Supplementary Information for "Binding Structures of tri-N-acetyl- β -glucosamine in Hen Egg White Lysozyme using Molecular Dynamics with a Polarizable Force Field"

Yang Zhong and Sandeep Patel^{*}

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA

 $^{^{*}\}mbox{Corresponding author. E-mail: sapatel@udel.edu}$

List of Tables

Ι	Electrostatic Parameters in the polarizable CHEQ Force Fields (Part I) $\ \ldots \ \ldots$	3
II	Electrostatic Parameters in the polarizable CHEQ Force Fields (Part II)	4
III	Nonbond Parameters for the CHEQ and PHLB Force Fields	5
IV	Small Molecule GB Energies Using C22 and CHEQ Charges	6
V	Fitting Constants for Entropy Extrapolation. The numbers in the brackets represent	
	asymptotic standard errors upon fitting	7

Atom Name	Atom Type	χ^a	$(\eta_i^\circ)^a/2$
C1	CTS	310	98
H1	HAS	295	251
01	OHS	515	154
HO1	HOS	88	259
C2	CTS	310	98
H2	HAS	268	251
C5	CTS	290	98
H5	HAS	268	251
O5	OES	500	154
NT	NG1	557	149
HNT	HG	99	297
C7	CG	216	123
07	OG	626	190
C8	CT3G	470	120
H81	HA3G	271	251
H82	HA3G	271	251
H83	HA3G	271	251

^{*a*} Electronegativity χ and atomic hardness η are in units of $\frac{kcal/mol}{e}$ and $\frac{kcal/mol}{e^2}$, respectively. The values for η correspond identically to J_{ii} in the text discussion.

TABLE I:

Atom Name	Atom Type	χ^a	$(\eta_i^\circ)^a/2$
C3	CTS	310	98
H3	HAS	268	251
O3	OHS	550	154
HO3	HOS	86	259
C4	CTS	380	98
H4	HAS	268	251
O4	OHS	550	154
HO4	HOS	86	259
C6	CTS	320	104
H61	HAS	305	251
H62	HAS	305	251
O6	OHS	540	154
HO6	HOS	98	259

^{*a*} Electronegativity χ and atomic hardness η are in units of $\frac{kcal/mol}{e}$ and $\frac{kcal/mol}{e^2}$, respectively. The values for η correspond identically to J_{ii} in the text discussion.

TABLE II:

Atom Type	ϵ (CHEQ)	$R_{min}/2$ (CHEQ)	ϵ (PHLB)	$R_{min}/2$ (PHLB)
Unit	$(\rm kcal/mol)$	(Å)	$(\rm kcal/mol)$	(Å)
CTS	0.020	2.275	0.020	2.275
HAS	0.082	1.320	0.020	1.320
OHS	0.170	1.630	0.152	1.770
HOS	0.016	0.125	0.046	0.225
OES	0.070	1.803	0.152	1.770
NG1	0.120	1.880	0.200	1.850
HG	0.016	0.125	0.046	0.225
CG	0.160	2.225	0.110	2.000
OG	0.115	1.925	0.120	1.700
CT3G	0.073	2.020	0.080	2.060
HA3G	0.023	1.320	0.022	1.320
ON2	0.070	1.803	0.152	1.770

TABLE III:

Molecule	C22	CHEQ
Methanol	-7.05	-9.93
Ethanol	-7.09	-9.58
Propanol	-7.12	-8.48
Butanol	-7.05	-9.56
Acetamide	-10.81	-21.46
N-Methylacetamide	-9.39	-21.07
Formamide	-13.11	-24.65
N-Methylformamide	-13.42	-21.24
Methanethiol	-2.01	-6.82
Ethanethiol	-1.97	-4.67
Methylamine	-5.43	-6.20
Ethylamine	-3.89	-3.23
Propylamine	-4.58	-4.90
Butane	-1.19	-0.41

TABLE IV:

System	Model	$S_{\infty}(\text{kcal/mol/K})$	$A \times 10^{-4}$	n
$(NAG)_3$	C22	80.01(0.19)	3.43(4.16)	1.30(0.18)
	CHEQ	75.63(0.45)	3.43(14.85)	1.25(0.59)
$\operatorname{Protein}_{WT}$	C22	1978.67(2.91)	9.71(0.28)	0.68(0.00)
	CHEQ	1868.48(34.61)	2.36(0.29)	0.48(0.02)
$\operatorname{Protein}_{W62Y}$	C22	2030.23(16.84)	8.73(1.37)	0.66(0.03)
	CHEQ	1828.14(51.22)	3.01(0.64)	0.53(0.04)
$\operatorname{Complex}_{WT}^{ABC}$	C22	2156.22(7.03)	6.19(0.39)	0.59(0.01)
	CHEQ	1885.26(40)	2.94(0.08)	0.51(0.04)
$\operatorname{Complex}_{WT}^{BCD}$	C22	2122.13(10.88)	5.15(0.57)	0.57(0.02)
	CHEQ	2036.60(70.33)	0.89(0.22)	0.33(0.04)
$\operatorname{Complex}_{W62Y}^{ABC}$	C22	2060.18(9.62)	9.68(0.88)	0.67(0.01)
	CHEQ	1897.44(17.73)	4.07(0.39)	0.56(0.02)

TABLE V:

List of Figures

1	Entropy evolution with simulated number of structures. TS is in the unit of kcal/mol.	9
2	Evolution of HEWL backbone RMSD for Helix, Sheet and Turn Structures Based	
	on The Fixed-charge Force Field.	10
3	Evolution of HEWL backbone RMSD for Helix, Sheet and Turn Structures Based	
	on The CHEQ Force Field.	11
4	Evolution of the RMSDs for ligand residues at different sites of ABC structure	
	obtained from simulations based on fixed charge model and polarizable model. $\ .$.	12
5	Evolution of the RMSDs for ligand residues at different sites of BCD structure	
	obtained from simulations based on fixed charge model and polarizable model. $\ .$.	13
6	Electrostatic solvation free energies ΔG_{GB} for complex, protein and ligand of 15000	
	wildtype structures.	14
7	Nonbond solvation free energies ΔG_{SASA} for complex, protein and ligand of 15000	
	wildtype structures.	15
8	Distributions of binding free energy ΔG_{bind} , interaction energy ΔE_{MM} and solvation	
	free energy ΔG_{solv} for wildtype structures in different RMSD regions	16

FIG. 1:

FIG. 2:

FIG. 3:

FIG. 4:

FIG. 5:

FIG. 6:

FIG. 7:

FIG. 8: