Supplementary Information

HnRNP C, YB-1 and hnRNP L coordinately enhance skipping of human *MUSK* exon 10 to generate a Wnt-insensitive MuSK isoform

Farhana Nasrin¹, Mohammad Alinoor Rahman¹, Akio Masuda¹, Kenji Ohe¹, Jun-ichi Takeda¹ and Kinji Ohno¹

¹Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan

Address correspondence to: Kinji Ohno, Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan Phone: +81-52-744-2446, Fax: +81-52-744-2449, e-mail: ohnok@med.nagoya-u.ac.jp

Supplementary information includes:

Supplementary Tables 1-4 Supplementary Figures S1-S7

	MUSK transcript isoform (%)								
	Isoforms A and B	Isoform C	Isoform D						
Human skeletal muscle tissue (HSKM)	88 ± 5.68	0.07 ± 0.08	12 ± 5.60						
Human primary myoblast (SkMC)									
Undifferentiated	66 ± 1.07	19 ± 0.93	15 ± 0.28						
Differentiated	81 ± 1.27	13 ± 0.77	6 ± 0.51						
Immortalized human myogenic cells (KD3)									
Undifferentiated	59 ± 1.30	20 ± 0.88	21 ± 0.74						
Differentiated	78 ± 0.20	17 ± 0.68	6 ± 0.59						

Supplementary Table 1. *MUSK* transcript isoforms in human skeletal muscle tissue and cells

Values represent mean \pm standard deviation (SD) of three independent experiments.

Transcript isoforms are shown in Fig. S2(c) according to the annotation of ENSEMBL 76.

Primers	5' – 3' sequences
pcDNA-human-MUSK	
hMusk-ex8/F	CACCATGGTTTCTTCTGGGTCC
hMusk-ex11/R	CTAGATGTGGCAGTCTGGCACAG
hMusk-int8/F	TCCTAGCAGAAGCGGAGAACT
hMusk-int8/R	TCCGCTTCTGCTAGGAGGAAGGAAGGAGGAATGA
hMusk-int9/F	CCCAAAGCTTTCCACATCTATC
hMusk-int9/R	TGGAAAGCTTTGGGAAACATACTCCACCGCACT
hMusk-int10/F	CAGAATTTAGGCTCTGCCAC
hMusk-int10/R	GCAGAGCCTAAATTCTGCCTCAAGTGATCCACCCACT
<i>pSPL3-human-</i> MUSK	
X10NotF	AGTTAGCGGCCGCTTCCCAAAGCTTTCCACATC
X10PacR	ATGTATTAATTAACCTCAAGTGATCCACCCACT
nSPI 3-mouse-Musk	
pSI L5-mouse-Musk	ACTTACCCCCCCCCCCCCAACCTATCTAACCTCACTC
musX10PacP	
Delation constructs of nSDI 2 h	
Detetion constructs of psr L3-n	
ui-200F	
ul-150F	
UI-100F X10 150P	
X10-130K X10-02P	
X10-92K X10.60P	
Chimania minigana acustmenta	A STATIAATIAACICCITETOTIOTOCAU
Chimeric minigene constructs o	<i>J psrL3-numan</i> -MOSK
UichF	GAATTCTGGAGCTCGAGCGGCCGCGCACAGTCTCTA
UICHK Esh E	
Ecn-F Ech P	
Dich/F	
Dich/P	
181/F (second half chimera)	
180/R (first half chimera)	
Rlock scanning mutagenesis of	nSD12 human MUSK
MDS1E	psi L5-numun-wiosk
MBS1F MDS1D	GAAAIGHUHUATHUHUHUHUHUAGHAHUAGHAHUAUHUHUAGHAHUAUHUHUGUUAG
MDS1K	
MBS2P	
MBS2R MBS6F	CTCAACACTCCTTCAGTATGACTCTCAGTATGCAAGGCTACTG
MBS6R	CAGTAGCTCTTGCATACTGGAGAGTCATACTGGAGGGGGTGTGGG
MBS8F	
MBS8R	ACTGGGCTCACTACATACTGAGAGTCATACTGAGTGTGGACCAGT
MBS3F	CTGCGCCCAGTACATCAGTATGACTCTCAGTATGGTCCTGGCAAAAG
MBS3R	CTTTTGCCAGGACCATACTGAGAGTCATACTGATGTACTGGGCGCAG
MBS4F	AGGTGTGTAATGCATCAGTATGACTCTCAGTATGTGTTTTTCTCAACAC
MBS4R	GTGTTGAGAAAAACACATACTGAGAGTCATACTGATGCATTACACACCT
MBS5F	GCAAAAGATGCTCTTCAGTATGACTCTCAGTATGATGCGGACCCTGAG
MBS5R	CTCAGGGTCCGCATCATACTGAGAGTCATACTGAAGAGCATCTTTTGC
MBS7F	GACCCTGAGGAGGCCTCAGTATGACTCTCAGTATGGGCCTGGAATGAAC
MBS7R	GTTCATTCCAGGCCCATACTGAGAGTCATACTGAGGCCTCCTCAGGGTC
MBS9F	GGAATGAACTGAAAGTCAGTATGACTCTCAGTATGCCAGCTGCTGAG
MBS9R	CTCAGCAGCTGGCATACTGAGAGTCATACTGACTTTCAGTTCATTCC
MBS10F	GAGCCCAGTCTGCCGGTCAGTATGACTCTCAGTATGGTGTAACCACATC
MBS10R	GATGTGGTTACACCATACTGAGAGTCATACTGACCGGCAGACTGGGCTC
MBS11F	GCTGAGGCTTTGTTTCAGTATGACTCTCAGTATGAGTGCAGTCCTGGA
MBS11R	TCCAGGACTGCACTCATACTGAGAGTCATACTGAAACAAAGCCTCAGC
MBS12F	ACCACATCTTCCAGGTCAGTATGACTCTCAGTATGCCTACTCCTATTC
MBS12R	GAATAGGAGTAGGCATACTGAGAGTCATACTGACCTGGAAGATGTGGT
MBS13F	GTCCTGGAGTAGTGTCAGTATGACTCTCAGTATGCAGGTAAAATCTC
MBS13R	GAGATTTTACCTGCATACTGAGAGTCATACTGACACTACTCCAGGAC

Supplementary Table 2. Primer sequences for making constructs

Supplementary Table 2. Continued

Primers	5' – 3' sequences
pH-mB5 minigene	
SDM/5F	CTGGCAAAAGATGCTCTTGTCTTCTTCAACACCTCCTATGCGGAC
SDM/5R	GTCCGCATAGGAGGTGTTGAAGAAGACAAGAGCATCTTTTGCCAG
pH-mB12 minigene	
SDM/BS12F	CTTCCAGGAGTGCAGCCCTGGAGTGGTGCCTACTCCTATTCC
SDM/BS12R	GGAATAGGAGTAGGCACCACTCCAGGGCTGCACTCCTGGAAG
pSPL3-human-MUSK-MS	S2-PP7
MG-MS2/F	CAAAAGATGCTCTTGACATGAGGATCACCCATGTCAACACCTCCTATGC
MG-MS2/R	GCATAGGAGGTGTTGACATGGGTGATCCTCATGTCAAGAGCATCTTTTG
MG/pp7/F	GATCACCCATGTGGCACGAAGATATGGCTTCGTGCCCTATGCGGACCCTG
MG/pp7/R	CAGGGTCCGCATAGGGCACGAAGCCATATCTTCGTGCCACATGGGTGATC
MS2- or PP7-fused effected	or constructs
pcC/F	CACCATGGCCAGCAACGTTAC
pcC/R	AGAGTCATCCTCGCCATTG
pp7-insYB1-F	GCTGAGGCGGCCGCGATGTCCAAAACCATCGTTCTTTCGGTCG
pp7-insYB1-R	TGGATCTGCGGCCGCACGGCCCAGCGGCACAAG
Xho1-pp7/F	AGTTACTCGAGTATGTCCAAAACCATCGTTCTTTCGGTCG
Xba1-pp7/R	ATGTATCTAGACTACGGCCCAGCGGCACAAGGTTG
pc-pp7/F	CACCATGTCCAAAACCATCGTTC
pc-pp7/R	ACGGCCCAGCGGCAC

Duimous	5 ² 2 ² and manage								
P rimers	5° – 5° sequences								
Splicing of endogenous human M	USK								
hMuSK-ex8/F	GCTGCAGCCACCATCAGCAT								
hMuSK-ex11/R	TGCTGCATTCTGGCACGGACA								
Splicing of endogenous mouse M	usk								
mMuSKex8/F	AAGTTCAGTACCGCAAAGGC								
mMuSKex11/R	AGAAGAGCTCCTTTACCGCC								
Splicing of pcDN4_human_MUSH	ζ								
pcDNA E	TCCAGTACCCTTCACCATG								
PCH P									
Culture an alumin of a CDL 2 hours									
Splicing analysis of pSPL3 human/mouse minigenes									
pSPL3-F	TCTGAGTCACCTGGACAACC								
pSPL3-R	ATCTCAGIGGTATTTGTGAGC								
Expression of endogenous human	n MUSK variants (Real-time RT-PCR)								
H-MuSK-8/F	GCTGCAGCCACCATCAGCAT								
H-MuSK-10R	GCACTCCTGGAAGATGTGGT								
H-MuSK-8-11/F	ACCATCAGCATAGCAGAG								
H-MuSK-8-9-11/F	AGCATAGCAGAATGGAGAG								
H-MuSK-11/R	TGCTGCATTCTGGCACGGACA								
Endogenous human protein expre	ession								
RT-hnRNP C/F	ATGTGGAGGCAATCTTTTCG								
RT-hnRNP C/R	TTTCCTCGGTTCACTTTTGG								
RT-hnRNP L/F	TTCTGCTTATATGGCAATGTGG								
RT-hnRNP L/R	GACTGACCAGGCATGATGG								
RT-YB1/F	GTCATCGCAACGAAGGTTTT								
RT-YB1/R	AACTGGAACACCACCAGGAC								
GAPDH-human-F	ATGGCACCGTCAAGGCTGAGA								
GAPDH-human-R	GGCATGGACTGTGGTCATGAG								
MYOG-human1-F	GGTGCCCAGCGAATGC								
MYOG-human1-R	TGATGCTGTCCACGATGGA								
Endogenous mouse protein expre	ssion								
GAPDH mouse F									
GAPDH mouse P	TCCACCACCTGTTGCTGTA								
Muogenin mouse F	TCCAGTACATTGAGCGCCTAC								
Myogenin-mouse-F									
	Les ha DND C and VD 1								
Additional target genes regulated by hnRNP C or/and YB-1									
srst11/F	CAGACICAGCAGIIGIGGCAC								
srst11/K									
faim/F									
faim/R									
SUB1/F	CAAGIIGCICCAGAAAAACC								
SUBI/R									
CKLF/F	ACGCGAIGGAIAACGIGCAG								
CKLF/R	GATTGAACAGAAGCTTCCGGT								
KBM14/F	GGCIGCGGCGACAAAAIGAAGAIAIIC								
KBM14/K	ACGAAAGCIGCGACICIGAI								
cdc/3/F	CHIGUACUTTICICATCUIG								
COC/3/K									
Irrc42/F									
ITTC42/K									
IL/K/F									
IL/K/K NDDE2/E									
NBPF3/F									
NBPF3/K	IGAUGTTIGIGGCAGAAGAG								

Supplementary Table 3: Primer sequences for RT-PCR

Primers	5' – 3' sequences
T7-F	TAATACGACTCACTATAGGG
H-B5-R	AGGAGGTGTTGAGAAAAACACCCTATAG
m-B5-R	AGGAGGTGTTGAAGAAGACACCCTATAG
H-B5D5-R	GGAGGTGTTGAACAACCCTATAG
H-B12-R	ACTACTCCAGGACTGCACTCCCCTATAG
m-B12-R	ACCACTCCAGGGCTGCACTCCCCTATAG
H-B12D12-R	ACTCCAGTGCACTCCCCTATAG
H-mut1-R	GGAGGTGTTGAGAAAAAGAACCCTATAG
H-mut2-R	GGAGGTGTTGAGAAAAGCAACCCTATAG
H-mut3-R	GGAGGTGTTGAGAAAGACAACCCTATAG
H-mut4-R	GGAGGTGTTGAGAAGAACAACCCTATAG
H-mut5-R	GGAGGTGTTGAGAGAAACAACCCTATAG
H-mut6-R	GGAGGTGTTGAGGAAAACAACCCTATAG
H-mut7-R	GGAGGTGTTGACAAAAACAACCTATAG
H-mut8-R	GGAGGTGTTGCGAAAAACAACCTATAG
H-mut9-R	GGAGGTGTTCAGAAAAACAACCTATAG
H-mut10-R	GGAGGTGTAGAGAAAAACAACCCTATAG
H-mut11-R	GGAGGTGATGAGAAAAACAACCCTATAG
H-mut12-R	GGAGGTCTTGAGAAAAACAACCCTATAG
H-mut13-R	GGAGGCGTTGAGAAAAACAACCCTATAG
H-mut14-R	GGAGCTGTTGAGAAAAACAACCCTATAG
H-mut15-R	GGACGTGTTGAGAAAAACAACCCTATAG
H-mut16-R	GGCGGTGTTGAGAAAAACAACCCTATAG

Supplementary Table 4. Overlap extension PCR primers to synthesize RNA probes

FIGURE LEGENDS

Figure S1. Sequence alignment of MuSK Fz-CRD, as well as FZD1 across different species. Conserved cysteine residues are shown by red letters and boxed by blue lines. In human, *MUSK* exon 10 encoding 6 cysteines and exon 11 encoding 4 cysteines constitute Fz-CRD.

Figure S2. Genomic structure of human MUSK and splicing isoforms. (a) Genomic and CDS structures of human MUSK. Green and red boxes show constitutive and alternative exons, respectively. Black boxes indicate UTRs. (b) Partial genomic sequence of human MUSK gene spanning exon 8 to exon 11. Genomic coordinates of each exon according to GRCh37/hg19 are shown in blue. Green and red uppercase nucleotides indicate constitutive and alternative exons, respectively. Introns are shown by black lowercase letters. (c) Schematics of human MUSK transcripts annotated in ENSEMBL 76. Black and blue connecting lines indicate constitutive and alternative splicing, respectively. Constitutively and alternatively spliced exons are indicated in green and red, respectively. Shaded exons represent 5' and 3' UTRs. (d) RT-PCR of endogenous MUSK transcripts spanning exons 8 to 11 using total RNA isolated from human skeletal muscle (HSKM), undifferentiated immortalized human myogenic cells (KD3), and undifferentiated primary human myoblasts (SkMC). Closed arrowhead points to an exon 10-included product, which is comprised of isoforms A and B in panel (c). Open arrowhead points to exon 10-skipped products, which are comprised of overlapping fragments of isoforms C and D in panel (c). Inclusion and skipping of the 7-nt exon 9 could not be differentiated on a gel. (e) RT-PCR of endogenous Musk transcripts spanning exons 8 to 11 of total RNA isolated from the indicated mouse skeletal muscles and the differentiated C2C12 mouse myotubes. Note that exon 10-skipped product is not detected in any of the mouse samples. (f) Alternative human MUSK transcripts harboring different combinations of exons 9 and 10 that we identified by cloning and sequencing the RT-PCR products in (d). The ENSEMBL transcripts for isoforms A-D are shown in (c).

Figure S3. Additional information for Figs. 2, 3, and 4. (a) Schematic of

pSPL3-human-*MUSK* constructs with sequential deletions of upstream or downstream introns to identify minimal sequences to drive skipping of exon 10. RT-PCR of the respective minigenes in

HeLa cells are shown at the bottom. (b) ESS12 RNA probes carrying human (H-B12), mouse (m-B12), and partially deleted (H-B12 Δ 6) sequences. (c) ³²P-labeled H-B12 and m-B12 RNA probes are incubated with or without HeLa nuclear extract and resolved on a native polyacrylamide gel. (d) Coomassie blue staining of RNA affinity-purified products of HeLa nuclear extract using the indicated biotinylated RNA probes. (e) RT-PCR of pSPL3-human-*MUSK* (pH-wt) minigene in HeLa cells treated with the second set of siRNAs. mRNA targets of the second set of siRNAs are different from those of the first set shown in Fig. 4b.

Figure S4. Additional information for Fig. 5. (a) Immunoblotting of mock-, hnRNP C-, and non-depleted HeLa nuclear extracts showing efficient removal of hnRNP C. (b) Mock-depleted (ΔMock) and hnRNP C-depleted (ΔhnRNP C) HeLa nuclear extracts are affinity-purified with the indicated RNA probes and resolved by immunoblotting (IB). NuEx, native HeLa nuclear extract used as an input. (c) Tethering of only MS2 and PP7 to pSPL3-human-*MUSK*-MS2-PP7 has no effect on splicing regulation of *MUSK* exon 10. (d) Schematic of pSPL3-human-*MUSK*-non-MS2-PP7 that lacks MS2- and PP7-binding sites, as well as ESS5. RT-PCR of pSPL3-human-*MUSK*-non-MS2-PP7 in HeLa cells co-transfected with the indicated effectors. (e) Expressions of cDNA constructs in HeLa cells are detected by immunoblotting (IB). Expressions of cDNAs for YB-1 and hnRNPs L in HeLa cells are also shown in Fig. 4c. Native and recombinant proteins are indicated by 'endo' and 'exo', respectively.

Figure S5. Molecular interactions among the splicing repressors of *MUSK*. HeLa nuclear extract is immunoprecipitated with the indicated IP-antibody in the presence or absence of RNase, and the precipitated products are immunoblotted with the indicated IB-antibody. Ten-times diluted native HeLa nuclear extract are indicated by 'Input (10%)'.

Figure S6. Effects of hnRNP C and YB-1 on splicing of alternative exons other than *MUSK* **exon 10.** RT-PCR of alternatively spliced exons that are coordinately regulated by both hnRNP C and YB-1 (a), hnRNP C (b), and YB-1 (c) in HeLa cells. Closed and open arrowheads point to exon-included and exon-skipped transcripts, respectively.

Figure S7. Additional information for Fig. 6. (a) Phase-contrast images showing a temporal profile of differentiation of primary human myoblasts (SkMC). (b) RT-PCR showing alternative skipping of endogenous *MUSK* exon 10 (Isoforms C and D as shown in Fig. S2c) at different differentiation days of SkMC. (c) RT-PCR of endogenous *Musk* transcripts spanning exons 8 to 11 at different differentiation days of mouse myoblast cells (C2C12).

FZD1

Human	DHGY- C QPISIPL C TDIAYNQT	IMPNLLGHTNQEDAGLEVHQFYPLVKVQ	C SAELKF	FFL C	SMYAPV	C TVLEQ	ALPP C	RSL	C ERARQG-	С	EALMNKFGFQWPDTLK	С	EKFPVHGAGE-L	C	VGQNT
Chimpange	DHGF- C QPISIPL C TDIAYNQT	ILPNLLGHTNQEDAGLEVHQFYPLVKVQ	C SPELRE	FFL C	SMYAPV	C TVLDÇ	QAIPP C	RSL	C ERARQG-	с	EALMNKFGFQWPERLR	с	ENFPVHGAGE-I	C 7	VGQNT
Mouse	DHGY- C QPISIPL C TDIAYNQT	IMPNLLGHTNQEDAGLEVHQFYPLVKVQ	C SAELKE	FFL C	SMYAPV	C TVLEÇ	ALPP C	RSL	C ERARQG-	с	EALMNKFGFQWPDTLK	с	EKFPVHGAGE-L	C '	VGQNT
Rat	DHGY- C QPISIPL C TDIAYNQT	IMPNLLGHTNQEDAGLEVHQFYPLVKVQ	C SAELKE	FFL C	SMYAPV	C TVLEC	ALPP C	RSL	C ERA-QG-	с	EALMNKFGFQWPDTLK	с	EKFPVHGAGE-L	C 7	VGQNT
Opossums	DHGY- C QPISIPL C TDIAYNQT	IMPNLLGHTNQEDAGLEVHQFYPLVKVQ	C SAELKF	FL C	SMYAPV	C TVLEQ	ALPP C	RSL	C ERARQG-	с	EALMNKFGFQWPDTLR	С	EKFPVHGAGE-L	C '	VGQNT
Chicken	DHGY- C QPISIPL C TDIAYNQT	IMPNLLGHTNQEDAGLEVHQFYPLVKVQ	C SAELKE	FFL C	SMYAPV	C TVLEC	ALPP C	RSL	C ERARQG-	с	EALMNKFGFQWPDTLR	с	EKFPVHGAGE-L	C '	VGQNA
Zebrafish	EHGF- C QPISIPL C TDIAYNET	IMPNLLGHTNQEDAGLEVHQFYPLVKVQ	C SPDLKE	FL C	SMYAPV	C TVLEQ	ALPP C	RSL	C ERARQG-	с	EALMNKFGFQWPESLA	с	ESFPVHG-GE-L	c '	VGQNT

Scheme

113538243

С

е

