if moved to folder 9 the PF 

is between 8 and 9 

            %WHEN USEING FITTING SOFTWARE USE %BOUNDS AJUSTED FOR THE 

            %MIDDLE OF THE RANGE EX 6-7 BOUNDS ARE AT 6.5nN 

        elseif (PF>UpperBound) 

            movefile(UBoundFolder) 

             



        elseif (PF<LowerBound) 

            movefile(LBoundFolder) 

        end 

         

    end 
end 

  



 

 

 

Figure S6:  Modulus maps of mechanical alterations. A cleaved collagen fibril (a) and a sharp 

bend (b).  The D-period is observed in the surrounding regions demonstrating a decrease in 

average modulus, but not at the localized site of alteration. 

  



Collagen assembly in vitro. 

In vitro collagen fibrils were synthesized from rat tail collagen I purchased from (Sigma, St. 

Louis, MO).  The tropocollagen molecules were diluted in PBS to a concentration of .2mg/ml.  

Such solutions were incubated ate 37°C for 1 hour after which 0.5 ml of solution was deposited 

onto a glass bottom dish.  After 1 hour the samples were trice rinsed with deionized water to 

remove residual salts.  During the washing process careful technique ensured the sample 

remained hydrated.  The hydrated sample underwent mechanical measurement as previously 

described or was stored at 4°C until use.  The fibrils formed were polydisperse in their 

dimensions, while only those with a zero force height greater than 200nm were used for the 

acquisition of figure S8. The fibrils displayed no D-period when hydrated, but it appeared upon 

dehydration.  Interestingly the in vitro fibrils displayed a twisting structure in the modulus 

channel similar to that of ex vivo fibrils after temperature exposure. 

 

Figure S7: Twisted structure of in vitro fibrils in modulus. The log sneddon modulus map of an 

in vitro fibril acquired at 1200 µm/s.   

 



 

 
 

Figure S8: Dependence of the modulus of in vitro fibrils with indentation speed. The modulus of 

three, 5µm segments of different in vitro assembled collagen fibrils as a function of indentation 

speed. Logarithmic least square fits of the data highlights the presence of two distinct regimes.  
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